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Imagine a data set consisting of private information about individuals. The online query
auditing problem is: given a sequence of queries that have already been posed about the
data, their corresponding answers and given a new query, deny the answer if privacy can
be breached or give the true answer otherwise. We investigate the fundamental problem
that query denials leak information. This problem was largely overlooked in previous work
on auditing. Because of this oversight, some of the previously suggested auditors can be
used by an attacker to compromise the privacy of a large fraction of the individuals in
the data. To overcome this problem, we introduce a new model called simulatable auditing
where query denials provably do not leak information. We present a simulatable auditing
algorithm for max queries under the classical definition of privacy where a breach occurs
if a sensitive value is fully compromised. Because of the known limitations of the classical
definition of compromise, we describe a probabilistic notion of (partial) compromise,
closely related to the notion of semantic security. We demonstrate that sum queries
can be audited in a simulatable fashion under probabilistic compromise, making some
distributional assumptions.

© 2013 Elsevier Inc. All rights reserved.

“Denial ain’t just a river in Egypt.”

[Mark Twain]

1. Introduction

Let X = {x1, . . . , xn} be a set of n private values from n individuals, where each xi is some real value. We consider
the online query auditing problem: Suppose that the queries q1, . . . ,qt−1 have already been posed about X and the answers
a1, . . . ,at−1 have already been given, where each a j is either the true answer to the query or “denied”. Given a new
query qt , deny the answer if privacy may be breached,2 and provide the true answer otherwise. The classical definition of
breach is that there exists an index i such that xi is uniquely determined. In other words, in all data sets consistent with
the queries and answers, there is only one possible value of xi . The kinds of queries considered in this paper are sum and
max queries. Given a collection of indices S ⊆ [n], sum(S) = ∑

i∈S xi and max(S) = maxi∈S xi .
One of the first auditing results dates back almost 30 years ago to the work of Dobkin, Jones, and Lipton [9]. That

work restricts the class of acceptable queries by their size and overlap, and then demonstrates that a data set cannot
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be compromised provided that the number of queries is appropriately upper bounded. Following that work, many others
considered the auditing problem including [25,5,6,4,18] (see also [1] for a survey).

In the work of Chin [4], the online max auditing problem is considered. Given an online sequence of max queries, that
paper gives a method of determining whether a value has been uniquely determined using only the queries that were
exactly answered. Another example of an online auditing algorithm is due to Kleinberg, Papadimitriou, and Raghavan [18].
In the case that the underlying data set is Boolean valued, a method is given for determining whether a value has been
uniquely determined – again using only the queries that were exactly answered.

These online auditing algorithms ignore the queries that were denied and this turns out to be quite problematic since
denials can leak information. A simple example illustrates the phenomena. Suppose that the underlying data set is real-
valued and that a query is denied only if some value is fully compromised. Suppose that the attacker poses the first query
sum(x1, x2, x3) and the auditor answers 15. Suppose also that the attacker then poses the second query max(x1, x2, x3) and
the auditor denies the answer. The denial tells the attacker that if the true answer to the second query were given then
some value could be uniquely determined. Note that max(x1, x2, x3) ≮ 5 since then the sum could not be 15. Further, if
max(x1, x2, x3) > 5 then the query would not have been denied since no value could be uniquely determined. Consequently,
max(x1, x2, x3) = 5 and the attacker learns that x1 = x2 = x3 = 5 – a privacy breach of all three entries. The issue here is
that query denials reduce the space of possible consistent solutions, and this reduction is not explicitly accounted for in
existing online auditing algorithms.

This oversight of previous work on auditing [4,18] is critical: privacy-preserving auditing algorithms that ignore denials can be
used to launch massive privacy attacks.

1.1. Contributions

Our first contribution is to illustrate how such major privacy violations can ensue from ignoring query denials. In the
case of max queries, we illustrate how 1/8 of the data set can be compromised in expectation by allowing the denials of [4]
to guide us towards a breach. In the case where the underlying data set is Boolean valued and each query requests the sum
of a subset of private values, we demonstrate how the “conservative” approximate online auditing algorithm of [18] (that
denies more often than it should) can be used to compromise about 1/2 of the data set in expectation – again using the
denials to guide us towards a breach.

How can we overcome the problem of denials leaking information? The simulation paradigm from cryptography offers
an elegant solution that we apply to auditing. We say that an auditor is simulatable if an attacker, knowing the query-answer
history, could make the same decision as to whether or not a newly posed query will be answered. Since the auditor only
uses information already known to the attacker when deciding whether to deny, the attacker can mimic or simulate that
decision. Hence, the decision to deny a query provably does not leak any information.

We next give a general method for designing simulatable auditors. The idea is that if an auditor has received queries
q1, . . . ,qt and given answers a1, . . . ,at−1, it simply considers many possible answers to the query qt (obliviously of the
actual data) and determines how often privacy would be compromised. If privacy is breached one or many times in these
answers, then the query is denied, otherwise the query is answered.

We then give an algorithm for simulatable auditing of max queries under classical compromise, where a compromise
occurs if a value is uniquely determined. The algorithm runs in time logarithmic in the number of previous queries and
linear in the sum of the sizes of the previous queries. Simulatable auditing of sum queries follows from previous work.

Next we revisit the definition of compromise. The classical definition of compromise has been extensively studied in
prior work. This definition is conceptually simple, has an appealing combinatorial structure, and serves as a starting point
for evaluating solutions for privacy. However, as has been noted by many others, e.g., [3,16,7,19], this definition is inadequate
in many real contexts. For example, if an attacker can deduce that a private data element xi falls in a tiny interval, then
the classical definition of privacy is not violated unless xi can be uniquely determined. While some have proposed a privacy
definition where each xi can only be deduced to lie in a sufficiently large interval [19], note that the distribution of the
values in the interval matters. For example, ensuring that age lies in an interval of length 50 when the user can deduce that
age is between [−50,0] does not preserve privacy.

In order to extend the discussion on auditors to more realistic partial compromise notions of privacy, we describe an
auditing privacy definition that is similar to the notion of semantic security. Our privacy definition assumes that there
exists an underlying probability distribution from which the data is drawn. This is a reasonable assumption since many
attributes such as age and salary can have a known probability distribution. The essence of the definition is that for each
data element xi and every interval J with not too small a priori probability mass, the auditor ensures that the prior
probability that xi falls in the interval J is about the same as the posterior probability that xi falls in J given the queries
and answers. This definition overcomes some of the aforementioned problems with classical compromise.

With this notion of privacy, we describe a simulatable auditor for sum queries. The new auditing algorithm computes
posterior probabilities by utilizing existing randomized algorithms for sampling from a logconcave distribution, e.g., [20]. To
guarantee simulatability, we make sure that the auditing algorithm does not access the data set while deciding whether
to allow the newly posed query qt (in particular, it does not compute the true answer to qt ). Instead, the auditor draws
many data sets according to the underlying distribution, conditioned on the previous queries and answers. For each of
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the randomly generated data sets, the auditor computes the answer a′
t to the current query and checks whether revealing

this answer would breach privacy. If for most answers the data set is not compromised then the query is answered, and
otherwise the query is denied.

