
Clustering Social Networks

Nina Mishra1,4, Robert Schreiber2, Isabelle Stanton1?, and Robert E. Tarjan2,3

{nmishra,istanton}@cs.virginia.edu,
{rob.schreiber,robert.tarjan}@hp.com

1 Department of Computer Science, University of Virginia
2 HP Labs

3 Department of Computer Science, Princeton University
4 Search Labs, Microsoft Research

Abstract. Social networks are ubiquitous. The discovery of close-knit
clusters in these networks is of fundamental and practical interest. Exist-
ing clustering criteria are limited in that clusters typically do not over-
lap, all vertices are clustered and/or external sparsity is ignored. We
introduce a new criterion that overcomes these limitations by combining
internal density with external sparsity in a natural way. An algorithm
is given for provably finding the clusters, provided there is a sufficiently
large gap between internal density and external sparsity. Experiments on
real social networks illustrate the effectiveness of the algorithm.

1 Introduction

Social networks have gained popularity recently with the advent of sites such
as MySpace, Friendster, Facebook, etc. The number of users participating in
these networks is large, e.g., a hundred million in MySpace, and growing. These
networks are a rich source of data as users populate their sites with personal
information. Of particular interest in this paper is the graph structure induced
by the friendship links.

A fundamental problem related to these networks is the discovery of clusters
or communities. Intuitively, a cluster is a collection of individuals with dense
friendship patterns internally and sparse friendships externally. We give a pre-
cise definition of a cluster shortly. There are many reasons to seek tightly-knit
communities in networks, for instance, target marketing schemes can be de-
signed based on clusters, and it has been claimed that terrorist cells can be
identified [12].

What is a good cluster in a social network? There are numerous existing
criteria for defining good graph clusters, and accompanying each criterion is a
multitude of algorithms. One popular criterion is based on finding clusters of high
conductance. The conductance of a cut A,B is the ratio of the number of edges
crossing the cut to the minimum of the volume of A and B, where the volume
of A is the number of edges emanating from the vertices in A. The conductance

? Supported by an NPSC Graduate Fellowship and Google Anita Borg Scholarship.

of a cluster is the minimum conductance of any cut in the cluster. A spectral
algorithm is typically used to discover these clusters where the eigenvector of a
matrix related to the adjacency matrix can be used to find a good cut of the graph
into subgraphs A,B. The process is then recursively repeated (on A and B) until
k clusters are found (where k is an input parameter) or until the conductance
of the next best cut is larger than some threshold. Formal guarantees can be
proved for some variants of this basic algorithm [9].

/.-,()*+c

??
??

ÄÄ
ÄÄ

76540123g

ÄÄ
ÄÄ ??

??
76540123h

76540123b 76540123d ?>=<89:;f 76540123i

/.-,()*+a

????
ÄÄÄÄ /.-,()*+e

????
ÄÄÄÄ

Fig. 1. Overlapping clusters.

Cut-based graph clustering algorithms produce a strict partition of the graph.
This is particularly problematic for social networks as illustrated in Fig. 1. In this
graph, d belongs to two clusters {a, b, c, d} and {d, e, f, g}. Furthermore, h and
i need not be clustered. A cut-based approach will either put {a, b, c, d, e, f, g}
into one cluster, which is not desirable since e, f, g have no edges to a, b, c, or
cut at d, putting d into one of the clusters, say {a, b, c, d}, but leaving d out of
{e, f, g} which then leaves a highly connected vertex outside of the cluster.

This example motivates a new formulation of the graph clustering problem
that does not stipulate that each vertex belong to exactly one cluster. Our ob-
jective is to identify clusters that are internally dense, i.e., each vertex in the
cluster is adjacent to at least a β-fraction of the cluster, and externally sparse,
i.e., any vertex outside of the cluster is adjacent to at most an α-fraction of the
vertices in the cluster. For a vertex v and a subset of vertices C, the notation
E(v, C) below denotes the set of edges between v and C.