1.2. Overview of the paper

The rest of this paper is organized as follows. In Section 2 we discuss related work on auditing. In Section 3 we illustrate
how denials leak information and show that auditors proposed in previous work [4,18] can be used to launch privacy
attacks. We then introduce simulatable auditing in Section 4 and prove that max queries can be audited under this definition
of auditing and the classical definition of privacy in Section 5. Then in Section 6 we describe a probabilistic definition of
privacy. Finally in Section 7 we prove that sum queries can be audited under this definition of privacy in a simulatable
fashion.

2. Related work

We partition related work into online and offline auditing. In the offline auditing problem, one is given a sequence
of queries and exact answers and the goal is to determine if a privacy breach has occurred ex post facto. As the initial
motivation for work on auditing involves the online auditing problem, we begin with known online auditing results.

2.1. Online auditing

The earliest work is due to Dobkin, Jones, and Lipton [9] and Reiss [25] for the online sum auditing problem, where
the answer to a query q is

∑
i∈q xi . With queries of size at least k elements, each pair overlapping in at most r elements,

they showed that any data set can be compromised in (2k − (� + 1))/r queries by an attacker that knows � values a priori.
For fixed k, r and �, if the auditor denies answers to query (2k − (� + 1))/r and on, then the data set is definitely not
compromised. Here the monitor logs all the queries and disallows qi if |qi | < k, or for some query t < i, |qi ∩ qt | > r, or if
i � (2k − (� + 1))/r.3 These results completely ignore the answers to the queries. On the one hand, we will see later that
this is desirable in that the auditor is simulatable – the decision itself cannot leak any information about the data set. On
the other hand, we will see that because answers are ignored, sometimes only short query sequences are permitted (that
could be longer if previous answers were used).

The online max auditing problem was first considered in [4]. Both the online and offline Boolean sum auditing were
considered in [18]. We describe these online results in more detail in Section 3 and the offline Boolean sum auditing work
in Section 2.2.

Following the publication of [17], the paper [22] solves the online max and min simulatable auditing problem under
both classical and probabilistic compromise (where both max and min queries are allowed). An initial study of the utility
of auditing is also undertaken.

2.2. Offline auditing

In the offline auditing problem, the auditor is given an offline set of queries q1, . . . ,qt and true answers a1, . . . ,at and
must determine if a breach of privacy has occurred. In most related work, a privacy breach is defined to occur whenever
some element in the data set can be uniquely determined. If only sum or only max queries are posed, then polynomial-
time auditing algorithms are known to exist [5]. However, when sum and max queries are intermingled, then determining
whether a specific value can be uniquely determined is known to be NP-hard [4].

Kam and Ullman [16] consider auditing subcube queries which take the form of a sequence of 0s, 1s, and *s where the *s
represent “don’t cares”. For example, the query 10**1* matches all entries with a 1 in the first position, 0 in the second, 1 in
the fifth and anything else in the remaining positions. Assuming sum queries over the subcubes, they demonstrate when
compromise can occur depending on the number of *s in the queries and also depending on the range of input data values.

Kleinberg, Papadimitriou, and Raghavan [18] investigate the offline sum auditing problem of Boolean data. They begin by
proving that the offline sum auditing problem is coNP-hard. Then they give an efficient offline sum auditing algorithm in
the case that the queries are “one-dimensional”, i.e., for some ordering of the elements say x1, . . . , xn , each query involves
a consecutive sequence of values xi, xi+1, xi+2, . . . , x j . An offline max auditing algorithm is also given. Note that an offline
algorithm cannot be used to solve the online problem as illustrated in [17].

In the offline maximum auditing problem, the auditor is given a set of queries q1, . . . ,qt , and must identify a maximum-
sized subset of queries such that all can be answered simultaneously without breaching privacy. Chin [4] proved that the
offline maximum sum query auditing problem is NP-hard, as is the offline maximum max query auditing problem.

Miklau and Suciu [21] consider a definition of privacy where the privacy of property A is preserved by the disclosure of
property B if Pr(A|B) = Pr(A) for all probability distributions over the underlying data set. This definition of privacy is quite

3 Note that this is a fairly negative result. For example, if k = n/c for some constant c and r = 1, then the auditor would have to shut off access to the
data after only a constant number of queries, since there are only about c queries where no two overlap in more than one element.
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strong and actually no non-trivial pair (A, B) satisfies this privacy definition, unless some assumptions are made about the
underlying probability distribution. More recently, Evfimievski et al. [13] consider an asymmetric notion of privacy where
privacy is not violated if the disclosure of B causes a loss of confidence in A, but is violated if the disclosure of B helps an
attacker gain confidence in A. The relaxation in privacy definition permits more queries than prior offline work.

2.3. Subsequent work

New auditing papers have built upon the work initially published in [17]. For example, Nabar et al. [22] give simulatable
auditing algorithms for max and min queries. Also, that paper undertakes a first study of utility, demonstrating that for
large databases, many queries will be answered, so that the algorithm does not repeatedly deny. In addition, simulatable
algorithms are considered for publishing suppressed contingency tables in [23].

The privacy definition used in this paper has some limitations. Specifically, the setting assumes that the private dataset
has entries drawn independently and identically from some underlying distribution D known to both the attacker and the
auditor. While this definition greatly improves on classical definitions where compromise occurs only if an attacker exactly
learns a sensitive value, it still carries weaknesses: (1) that private values are independent of each other and (2) that the
attacker knows D. These assumptions are susceptible to auxiliary knowledge attacks [10], e.g., the HIV status of a husband
and wife are often not independent. In reality, the attacker’s prior distribution can be different from the true distribution.
However, if the attacker’s distribution can deviate arbitrarily from the true data distribution, any release by the auditor
will result in a partial disclosure of some private value, since the auditor is required to release exact answers if at all. For
example, consider a database in which height is a private attribute, and consider an attacker with the prior belief that all
men are less than a foot tall. If by querying the data, the attacker suddenly learns that this is not true and there is substantial
change in the attacker’s posterior distribution, the privacy breach would be huge. In reality, the attacker’s prior beliefs are
so far off the mark, that there is no aggregate query about the heights that the auditor can truthfully answer without
compromising privacy, not even the average height of all people in the database. Instead the data distribution that we
assume the auditor and the attacker share is supposed to represent such common sense facts and it allows for more useful
information to be released. There are many scenarios where such an assumption can be realistic. For example, distributions
of attributes such as age or salary may be known from previous data releases or even published by the auditor itself.

The understanding of how to formally define privacy in the setting of statistical datasets has significantly evolved since
the first publication of our work [17], and a new notion called differential privacy [11] has emerged. One nice property
of this definition is that it does not assume the existence of an underlying distribution. The possible downside is that
it provably excludes the possibility of giving exact answers, i.e., answers without noise. Consequently, differential privacy
may be inadequate in applications where exact answers are required. It is plausible that a privacy guarantee with similar
properties exists for the auditing setting – we leave this as an open problem for future work.

3. Examples where denials leak information

We first demonstrate how the max auditor of [4] can be used by an attacker to breach the privacy of 1/8 of the data
set. The same attack works also for sum/max auditors. Then we demonstrate how an attacker can use the approximate
online auditing problem of [18] to breach the privacy of 1/2 of the data set. Finally, while all the examples assume that the
attacker has the ability to pose queries involving arbitrary subsets of the data, we demonstrate that an attacker who only
poses SQL queries can still compromise the data.

Neither [4] nor [18] explicitly state what their algorithms do in the event a query is denied. One interpretation is that
once a query is denied, every query thereafter will also be denied. Under this interpretation, auditors have almost no utility
since a denial of service attack can be mounted with a first singleton query, e.g., q1 = max(x3) or q1 = sum(x3) – such a
query will be denied, and so will every other one henceforward. Another interpretation is that once a query is denied, it
is treated as if it was never posed. We use this latter interpretation, although some other interpretation may have been
intended.

Finally, we assume that the attacker knows the auditor’s algorithm for deciding denials. This is a standard assumption
employed in the cryptography community known as Kerckhoffs’ Principle – despite the fact that the actual privacy-preserving
auditing algorithm is public, an attacker should still not be able to breach privacy.

3.1. max auditing breach

Prior to describing the breach, we describe at a high level the max auditing algorithm of [4]. Given a sequence of max
queries and corresponding answers, a method is given for compressing the sequence into a short representation that has
O (n) size, assuming the private data set consists of distinct values. Each element of the synopsis is a predicate of the form
max(Si) < M or max(Si) = M where each Si is a subset of indices. Since there are no duplicates in the data set, the method
ensures that query sets of predicates in the synopsis are pairwise disjoint, so that the size of the synopsis is O (n). It suffices
to consider just these predicates while checking for privacy breach instead of the entire sequence of past queries. When
a new query St is posed to the auditor, the real answer to the query Mt is computed and then the synopsis is efficiently
updated so that the sets are pairwise disjoint. A breach is shown to occur if and only if there is an Si such that |Si | = 1



1326 K. Kenthapadi et al. / Journal of Computer and System Sciences 79 (2013) 1322–1340
and the synopsis contains a predicate of the form max(Si) = M . In such a case, the query is denied and we assume that the
synopsis goes back to its previous state. Otherwise the query is answered and the synopsis remains the same.

In order to breach privacy, the attacker partitions the data set X = {x1, . . . , xn} into n/4 disjoint 4-tuples and considers
each 4-tuple independently. In each of these 4-tuples, the attacker will use the exact answers and the denials to learn one
of the four entries, with success probability 1/2. Hence, on average the attacker will learn 1/8 of the entries. Let x1, x2, x3,
x4 be the entries in one 4-tuple. The attacker will first issue the query max(x1, x2, x3, x4). This query is never denied since
it is disjoint from all previous queries and knowing the answer will not help to uniquely determine one of these 4 values.
Let a be the answer to the query. For the second query, the attacker drops at random one of the four entries, and queries
the maximum of the other three. If this query is denied, then the dropped entry equals a. Otherwise, let a′ (= a) be the
answer and drop another random element and query the maximum of the remaining two. If this query is denied, then the
second dropped entry equals a′ . If the query is allowed, we continue with the next 4-tuple.

Note that whenever the second or third queries are denied, the above procedure succeeds in revealing one of the four
entries. If all the elements are distinct, then the probability we succeed in choosing the maximum value in the two random
drops is 2/4. Consequently, on average, the procedure reveals 1/8 of the data.

3.2. Boolean sum auditing breach

Prior to describing the Boolean auditing attack, we describe the “conservative” approximate auditor of [18] that denies
more often than it should. For each Boolean valued element xi of the data set, the trace of xi is defined to be the set
of queries that involve xi . The claim in [18] is that if for each variable xi there is a corresponding variable x j such that
xi �= x j and xi and x j share the same trace (that is, the set of queries that involves xi is identical to the set of queries that
involves x j ), then no value is uniquely determined. The trace is only updated when a query is exactly answered, and not
when a query is denied.

Next we demonstrate how an attacker can compromise 1/2 of the data in expectation with the conservative approximate
auditor of [18]. In this example, we assume that the data is 1/2 0s and 1/2 1s.4 The attacker randomly permutes the entries
and then partitions the data set X = {x1, . . . , xn} into n/2 disjoint 2-tuples. The attacker then poses the queries sum(xi, xi+1)

for odd i. If the query is answered then xi �= xi+1, but the pair is forever ignored. And, if the query is denied, then the
attacker can deduce that xi = xi+1 and furthermore since the trace is not updated on a denied query, future queries can be
posed about these values. At the end of this process, the attacker has pairs that are equal, but does not know if they are
both 0s or both 1s.

Assume without loss of generality that the queries that were denied involved the values x1, . . . , xm where m = n/2 in
expectation. The attacker now asks queries sum(xi, xi+1) for even i. If such a query is denied, then xi−1 = xi = xi+1 = xi+2.
Otherwise, if the query is answered, then xi−1 = xi are different from xi+1 = xi+2. At the end of this process, the private
values can be partitioned into two sets, one set having all 0s and the other all 1s, but the attacker will not know which side
has which value.

To determine this final bit of information, note that in expectation about 1/2 of the previous queries were denied. Let
x j be a value that is different from x1 that was in a denied query. We ask the final query x1 + x j + xm . Note that this query
will be answered since x1 �= x j and they have the same trace, and similarly for xm . Suppose the answer to the query is a. If
xm = x1 then we can determine x1 by solving for x1 in the equation x1 + (1 − x1) + x1 = a. Otherwise, if xm �= x1, then we
can solve for x1 in the equation x1 + (1 − x1) + (1 − x1) = a. Once the attacker knows the value of x1, all the other values
(1/2 of the data set in expectation) can now also be uniquely determined.

3.3. SQL queries

Whereas the previous examples assume that the attacker could pose queries about arbitrary subsets of the data, we
next show that even if we weakened the attacker by only allowing queries over attributes of the data, data can still be
compromised. For example, consider the three queries, sum, count and max (in that order) on the ‘salary’ attribute, all
conditioned on the same predicate involving other attributes. Since the selection condition is the same, all the three queries
act on the same subset of tuples. Suppose that the first two queries are answered. Then the max query is denied whenever
its value is exactly equal to the ratio of the sum and the count values (which happens when all the selected tuples have
the same salary value). Hence the attacker learns the salary values of all the selected tuples whenever the third query is
denied. Even though the attacker may not know the identities of these selected tuples, learning the private values of many
individuals can still be considered a significant breach.