Definition 1. Given a graph, G = (V, E), where every vertex has a self-loop5

C ⊂ V is an (α, β)-cluster if

1. Internally Dense: ∀v ∈ C, |E(v, C)| ≥ β|C|
2. Externally Sparse: ∀u ∈ V \ C, |E(u, C)| ≤ α|C|

Given 0 ≤ α < β ≤ 1, the (α, β)-clustering problem is to find all (α, β)-clusters.

The new clustering criterion does not seek a strict partitioning of the data.
To see why clusters can overlap, return to Fig. 1. Both {a, b, c, d} and {d, e, f, g}
are (1

4 , 1)-clusters. Furthermore, h and i do not fall into an (α, β)-cluster if
0 ≤ α < 1

2 < β ≤ 1, and consequently would not be clustered.

5 This is a technical assumption needed to ensure that β = 1 clusters are possible.

2

Observe that as β → 1, the cluster C approaches a clique and as α → 0,
C tends to a disconnected component. We want α < β, since we want vertices
outside of a cluster to have fewer neighbors in the cluster than vertices that
belong to the cluster.

While we use social networks as a motivating context, our problem statement
and algorithms apply to the more general context of graph clustering.

Contributions We begin by investigating combinatorial properties of (α, β)-
clusters. We bound the extent to which two clusters can overlap. For two clusters
of equal size, we show that they overlap in at most min{1−(β−α), α/(2β−1)}|C|
vertices. For certain values of α and β, it is possible for one cluster to be contained
in another. However, we show that if the ratio of the size of the largest cluster
to the smallest cluster is at most 1−α

1−β then one cluster cannot be contained in
another. Finally, we give a loose upper bound on the number of (α, 1)-clusters
of size s, O((n/s)αs+1), where n is the number of vertices.

Next, we introduce the notion of a ρ-champion of a cluster: a vertex with
at most ρ|C| neighbors outside of the cluster C. We prove that in the case that
there is a large gap between α/2 and β i.e., β > 1

2 + ρ+α
2 , there can be at most

n (α, β)-clusters with ρ-champions of a given cluster size and there is a simple
deterministic algorithm for finding all such clusters in time O(m0.7n1.2+n2+o(1)),
where m is the number of edges.

To determine whether the theoretical constructs we introduced actually exist
in practice, we tested our algorithms on three real networks: High Energy Physics
Co-authors, Theory Co-authors and Live Journal. Experiments show that our
algorithm is able to find 90% of the ground-truth clusters of practical interest
more quickly than previous algorithms.

2 Related Work

Our (α, β)-clustering formulation is new, but has been considered in restricted
settings under different guises. The problem of finding the (0, β)-clusters in a
graph can be reduced to first finding connected components and then outputting
the components that are β-connected. This problem can be solved efficiently
via depth first search in O(|E| + |V |) time for a graph G = (V, E). Also, the
problem of finding (1− 1

n , 1)-clusters is equivalent to finding the maximal cliques
in a graph. This problem has a rich history. Known algorithms find all maximal
cliques in time that depends polynomially on the size of the graph and the
number of maximal cliques [18, 8].

The problem of finding ((1− ε)β, β)-clusters, for small ε, has also been stud-
ied under the name of finding quasi-cliques. Abello et al. [1] present a method
for finding subgraphs with average connectivity β. Hartuv and Shamir [6] find
densely connected subgraphs where β > 1/2 via a min-cut algorithm. These
algorithms do not consider an external sparsity (α) criterion. We will give an ex-
ample (Fig. 2) where if these algorithms were used to find (1/n, 1−1/2n)-clusters
(of which there is only 1), they return 2n (n−1

n , 1)-clusters.

3

Spectral clustering is a very popular method that involves recursively split-
ting the graph using various criteria, e.g., the principal eigenvector of the ad-
jacency matrix. Successful approaches have been employed by [9, 16, 10, 17, 15],
among many others. All of these approaches do not allow overlapping clusters
which is one of the main goals of our work.