4. Simulatable auditing

Intuitively, denials leak because users can ask why a query was denied, and the reason is in the data. If the decision to
allow or deny a query depends on the actual data, it reduces the set of possible consistent solutions for the underlying data.

4 The attack can be modified to work for 0 < p < 1 when there is a p fraction of 0s and 1 − p fraction of 1s – and p is not known to the attacker. In
such a case, with high probability, the attacker can breach even more data: a 1 − 2p(1 − p) (� 1/2) fraction, in expectation.
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A naive solution to the leakage problem is to deny whenever the offline algorithm would, and to also randomly deny
queries that would normally be answered. While this solution seems appealing, it has its own problems. Most importantly,
although it may be that denials leak less information, leakage is not generally prevented. Furthermore, the auditing algo-
rithm would need to remember which queries were randomly denied, since otherwise an attacker could repeatedly pose
the same query until it was answered. A difficulty then arises in determining whether two queries are equivalent. The
computational hardness of this problem depends on the query language, and may be intractable, or even undecidable.

To work around the leakage problem, we make use of the simulation paradigm which is used in cryptography (starting
with the definition of semantic security [15]). The idea is the following: The reason that denials leak information is because
the auditor uses information that is not available to the attacker (the answer to the newly posed query). In particular, this
results in a computation the attacker could not perform by himself. A successful attacker capitalizes on this leakage to
gain information. We introduce a notion of auditing where the attacker provably cannot gain any new information from the
auditor’s decision. This is formalized by requiring that the attacker is able to simulate or mimic the auditor’s decisions. In
such a case, because the attacker can equivalently decide if a query would be denied, denials do not leak information.

4.1. A formal definition of simulatable auditing

We begin by formally defining an auditor and a simulatable auditor.

Definition 4.1. An auditor is a function that given any data set X and any sequence of queries q1, . . . ,qt , either gives an
exact answer to the query qt or denies the answer.

Definition 4.2. Let X be any data set, let Qt = 〈q1, . . . ,qt〉 be any sequence of queries, and let At = 〈a1, . . . ,at〉 be the
corresponding answers according to data set X . An auditor B is simulatable if there exists another auditor B∗ that is a
function of Qt and At−1, and the outcome of B on Qt , At and X is equal to that of B∗ on Qt , At−1.

All the auditors we design are trivially simulatable since the only information they use is Qt and At−1 – information
that is readily available to an attacker.

Note that a simulatable auditor need not remember which queries where denied: queries that were denied will continue
to be denied. Furthermore, denied queries do not influence which future queries will be answered or denied. To see why,
consider the classical definition of compromise where a breach occurs if a sensitive value can be uniquely determined.
When the query qt is posed, the only information on the data set X available to the attacker is encoded in the previous
queries and answers, that is, {〈q1,a1〉, . . . , 〈qt−1,at−1〉}. Suppose qt is denied. The decision to deny qt is based only on qt
and the previous queries and answers, and was made because there is some answer to qt that could uniquely determine
some data element xl . Note that the query qt will be denied even if it is posed at a future time. This is because at a later
time, even more queries and answers could be provided and if xl could be uniquely determined before, it will continue to be
uniquely determined after. Further, the decision to deny qt does not reveal any new information to the attacker, and hence
the attacker’s knowledge about the data set X remains the same even if denied queries are not remembered. Hence denied
queries need not be taken into account in the auditor’s subsequent decisions. We thus assume without loss of generality
that q1, . . . ,qt−1 were all answered.

Simulatable auditors improve upon methods that completely ignore all previous query answers [9] in that longer query
sequences can now be answered (an example is given in Section 5.4) and improve upon the use of offline algorithms to
solve the online problem since denials do not leak information as shown in [17].

Randomized versions of Definitions 4.2 and 4.1 are also possible, where B and B∗ are probabilistic computations, equality
in Definition 4.2 is replaced by a statistical closeness guarantee on B and B∗ and the auditor can make use of an underlying
probability distribution. We discuss such a randomized variant in Section 6.

4.2. A perspective on auditing

We cast related work on auditing based on two important dimensions: utility and privacy (see Fig. 1). It is interesting
to note the relationship between the information an auditor uses and its utility – the more information used, the longer
query sequences the auditor can answer. That is because an informed auditor need not deny queries that do not actually
put privacy at risk. On the other hand, as we saw in Section 3, if the auditor uses too much information, some of this
information may be leaked, and privacy may be adversely affected.

The oldest work on auditing includes methods that simply consider the size of queries and the size of the intersection
between pairs of queries [9,25] (upper left hand corner of Fig. 1). Subsequently, the contents of queries were considered
(such as the elementary row and column matrix operations suggested in [4,5]). We call these monitoring methods. Query
monitoring only makes requirements about the queries, and is oblivious of the actual data entries. In other words, to decide
whether a query qt is allowed, the monitoring algorithm takes as input the query qt and the previously allowed queries
q1, . . . ,qt−1, but ignores the answers to all these queries. This obliviousness of the query answers immediately implies the
safety of the auditing algorithm in the sense that query denials cannot leak information. In fact, a user need not even
communicate with the data set to check which queries would be allowed, and hence these auditors are simulatable.
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Fig. 1. Online query auditing approaches.

Fig. 2. General approach for designing simulatable auditors.

Other work on online auditing uses the queries q1, . . . ,qt and all of their answers a1, . . . ,at [4,18] (bottom right corner
of Fig. 1). While this approach yields more utility, we saw in Section 3 that denials leak private information.

Our work on simulatable auditing can be viewed as a ‘middle point’ (denoted in rectangular boxes in Fig. 1). Simulatable
auditors use all the queries q1, . . . ,qt and the answers to only the previous queries a1, . . . ,at−1 to decide whether to answer
or deny the newly posed query qt . We will construct simulatable auditors that guarantee ‘classical’ privacy. We will also
consider a variant of this ‘middle point’, where the auditing algorithm (as well as the attacker) has access to the underlying
probability distribution.5 With respect to this variant, we construct simulatable auditors that preserve privacy with high
probability.

4.3. A general approach for constructing simulatable auditors

We next propose a general approach for constructing simulatable auditors that is useful for understanding our results
and may also prove valuable for studying other types of queries.

The general approach (shown in Fig. 2) works as follows: Choose a set of answers to the last query qt that are consistent
with answers to previous queries (that is, consider all data sets satisfying answers to previous queries and compute answers
to qt for these data sets). For each of these answers, check if privacy is compromised. If compromise occurs then the query
is denied. Otherwise, it is allowed. In the case of classical compromise for max simulatable auditing, we deterministically
construct a small set of answers to the last query qt so that if any one leads to compromise, then we deny the answer and
otherwise we give the true answer. In the case of probabilistic compromise for sum queries, we randomly generate many
consistent answers and if sufficiently many lead to compromise, then we deny the query and otherwise we answer the
query.

Following the publication of [17], this general approach was also successfully used in [22,23].