Newman and others have advocated modularity as an optimization criterion
for graph partitioning [15]. The modularity of a partition is the amount by
which the number of edges between vertices in the same subset exceeds the
number predicted by the degree-distribution preserving random graph model of
Chung [2]. Newman proposed several methods for optimizing modularity, among
them a spectral approach, and others have found competitive methods as well.

Flake et al. [4] use a recursive cut approach intended to optimize the expan-
sion of the clustering but use Gomory-Hu trees [5] to find the cut instead of
eigenvectors. The expansion of a cut is very similar to the conductance of a cut.
The minimum quality of the clustering is guaranteed by adding a sink to the
graph. Again, the goal of this work is different from ours in that a partitioning
is constructed, disallowing overlapping clusters.

Modeling flow through a network is another way to cluster a graph [4, 3].
MCL models flow through two alternating Markov processes, expansion and
inflation. MCL has been widely used for clustering in biological networks but
requires that the graph be sparse and only finds overlapping clusters in restricted
cases. (α, β)-Clustering has no restrictions on the general structure of the graph
and allows clusters of different sizes to overlap.

There has also been considerable work in finding communities on the web.
Kumar et al. [13] approach the problem as one of finding bicliques as the cores
of communities. While our approach can be adapted to find bicliques, we deal
with more general community structures.

3 Combinatorics of (α, β)-clusters

In this section, we discuss various combinatorial properties of (α, β)-clusters
including cluster overlap, containment and number of clusters.

Prior to doing so, we make a quick remark about the value of β. If β < 1
2

then it is possible to have a cluster containing two disconnected components,
i.e., a subset of vertices with a cut of size 0 could form a cluster. Imagine two
cliques Kn with no edges in between them. If β < 1

2 then these two disconnected
cliques form one (0, 1

2)-cluster. Consequently, we insist that β > 1
2 . In that case,

a cluster is necessarily connected; select any two vertices u and u′ in the cluster,
since u is adjacent to more than half of the cluster and so is u′, there must be at
least one vertex that they both neighbor. Thus, there is a path of length at most
two between any two vertices in a cluster. We will use this fact later in some
of our analysis. In this paper, we assume that β > 1/2 so that all clusters are
connected, although it would be interesting to consider other restrictions that
enforce connectedness.

4

Notation We use the following notation to describe our results. For a graph
G = (V, E), n denotes the number of vertices and m denotes the number of edges.
For a subset of vertices A ⊆ V , |A| denotes the number of vertices in A. E(v,A)
denotes the set of edges between a vertex v and a subset of vertices A. The
neighbors of a vertex v are denoted by Γ (v). The function τ(v) = Γ (v)∪Γ (Γ (v))
indicates all neighbors of path distance 1 or 2 from v.

Cluster Overlap Given two (α, β)-clusters A,B where |A| ≥ |B|, we now deter-
mine the maximum size of the overlap, namely |A∩B|. In the case where β = 1,
|A∩B| can be no larger than α|B| (otherwise, there would be a vertex outside of
B that is adjacent to more than α of B). Alternatively, in the case where α = 0,
|A∩B| must be 0. More generally, we seek a bound for arbitrary values of α and
β. We express the overlap as the fraction of vertices in A, i.e., γ = |A∩B|

|A| .

Proposition 1. For two (α, β)-clusters, A and B, where |A| ≥ |B|, an upper
bound on the ratio of the intersection, |A ∩ B|, to the larger one, |A|, is γ =
min(1− (β−α |B||A|),

α
2β−1

|B|
|A|). When β−α |B||A| > 1

2 , α
2β−1

|B|
|A| is the minimum and

otherwise 1− (β − α |B||A|) is the minimum.

Cluster Containment Given that clusters can overlap, it is natural to ask if one
cluster can be contained in another. In some circumstances, α and β may be such
that clusters are contained in each other. For example, consider two cliques, C
and D, each containing n vertices. Assume that each vertex in C is adjacent to
two vertices in D. When β = 1

2 + 2
n and α = 2

n , C ∪D is an (α, β) cluster that
contains both C and D.

If we want to prevent our algorithm from finding clusters where one is con-
tained in another, we can do so by requiring that the ratio of the largest to the
smallest cluster is at most 1−α

1−β .

Corollary 1. Let A and B be (α, β)-clusters and assume that |B| ≤ |A|. If
|A|
|B| < 1−α

1−β then B can not be contained in A.

The larger the gap between α and β, the larger the bound. For example, if
α = 1/4 and β = 3/4, then the larger cluster must be at least 3 times larger
than the smaller before the smaller can be contained in the larger. Similarly, if
α = 1/8 and β = 7/8 then the ratio is 7.

Bounding the Number of (α, 1)-clusters We next consider the problem of upper
bounding the number of (α, 1)-clusters. We give a superpolynomial bound on the
number of clusters of a fixed size s = f(n). More generally, it would be interesting
to bound the number of possible (α, β)-clusters, but our analysis here is focused
on cliques.

We wish to bound the number of (α, 1)-clusters of size s = f(n) in a graph
G = (V, E) where |V | = n. We know that no two clusters can overlap in more
than αs vertices from Prop. 1.

5

Proposition 2. Let G = (V,E) where |V | = n. If C is the set of (α, 1)-clusters
of size s in G then |C| = O(

(
n
s

)αs+1).

Proof. From Prop. 1, two clusters of size s can share at most αs vertices. Let
us ignore the edges in the graph and consider clusters as subsets of vertices.
Now we can say that every subset of size αs + 1 must appear in at most one
set in our collection. There are a total of

(
n
s

)
subsets of size s and each of these

subsets contains
(

s
αs+1

)
subsets of size αs + 1. By simple combinatorics we can

have at most
(

n
αs+1

)
/
(

s
αs+1

)
clusters of size s. The bound |C| ≤ (

n
αs+1

)
/
(

s
αs+1

)
=

O(
(

n
s

)αs+1) follows from Stirling’s Approximation.ut 6

We note that this bound is tight when α = 0 and when α approaches 1. If we
let α = 0 then the bound indicates that the number of clusters is at most n

k . This
is tight because clusters cannot overlap at all. At the other extreme, consider the
complement of the graph shown in Fig. 2. Let α = n−1

n and β = 1. For k = n the
bound on the number of clusters from our bound is 2n. This number is realized
since the set of clusters is B = {b1 . . . bn|bi = xi ∨ yi}. |B| = 2n so the bound
is tight in this case. We can construct a graph of this type for all α of the form
n−1

n so we have a tight exponential bound for these α values.

?>=<89:;x1 ?>=<89:;x2 ?>=<89:;xn

· · ·
?>=<89:;y1 ?>=<89:;y2 ?>=<89:;yn

Fig. 2. A graph G where G has exponentially many clusters.

We believe that the bound given in Prop. 2 overcounts the number of clusters
when α ≤ 1

2 . We note that our examples of graphs that meet the exponential
bound all have α ≥ 1

2 . Consider the case where we have two (α, 1)-clusters, A
and B that overlap in αs vertices. Let D be a third cluster such that |A ∩D| =
|B ∩D| = αs but A∩B ∩D = ∅. This is allowed by the construction in Prop. 2.
Let u ∈ A ∩ C and v ∈ B ∩ C. Since u, v ∈ C and β = 1 (u, v) ∈ E. However,
u is already connected to α|B| in the form of A ∩B, so we have an α violation.
Therefore, we counted D as an (α, β)-cluster when we should not have.

Another criticism of counting (α, 1)-clusters with Prop. 2 is that edges are
completely ignored. Consider K4 where s = 3 and α = 1/3. The bound allows 3
clusters of size 3. In reality, due to α violations, there are none.