5 This model was hinted at informally in [8] and the following work [12].
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5. Simulatable auditing algorithms, classical compromise

We next construct (tractable) simulatable auditors. We first describe how sum queries can be audited under the classical
definition of privacy and then we describe how max queries can be audited under the same definition.

5.1. Simulatable auditing of sum queries

Observe that existing sum auditing algorithms (published in [4]) are already simulatable. In these algorithms, the data
set is viewed as a vector of real numbers and each query is expressed as a vector of real numbers, so that the answer is
computed as the dot product of the query vector and the data set vector. Consider the matrix whose rows correspond to the
queries. Some value has been compromised if and only if this matrix can be reduced to a form where there is a row with
one 1 and the rest 0s [4]. Such a transformation of the original matrix can be performed via elementary row and column
operations, without looking at the data set or the answers. The reason this auditor is simulatable is that the answers to the
queries as well as the data set are ignored when the matrix is transformed.

5.2. Simulatable auditing of max queries

We provide a simulatable auditor for the problem of auditing max queries over real-valued data. The data consists of
a set of n values, X = {x1, x2, . . . , xn} and the queries q1,q2, . . . are subsets of {1,2, . . . ,n}. The answer corresponding to
the query qi is ai = max{x j | j ∈ qi}. Given a set of queries q1, . . . ,qt−1 and the corresponding answers a1, . . . ,at−1 and the
current query qt , the simulatable auditor denies qt if and only if there exists an answer at , consistent with a1, . . . ,at−1,
such that the answer helps to uniquely determine some element x j . Since the decision to deny or answer the current query
is independent of the real answer at , we should decide to answer qt only if compromise is not possible for all consistent
answers to qt (as the real answer could be any of these). Conversely, if compromise is not possible for all consistent answers
to qt , it is safe to answer qt .

5.2.1. Revisiting the max auditing breach of Section 3.1
We now return to the max auditing breach example of Section 3.1 and describe how a simulatable auditor would work.

The first query max(x1, x2, x3, x4) is always answered since there is no answer, a1 for which a value is uniquely determined.
Suppose the second query is max(x1, x2, x4). This query will always be denied since x3 = a1 whenever a2 < a1. In general,
under the classical privacy definition, the simulatable auditor has to deny the current query even if only one consistent
answer to qt compromises privacy. Thus, many queries may be denied. This issue is addressed by our probabilistic definition
of privacy in Section 6.

5.2.2. max simulatable algorithm
We now discuss how we obtain an algorithm for max simulatable auditing. A naive solution is to determine if for all

possible answers at in (−∞,+∞) whether (a) at is consistent and (b) whether some private element would be uniquely
determined if at were the answer. Of course, such a naive algorithm is computationally expensive. Instead, we show that
it is sufficient to test only a finite number of points. Let q′

1, . . . ,q′
l be the previous queries that intersect with the current

query qt , ordered according to the corresponding answers, a′
1 � · · · � a′

l . Let a′
lb = a′

1 − 1 and a′
ub = a′

l + 1 be the bounding
values. Our algorithm checks only 2l + 1 values: the bounding values, the above l answers, and the mid-points of the
intervals determined by them.

Algorithm 1 max simulatable auditor.
1: Input: (allowed) queries and answers qi and ai for i = 1, . . . , t − 1, a new query qt .
2: Let q′

1, . . . ,q′
l be the previous queries that intersect with qt , ordered according to the corresponding answers, a′

1 � · · · � a′
l . Let a′

lb = a′
1 − 1 and

a′
ub = a′

l + 1.

3: for at ∈ {a′
lb,a′

1,
a′

1+a′
2

2 ,a′
2,

a′
2+a′

3
2 ,a′

3, . . . ,a′
l−1,

a′
l−1+a′

l
2 ,a′

l ,a′
ub} do

4: if (at is consistent with the previous answers a1, . . . ,at−1) AND (∃1 � j � n such that x j is uniquely determined) then
5: Output “Deny” and return
6: end if
7: end for
8: Output “Answer” and return

We now prove that the algorithm works as desired.

Theorem 5.1. Algorithm 1 is a max simulatable auditor that runs in time O (t
∑t

i=1 |qi |) where t is the number of queries.

We begin by describing how to determine if a private element is uniquely determined (from [18]). In order to do so, we
need to introduce the notion of an extreme element.
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Definition 5.1. Given a set of queries and answers, the upper bound, μ j for an element x j is defined to be the minimum
over the answers to the queries containing x j , i.e., μ j = min{ak | j ∈ qk}. In other words, μ j is the best possible upper bound
for x j that can be obtained from the answers to the queries. We say that j is an extreme element for the query set qk if
j ∈ qk and μ j = ak .

This means that the upper bound for x j is realized by the query set qk , i.e., the answer to every other query containing x j
is greater than or equal to ak . The upper bounds of all elements as well as the extreme elements of all the query sets can
be computed in O (

∑t
i=1 |qi|) time. Since the input includes both the data set and the queries, the time for the above

computation is linear in the input size.

Lemma 5.2. (See [18].) A value x j is uniquely determined if and only if there exists a query set qk for which j is the only extreme
element.

Hence, for a given value of at , we can check if ∃1 � j � n such that x j is uniquely determined.
Next we explain how to determine if an answer to the current query is consistent with the previous queries and an-

swers.

Lemma 5.3. An answer at to query qt is consistent if and only if every query set has at least one extreme element.

Proof. Suppose that some query set qk has no extreme element. This means that the upper bound of every element in qk
is less than ak . This cannot happen since some element has to equal ak . Formally, ∀ j ∈ qk , x j � μ j < ak which is a contra-
diction.

Conversely, if every query set has at least one extreme element, setting x j = μ j for 1 � j � n is consistent with all the
answers. This is because, for any set qk with s as an extreme element, xs = ak and ∀ j ∈ qk , x j � ak . �

In fact, it is enough to check the condition in the above lemma for qt and the query sets intersecting it (instead of all
the query sets).

We next show that Algorithm 1 preserves consistency when considering only the mid-point value, and then prove that
checking whether x j is uniquely determined at the mid-point value (instead of every point in the interval) is sufficient.

Lemma 5.4. Values of at in (a′
s,a′

s+1) are either all consistent or all inconsistent with the previous queries and answers.

Proof. Suppose that some value of at in (a′
s,a′

s+1) is inconsistent. Then, by Lemma 5.3, some query set qα has no extreme
element. We consider two cases:

• qα = qt : This means that the upper bound of every element in qt was < at and hence � a′
s . This would be the case

even for any value of at in (a′
s,a′

s+1).
• qα intersects with qt : This means that at < aα and the extreme element(s) of qα became no longer extreme for qα by

obtaining a reduced upper bound due to at . This would be the case even for any value of at in (a′
s,a′

s+1). �
Lemma 5.5. Suppose that all values of at in (a′

s,a′
s+1) are consistent with the previous queries and answers. For 1 � j � n, x j is

uniquely determined for some value of at in (a′
s,a′

s+1) if and only if x j is uniquely determined when at = a′
s+a′

s+1
2 .