4 An Algorithm for Finding Clusters with Champions

In this section, we make some restrictions to the general (α, β)-clustering prob-
lem, motivate these restrictions and then give an algorithm for finding clusters of
6 This exactly corresponds to the construction of a Steiner System.

6

this restricted form. Specifically, we first justify a gap between internal density
and external sparsity. Next, we introduce the notion of a champion of a cluster.
Intuitively, a vertex champions a cluster if it has more affinity into the cluster
than out of it. We then give a simple, deterministic algorithm for finding all
(α, β)-clusters with ρ-champions in a graph, assuming that β > 1

2 + ρ+α
2 .

Gap Between Internal Density and External Sparsity To motivate a gap between
internal density and external sparsity, consider Fig. 2. Observe that depending
on the choice of α and β, the number of clusters may be exponential in the size
of the graph. In practice, an algorithm that outputs more clusters than vertices
is quite undesirable – especially given that social networks are massively large
data sets. Thus, we seek a restriction that will reduce the number of clusters.
The restriction considered in this paper is a large gap between β and α/2.

Champions To motivate champions, observe that for G of G given in Fig. 2,
each vertex in each cluster has as many neighbors outside the cluster as within
it. There is no vertex that “champions” the cluster in the sense that many
of its neighbors are in the cluster. For example, theoretical physicists form a
community in part because there are some champions that have more friends
that are theoretical physicists than not. Specifically, if every vertex in a subset
A has as many neighbors out of A as into A, then it is arguable if A is really
even a cluster. This motivates us to formally define the notion of a ρ-champion.

Definition 2. A vertex c ∈ C ρ-champions a cluster C if |Γ (c)∩V \C| ≤ ρ|C|,
for some 0 ≤ ρ ≤ 1.

Deterministic Algorithm We now claim that if β > 1
2 + ρ+α

2 or α < (2β−1)(β−ρ)
then there are at most n clusters with ρ-champions and further that there is a
simple deterministic algorithm for finding the clusters. In the following, we make
the simplifying assumption that every cluster has the same size. The lemma can
be suitably modified in the case of clusters of different sizes.

Lemma 1. If either β > 1
2 + ρ+α

2 or α < (2β− 1)(β−ρ) then there are at most
n (α, β)-clusters of size s with ρ-champions.

A large gap between β and 1
2 + α+ρ

2 yields a simple algorithm for determin-
istically pinning down all the clusters. Let the input to the algorithm be α, β,
the graph G and the size s of the clusters to be found.

Algorithm 1 Deterministic Clustering Algorithm, when β > 1
2 + α+ρ

2 .
1: Input: α, β, s, G
2: for each c ∈ V do
3: C = ∅
4: for each v ∈ τ(c) do
5: if |Γ (v) ∩ Γ (c)| ≥ (2β − 1)s then add v to C.
6: end for
7: if C is an (α, β)-cluster then output C.
8: end for

7

The following lemma shows that if v and c share sufficiently many neighbors,
then v is necessarily part of the cluster C that c champions.

Lemma 2. Let C be an (α, β)-cluster and c its ρ-champion. Let β > 1
2 + ρ+α

2 .
A vertex v is in the cluster C if and only if |Γ (v) ∩ Γ (c)| ≥ (2β − 1)|C|.

When the size of the cluster is fixed, Lemma 2 also implies that C is unique.
Since we can bound the number of clusters of each size to n, we can also bound
the total number of (α, β)-clusters with ρ-champions to be O(n2). Additional
bounds to guarantee uniqueness when the size of the cluster is allowed to vary
can be easily obtained.

Consequently, we have the following theorem.

Theorem 1. Let G = (V, E) be a graph and β > 1
2 + ρ+α

2 . Algorithm 1 exactly
finds all (α, β)-clusters of size s that have ρ-champions in time O(m0.7n1.2 +
n2+o(1)).