Proof. Observe that revealing at can only affect elements in qt and the queries intersecting it. This is because revealing at
can possibly lower the upper bounds of elements in qt , thereby possibly making some element in qt or the queries inter-
secting it the only extreme element of that query set. Revealing at does not change the upper bound of any element in a
query that is disjoint from qt and hence does not affect elements in such sets.

Hence it is enough to consider j ∈ qt ∪ q′
1 ∪ · · · ∪ q′

l . We consider the following cases:

• qt = { j}: x j is breached irrespective of the value of at .
• j is the only extreme element of qt and |qt | > 1: Consider two arbitrary points, β and γ that lie in the interval (a′

s,a′
s+1).

We will show that if x j becomes uniquely determined when at equals β , then x j becomes uniquely determined even
when at equals γ . It then follows that x j is uniquely determined for some value of at in (a′

s,a′
s+1) if and only if x j is

uniquely determined when at = a′
s+a′

s+1
2 .

Suppose that x j becomes uniquely determined when at equals β . This means that each element indexed in qt \ { j} had
an upper bound < at and hence � a′

s (since an upper bound can only be one of the answers given so far). Since this
holds even when at equals γ , j is still the only extreme element of qt and hence x j is still uniquely determined.

• j is the only extreme element of q′
k for some k ∈ [1, l]: Consider two arbitrary points, β and γ that lie in the inter-

val (a′
s,a′ ). Suppose that x j becomes uniquely determined when at equals β . This means that at < a′ (and hence
s+1 k
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a′
s+1 � a′

k) and revealing at reduced the upper bound of some element indexed in q′
k \ { j}. This would be the case even

when at equals γ . In other words, x j becomes uniquely determined even when at equals γ . As in the previous case, it
follows that x j is uniquely determined for some value of at in (a′

s,a′
s+1) if and only if x j is uniquely determined when

at = a′
s+a′

s+1
2 . �

Thus, it suffices to check for at = a′
s+a′

s+1
2 ∀1 � s < l together with at = a′

s ∀1 � s � l and also representative points,
(a′

1 − 1) in (−∞,a′
1) and (a′

l + 1) in (a′
l,∞). Note that a representative point is inconsistent if and only if its corresponding

interval is inconsistent.
As noted earlier, the upper bounds of all elements as well as the extreme elements of all the query sets and hence each

iteration of the for loop in Algorithm 1 can be computed in O (
∑t

i=1 |qi |) time (which is linear in the input size). As the
number of iterations is 2l + 1 � 2t , the running time of the algorithm is O (t

∑t
i=1 |qi|), proving Theorem 5.1. In the above

analysis, we ignore the time needed to maintain the sorted list of answers since the insertion to this list takes only O (log t)
time for each query, and this insertion time is dominated by the computation time of the for loop.

5.3. Improving the running time of the max simulatable auditor

We have shown that it is sufficient to test a boundable number of answers to the query qt . A next natural question
is whether we can speed up the algorithm by doing binary search through this set of answers. In particular, does an
inconsistent answer to a query imply that all values smaller (or larger) are also inconsistent? It turns out that we can do
a form of binary search, although not as simply as the previous question implies. In this section, we show how to improve
the running time to O ((log t)

∑t
i=1 |qi|) where t is the number of queries.

We give four conditions each of which exhibits a monotonicity property. Two of the conditions pin down an interval of
consistent answers. The other two conditions pin down an interval of answers where no value can be uniquely determined.
If for every consistent answer, no value can be uniquely determined then the query is safe to answer. Consequently we
can answer a query if the interval of consistent answers is contained in the interval of answers where no value is uniquely
determined.

The four conditions are:

• A≡ “at = θ is inconsistent because some query set qk (different from the current query qt) has no extreme element”,
• B ≡ “at = θ is inconsistent because the current query set qt has no extreme element”,
• C ≡ “For at = θ, x j is uniquely determined for some j /∈ qt”,
• D ≡ “For at = θ, x j is uniquely determined for some j ∈ qt ”.

Suppose that the 2l + 1 values to be checked for at in step 3 of Algorithm 1 are arranged in increasing order in an
array. As we go from left to right in this array, we will show that condition A holds for all array elements below some
index and does not hold for elements thereafter. Consequently, we can determine the above index by performing a binary
search in the array and checking for condition A at each fork. Condition C also exhibits monotonicity in the same direction
as A. Thus, for a condition P ∈ {A,C}, let binarySearch(Left, P ) denote the index of the leftmost array element for which
the condition P does not hold. Conditions B and D also exhibit monotonicity, but in the opposite direction. Again, for
a condition P ∈ {B,D}, we use binary search to obtain binarySearch(Right, P ) which is the index of the rightmost array
element for which the condition P does not hold.

Algorithm 2 Faster max simulatable auditor.
1: α ← binarySearch(Left,A)

2: β ← binarySearch(Right,B)

3: γ ← binarySearch(Left,C)

4: δ ← binarySearch(Right,D)

5: if [α,β] ⊆ [γ , δ] then
6: Output “Answer” and return
7: else
8: Output “Deny” and return
9: end if

Step 5 of Algorithm 2 checks whether for every consistent answer at no value x j is uniquely determined. The array
elements with indices in the range [α,β] correspond to consistent answers for the current query whereas those outside
this range are inconsistent. Further, there is at least one value of at that is consistent, i.e., α � β . Similarly, the array
elements with indices in the range [γ , δ] correspond to answers for which no data value is uniquely determined whereas
some x j is uniquely determined for those outside this range. Hence it is safe to answer the current query if for every
consistent answer, no data value is uniquely determined, i.e., the interval [α,β] is fully contained in the interval [γ , δ]. The
running time of the algorithm is O ((log t)

∑t
i=1 |qi |), since this is the time taken by each binary search step.
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Fig. 3. max simulatable auditor is more useful than max query restriction auditor. The values within the boxes correspond to the second scenario.

We now prove the main lemma.

Lemma 5.6.

(1) If A then any value of at < θ is also inconsistent.
(2) If B then any value of at > θ is also inconsistent.
(3) If C then x j is uniquely determined for any value of at < θ .
(4) If D then x j is uniquely determined for any value of at > θ .

Proof. Part 1: Since the sequence of the first t − 1 queries and answers was consistent and at = θ is inconsistent, it follows
from Lemma 5.3 that some query set qk , which had some extreme element(s) earlier, no longer has any extreme element.
This means that the extreme element(s) of qk is no longer extreme for qk because at = θ reduces the upper bound. In such
a case, any value at < θ is also inconsistent.

Part 2: If at = θ is inconsistent because of the current query qt then the upper bound of every element in qt is less than
at = θ . Thus if at > θ , qt still has no extreme element and the answer would still be inconsistent.