To interpret the theorem, when clusters have ρ-champions where ρ = α, a
separation of 1

2 is needed between β and α in order for the algorithm to find
all the clusters. The worse the champion, the fewer the number of valid α and
β values where the algorithm is guaranteed to succeed. For example, if ρ = 3α
then the gap between β and α must be larger, namely β > 2α + 1

2 .
The running time follows from the fact that the algorithm computes the num-

ber of neighbors that each pair of vertices share. We can precompute |Γ (vi) ∩
Γ (vj)| for all i, j ∈ V by noting that if A is the adjacency matrix of G then
(AT A)i,j = |Γ (vi) ∩ Γ (vj)|. Yuster and Zwick [19] show that matrix multiplica-
tion can be performed in O(m0.7n1.2+n2+o(1)) time. Checking the α, β conditions
requires O(m0.7n1.2 + n2+o(1) + n(τ(c) + n)) = O(m0.7n1.2 + n2+o(1)) time.

In the case G is a typical social network, G has small average degree and A is
a sparse matrix . If we let d be the average degree of the graph then m = dn/2.
Thus, for small d, the algorithm runs in O(d0.7n1.9 + n2+o(1)) time.

5 Experiments

We introduced the notion of a ρ-champion and gave an algorithm for finding
(α, β)-clusters with ρ-champions. A natural next question is: Do (α, β)-clusters
with ρ-champions even exist in real graphs? And, if so, do most (α, β)-clusters
have ρ-champions? To answer the first question, we study three real networks
induced by co-authorship among high energy physicists, co-authorship among
theoretical computer scientists, as well as a real, online social networking site
known as LiveJournal. To answer the second question, we need an algorithm that
can find (α, β)-clusters independent of whether they have ρ-champions. The best
previous algorithm for this problem is due to Tsukiyama et al [18] that finds all
maximal cliques in a graph, i.e., all (α, 1)-clusters.

Our experiments uncovered a few surprising facts. First, our simple algorithm
was able to find≈ 90% of the maximal cliques in these graphs where α ≤ 1

2 . Next,
among the cliques we missed, we found that there was no strong ρ-champion.

8

Finally, our algorithm was orders of magnitudes faster than Tsukiyama’s. In
short, our algorithm more quickly discovers clusters of practical interest, i.e.,
small α, small ρ and large β.

Data Sets and Tsukiyama’s Algorithm As mentioned, three data sets were used:
the High Energy Physics Theory Co-Author graph (HEP) [7], the Theory Co-
Author graph (TA) and a subset of the LiveJournal graph (LJ) [14]. LiveJournal
is a website that allows users to create weblogs and befriend other LiveJournal
users. We obtained a crawl of a subset of this site. In our graph the vertices
correspond to usernames and the edges to friendships. In the Theory and HEP
Co-Author graphs, authors are vertices and edges correspond to co-authors.
Some basic statistics about these graphs are given below.

Data set Size Avg Deg. Min Deg. Max Deg. Avg τ(v) Min τ(v) Max τ(v)
HEP 8,392 4.86 1 63 40.58 2 647
TA 31,862 5.75 1 567 172.85 1 8,116
LJ 581,220 11.68 1 1,980 206.15 6 15,525

Tsukiyama’s algorithm finds all maximal cliques in a graph via an inductive
characterization: given the maximal cliques involving the first i vertices, the
algorithm shows how to extend this set to the maximal cliques involving the
first i + 1 vertices. The algorithm’s running time is polynomial in the size of the
graph and the number of maximal cliques. More details can be found in [18].

Results In this section we present numerical results comparing the ground truth
of Tsukiyama’s Algorithm with our Algorithm 1. For this experiment we were
only interested in cliques of size 5 or larger with α values of 0.5 or less. These
are the cliques that Algorithm 1 could reasonably find. We pruned the output
of Tsukiyama’s algorithm to contain just these cliques. We found that the HEP
graph had a total of 126 cliques satisfying this definition; our algorithm found
115, or 91%. Similarly, the Theory graph had 854 cliques and our algorithm
found 797 or 93%. In Figures 3, 4 and 5 we show the α and ρ distributions of the
cliques found by Tsukiyama compared with the α distribution of those found
by Algorithm 1. When a bar is cut off a number is placed next to the bar to
indicate the true value. Bars have only been cut off when Algorithm 1 found all
of the cliques that Tsukiyama’s Algorithm found.

In both Theory and HEP, the distribution of ρ-values among the clusters
found is exactly as our theorems predict, i.e., ρ is almost always less than 1

2 .
And, interestingly, for LiveJournal, the distribution of ρ-values is better than
our theorems predict in that we find 876 clusters where ρ is larger than 1/2.
Indeed, we find some clusters where ρ is as large as 1.2.

Timing Our experiments were run on a machine with 2 dual core 3 GHz In-
tel Xeons and 16 Gigabytes of RAM. We report wall-clock time for all of our
experiments.

9

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
10

20
30

40
50 Tsukiyama

Algorithm 1

0

0.
16

7

0.
2

0.
25

0.
28

6

0.
33

3

0.
4

0.
42

9

0.
5

ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
1

2
3

4
5

0

0.
14

3

0.
16

7

0.
2

0.
25

0.
33

3

0.
4

0.
5

0.
6

0.
66

7

0.
8

0.
83

3

1

1.
2

1.
66

7

100

Fig. 3. For the HEP graph, α and ρ distributions are shown for the cliques found by
Tsukiyama’s algorithm vs. the cliques found by Algorithm 1. Our algorithm found 115
out of 126 maximal cliques.

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
20

40
60

80
10

0
12

0

140 267
Tsukiyama
Algorithm 1

0

0.
07

7

0.
09

1

0.
11

1

0.
12

5

0.
13

3

0.
14

3

0.
16

7

0.
18

8

0.
2

0.

22
2

0.

25

0.

26
7

0.

27
3

0.

28
6

0.

3

0.
30

8

0.
33

3

0.
35

7

0.
37

5

0.
4

0.

42
9

0.

44
4

0.

45
5

0.

5

ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
5

10
15

20
25

30

0

0.
1

0.

12
5

0.

14
3

0.

16
7

0.

2

0.
25

0.
28

6

0.
33

3

0.
4

0.

5

0.
6

0.

62
5

0.

66
7

0.

71
4

0.

8

0.
83

3

1

1.
16

7

1.
2

1.

33
3

1.

4

1.
5

1.

6

1.
66

7

2

2.
2

2.

4

2.
5

2.

6

3.
2

3.

33
3

4.

4

4.
8

673

Fig. 4. For the TA graph, α and ρ distributions are shown for the cliques found by
Tsukiyama’s Algorithm vs. the cliques found by Algorithm 1. Our algorithm found 797
out of 854 maximal cliques.

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
20

40
60

80
10

0

759 359

0.
07

0.
1

0.
14

2

0.
16

6

0.
2

0.
22

0.
25

0.
28

0.
33

0.
37

5

0.
4

0.
42

0.
44

0.
46

0.
5

ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
50

10
0

15
0

20
0

25
0

0

0.
12

5

0.
14

0.
16

0.
2

0.

22

0.

25

0.

28

0.

3

0.
33

0.
37

5

0.
4

0.

42

0.

5

0.
57

0.
6

0.

62
5

0.

71

0.

83

0.

85

0.

87
5

0.

8

1

1.
14

3

1.
16

7

1.
2

1471 946 648 368

Fig. 5. α and ρ distributions for Algorithm 1 for the LJ graph. Tsukiyama’s algorithm
was too slow to generate ground truth results for this graph. Our Algorithm 1 found
4289 cliques. 10

Experiment HEP TA LJ
Alg. 1, (α, β) = (0.5, 1) 8 secs 2 min 4 sec 3 hours 37 min

Tsukiyama 8 hours 36 hours N/A

Note that after one week of running Tsukiyama et al.’s algorithm on the LJ
data set, the algorithm did not complete. In fact, only 6% of the graph had been
considered. However, our Algorithm 1 found 4289 cliques of size greater than 5
with α ≤ .5 in a few hours.