Part 3: Since x j is uniquely determined, it follows from Lemma 5.2 that there exists a query set qk (different from qt )
for which j is the only extreme element. This means that θ = at < ak and revealing at reduced the upper bound of some
element indexed in qk \ { j}. This would be the case even for any value of at < θ , so that j is still the only extreme element
for qk and hence x j is still uniquely determined.

Part 4: As in the proof of Lemma 5.5, qt = { j} is a trivial case. Hence assume that |qt | > 1 and j is the only extreme
element of qt . This means that each element indexed in qt \ { j} has an upper bound less than at = θ . This would be the case
even for any value of at > θ , so that j is still the only extreme element for qt and hence x j is still uniquely determined, by
Lemma 5.2. �

Consequently, we have the following theorem.

Theorem 5.7. Algorithm 2 is a max simulatable auditor that runs in time O ((log t)
∑t

i=1 |qi |) where t is the number of queries.

5.4. Utility of max simulatable auditor vs. monitoring

While both simulatable auditors and monitoring methods are safe, simulatable auditors potentially have greater utility,
as shown by the following example (see Fig. 3).

Consider the problem of auditing max queries on a data set containing 5 elements. We will consider three queries and
two possible sets of answers to the queries. We will demonstrate that the simulatable auditor answers the third query in
the first case and denies it in the second case while a query monitor (which makes the decisions based only on the query
sets) has to deny the third query in both cases. Let the query sets be q1 = {1,2,3,4,5}, q2 = {1,2,3}, q3 = {3,4} in that
order. Suppose that the first query is answered as a1 = 10. We consider two scenarios based on a2. (1) If a2 = 10, then every
query set has at least two extreme elements, irrespective of the value of a3. Hence the simulatable auditor will answer the
third query. (2) Suppose a2 = 8. Whenever a3 < 10, 5 is the only extreme element for S1 so that x5 = 10 is determined.
Hence it is not safe to answer the third query.

While the simulatable auditor provides an answer q3 in the first scenario, a monitor would have to deny q3 in both, as
its decision is oblivious of the answers to the first two queries.

6. Probabilistic compromise

We next describe a definition of privacy that arises from some of the previously noted limitations of classical compro-
mise. On the one hand, classical compromise is a weak definition since if a private value can be deduced to lie in a tiny
interval – or even a large interval where the distribution is heavily skewed towards a particular value – it is not considered
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a privacy breach. On the other hand, classical compromise is a strong definition since there are situations where no query
would ever be answered. This problem has been previously noted [18]. For example, if the data set contains items known to
have a lower bound, e.g., age, then no sum or max query would ever be answered. For instance, the query sum(x1, . . . , xn)

(as well as the query max(x1, . . . , xn)) would not be answered since there exists a data set, e.g., xi = 0 for all i where a
value, in fact all values, can be uniquely determined.

To work around these issues, we propose a definition of privacy that bounds the change in the ratio of the posterior
probability that a value xi lies in an interval I given the queries and answers to the prior probability that xi ∈ I . This
definition is related to the notion of semantic security [15] and to definitions suggested in the perturbation literature
including [14,8,12].

6.1. Privacy definition

Consider an arbitrary data set X = {x1, . . . , xn}, in which each xi is chosen independently according to the same distribu-
tion H on (−∞,∞). Let D = Hn denote the joint distribution. Let the queries be denoted as q j = (Q j, f j), for j = 1, . . . , t
where Q j ⊆ [n] specifies a subset of the data set entries and f j specifies a function (such as sum or max). The answer
a j = f j(Q j) is f j applied to the subset of entries {xi | i ∈ Q j}.

We next define the notion of λ-safe. We say that a sequence of queries and answers is λ-safe for an entry xi and an
interval I if the attacker’s confidence that xi ∈ I does not change significantly upon seeing the queries and answers.

Definition 6.1. The sequence of queries and answers, q1, . . . ,qt,a1, . . . ,at is said to be λ-safe with respect to a data entry xi
and an interval I ⊆ (−∞,∞) if the following Boolean predicate evaluates to 1:

Safeλ,i,I (q1, . . . ,qt,a1, . . . ,at) =
{

1 if 1/(1 + λ) � PrD(xi∈I|∧t
j=1( f j(Q j)=a j))

PrD(xi∈I) � (1 + λ),

0 otherwise.

We say that an interval J is β-significant if for every i ∈ [n] the (a priori) probability that xi ∈ J is at least β . We will only
care about probability changes with respect to significant intervals, due to the fact that requiring the a priori and posteriori
probabilities of a private value to be close on arbitrarily small intervals would cause no queries to be answered at all. The
definition below defines privacy in terms of a predicate that evaluates to 1 if and only if q1, . . . ,qt , a1, . . . ,at is λ-safe for
all entries and all β-significant intervals:

AllSafeλ,β(q1, . . . ,qt,a1, . . . ,at) =
⎧⎨
⎩

1 if Safeλ,i, J (q1, . . . ,qt,a1, . . . ,at) = 1, for every i ∈ [n] and

every β-significant interval J ,

0 otherwise.

(1)

We note that this definition defines privacy with respect to not just all β-significant intervals, but also unions of such
intervals. This is due to the fact that if a sequence of queries and answers is λ-safe with respect to two intervals I1
and I2, then it will also be λ-safe with respect to the union of the intervals, I1 ∪ I2. (Consider the probability expression in
Definition 6.1. For j ∈ {1,2}, let a j denote the numerator of this expression for interval I j and b j the denominator. We use

1
1+λ

� a1
b1

, a2
b2

� 1 + λ ⇒ 1
1+λ

� a1+a2
b1+b2

� 1 + λ.)

We now turn to our privacy definition. Let X = {x1, . . . , xn} be the data set, in which each xi is chosen independently
according to the same distribution6 H on (−∞,∞). Let D = Hn denote the joint distribution. Consider the following
(λ,β, T )-privacy game between an attacker and an auditor, where in each round t (for up to T rounds):

(1) The attacker (adaptively) poses a query qt = (Q t , ft).
(2) The auditor decides whether to allow qt or not. The auditor replies with at = ft(Q t) if qt is allowed and with at =

“denied” otherwise.
(3) The attacker wins if AllSafeλ,β(q1, . . . ,qt ,a1, . . . ,at) = 0.7

Note that the predicate AllSafe is computed by both the attacker and the auditor using only the underlying distribution,
that is, without looking at the sampled data set.

Definition 6.2. We say that an auditor is (λ, δ,β, T )-private if for any attacker A

Pr
[
A wins the (λ,β, T )-privacy game

]
� δ.

The probability is taken over the randomness in the distribution D and the coin tosses of the auditor and the attacker.

6 Our analysis works even if each xi is chosen independently from a different distribution. However, to simplify the notation, we assume that all values
are drawn from the same distribution.

7 Hereafter, we will refer to the predicates without mentioning the queries and answers for the sake of clarity.
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Combining Definitions 4.2 and 6.2, we have our new model of simulatable auditing. In other words, we seek auditors
that are simulatable and (λ, δ,β, T )-private.