6 Summary and Future Work

We introduced a new criterion for discovering overlapping clusters that captures
intuitive notions of internal density and external sparsity. We also give a deter-
ministic algorithm for discovering clusters assuming each cluster has a champion
and there is a sufficiently large gap between internal density and external spar-
sity. Experiments indicate that our algorithm succeeds in finding good clusters.

While we assume β > 1
2 to enforce cluster connectedness, we believe this

assumption is too strong. In particular, a subgraph can be connected while β is
much less than 1

2 , e.g., a long cycle. Furthermore, β > 1
2 precludes our algorithm

from finding very large clusters because the average degree of a vertex in a social
network is typically small.

Generalizations of (α, β)-clustering to weighted and directed graphs are also
of interest. Our work assumes that edges are not weighted. But in real social
networks, there is a strength of connectivity between pairs of individuals cor-
responding to how often they communicate. This weight could be exploited in
the discovery of close-knit communities. In addition, some networks induce di-
rected graphs. For example, the direction of edges in email networks plays an
important role in definining communities otherwise spam mailers would belong
to every cluster.

Decentralized and streaming algorithms are essential for modern networks
such as instant messaging or email graphs. In particular, it is often difficult to
even collect the graph in one centralized location [11]. Thus, algorithms that
can compute clusters with only local information are needed. Further, given
that social networks are dynamic data sets, i.e., vertices and edges come and
go, streaming graph clustering algorithms are an important avenue for future
research.

Acknowledgments We are grateful to Mark Sandler for early discussions, Ying
Xu for the LiveJournal crawl and the anonymous reviewers for their useful com-
ments.

References

1. J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection.
LATIN: Latin American Symposium on Theoretical Informatics, 2286:598–612,
2002.

11

2. W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs.
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
STOC’2000 (Portland, Oregon, May 21-23, 2000), pages 171–180, 2000.

3. S. Van Dongen. A new cluster algorithm for graphs. Technical report, Universiteit
Utrecht, July 10 1998.

4. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum
cut trees. Internet Mathematics, 1(4):385–408, 2004.

5. R. E. Gomory and T. C. Hu. Multi terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9:551–571, 1961.

6. E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
IPL: Information Processing Letters, 76:175–181, 2000.

7. KDD Cup’03 HEP-TH. http://www.cs.cornell.edu/projects/kddcup/datasets.html.
8. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maxi-

mal independent sets. Information Processing Letters, 27(3):119–123, 1988.
9. R. Kannan, S. Vempala, and A. Vetta. On clusterings — good, bad and spectral.

Proceedings of the 41th Annual Symposium on Foundations of Computer Science,
pages 367–377, 2000.

10. G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. J. Parallel Distrib. Comput., 48(1):71–95, 1998.

11. D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In
Proceedings of the thirty-sixth annual ACM Symposium on Theory of Computing
(STOC-04), pages 561–568, New York, June 13–15 2004. ACM Press.

12. V. Krebs. Uncloaking terrorist networks. First Monday, 7(4), 2002.
13. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web

for emerging cyber-communities. Computer Networks (Amsterdam, Netherlands:
1999), 31(11–16):1481–1493, May 1999.

14. LiveJournal. www.livejournal.com.
15. M. E. J. Newman. Modularity and community structure in networks. National

Academy of Sciences, 103:8577–8582, February 2006.
16. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.

Pattern Analysis and Machine Intelligence, 22(8):888–905, August 2000.
17. D. A. Spielman and S. Teng. Spectral partitioning works: Planar graphs and finite

element meshes. Proceedings of the 37th Annual Symposium on Foundations of
Computer Science, 37:96–105, 1996.

18. S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for gener-
ating all the maximal independent sets. SIAM J. Comput, 6(3):505–517, 1977.

19. R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1(1):2–13, July 2005.

12