Note that, on the one hand, the definition of simulatable auditing prevents the auditor from using at in deciding whether
to answer or deny the query. On the other hand, the privacy definition requires that regardless of what at was, with high
probability, each data value xi is still safe (as defined by AllSafeλ,β ). Consequently, it is important that the current query qt

be used in deciding whether to deny or answer. Because we cannot use the answer at , but want to use the query qt , our
auditor ignores the real answer at and instead makes guesses about the value of at obtained by randomly sampling data
sets according to the distribution D conditioned on previous queries and answers.

6.2. Discussion on the privacy definition

We remark that Definition 6.2 assumes that the distribution from which the data is drawn is known to the attacker.
However, in practice, the attacker may not be aware of the underlying distribution. Then the predicate AllSafe has to be
evaluated with respect to the attacker’s prior distribution, since a privacy breach occurs only if there is a substantial change
in her beliefs. However if the true distribution and the attacker’s distribution are arbitrarily different, any exact answer
released by the auditor would result in partial disclosure of some private value. For example, consider a database that con-
tains salary as a private attribute, and let the attacker’s prior belief be that every person’s salary exceeds $10M. By querying
the data, the attacker may learn that her belief is not true (causing a substantial change in her posterior distribution) re-
sulting in massive privacy breach. Given that the attacker’s prior beliefs are way off the mark, the auditor cannot truthfully
answer any aggregate query without violating privacy, not even the average salary. Instead we assume that the auditor and
the attacker share a common data distribution, representing common knowledge, thereby allowing useful information to be
released. This assumption is realistic in many scenarios, for example, the distributions of attributes such as age or salary
may be known from previously published data.

Definition 6.2 directly guarantees privacy only with respect to events that correspond to β-significant intervals. For other
types of events, e.g., those corresponding to intervals that are not β-significant, only limited privacy is guaranteed. Consider
the case where an extremely sensitive event corresponds to an interval with a priori probability p � β . The posterior
probability can grow up to β(1 + λ), and the ratio of posterior to a priori probability of this event β(1 + λ)/p can hence be
very large. Still, enough protection may be provided by choosing the parameters β , λ to be sufficiently small. We note that
since the presentation of our ideas a stronger privacy standard has emerged – differential privacy [11] – whose guarantee
also extends for low probability events.

6.3. Evaluating the predicate AllSafeλ,β

Eq. (1) requires checking whether the sequence of queries and answers is λ-safe for infinitely many intervals (i.e., for all
β-significant intervals). We next show that all such intervals J can be guaranteed to be λ-safe, by making sure that a finite
number of intervals are safe.

We assume that the distribution H is specified such that we can obtain the partition I of (−∞,∞) into � intervals each
with equal probability mass of 1

�
, i.e., PrD(xi ∈ I) = 1

�
for every interval I ∈ I . For example, if H is specified as a cumulative

distribution function, then we can perform binary search to obtain the points in (−∞,∞) that define the above partition
to the desired level of precision.

We show that if privacy is preserved in each regularly-weighted interval of probability mass 1
�

, then the privacy of any
β-significant interval is also preserved. In other words, to guarantee that any β-significant interval J is λ-safe, we will
ensure that every interval I ∈ I is λ̃-safe where λ̃ is smaller than λ. We provide a smooth trade-off: the finer-grained the
partition (i.e., larger �), the weaker the privacy requirements (i.e., larger λ̃) for each of the � intervals and vice versa. The
intuition is the following. The privacy guarantees of the intervals fully contained in J can be used to imply the privacy of J
whereas the guarantees of the two bounding intervals (which are partially contained in J ) cannot be used. Hence, if the
partition is very fine-grained, J contains more intervals from the partition and hence weaker privacy requirements suffice.

Given λ and β , we can choose the trade-off parameter, c to be any integer greater than 1 + 2/λ. Choosing c determines
the parameters, � = �c/β� and λ̃ = λ(c−1)−2

c+1 . We formally state and prove the lemma below.

Lemma 6.1. If privacy is preserved for each of the � intervals in I with parameter λ̃, then privacy of every β-significant interval is
preserved with parameter λ.

Proof. Note that any β-significant interval J is contained in the union of either d + 1 or d + 2 consecutive intervals in I
where d = ��PrD(xi ∈ J )�. Consider the case where J is contained in the union of d + 1 intervals, I1, I2, . . . , Id+1, of which
J contains the intervals, I2, I3, . . . , Id (the argument for d + 2 intervals follows similarly). Denote PrD(xi ∈ Ik) by pk = 1

�
and

PrD(xi ∈ Ik | ∧t
j=1 f j(Q j) = a j) by qk .

Since privacy is preserved for each of these d + 1 intervals, each qk is lower bounded by 1
�(1+λ̃)

and upper bounded

by 1+λ̃ . Further the overlap of J with intervals in I implies bounds on a priori and posteriori probabilities:
∑d+1 pk �
� k=1
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PrD(xi ∈ J ) �
∑d

k=2 pk and
∑d

k=2 qk � PrD(xi ∈ J | ∧t
j=1 f j(Q j) = a j) �

∑d+1
k=1 qk . Combining these relationships, and noting

that d � c, we get the desired result. �
7. Simulatable sum auditing, probabilistic compromise

In this section we consider the problem of auditing sum queries (where each query is of the form sum(Q j) for a subset
of the dimensions, Q j ) under the newly defined probabilistic definition of compromise.

Prior to describing the solution, we give some intuition. Assume for simplicity that each individual can take a value
uniformly between [0,1]. Then over n individuals, the data set {x1, . . . , xn} can be any point in the unit cube [0,1]n with
equal probability. A sum query and its corresponding answer induces a hyperplane. The data sets consistent with one sum
query/answer are then those points in [0,1]n that fall on this hyperplane. Each successive query/answer reduces the space
of possible consistent data sets to those in the intersection of the induced hyperplanes that also fall in [0,1]n , i.e., the
consistent data sets lie in a convex polytope. Because the prior distribution is uniform, the posterior distribution (given the
queries and answers) inside the convex polytope is also uniform.

How can we audit sum queries? Following the general paradigm suggested in Fig. 2, given a sequence of queries and
answers and given a new query qt , we generate a consistent answer to qt (without using the underlying data set). We
do this by drawing a point uniformly at random from the convex polytope induced by the previous queries and answers.
This point is a sample data set and we then compute a candidate answer to qt based on this sample data set. Once we
have an answer we can then determine whether a privacy breach has occurred: Suppose that P is the current convex
polytope. To determine if a breach has occurred for a particular individual xi and a particular interval I , consider the ratio
in Definition 6.1: Pr(xi∈I|�x∈P )

Pr(xi∈I) = Pr(xi∈I|�x∈P )
|I| . We can estimate the probability in the numerator by sampling from the convex

polytope P and estimating what fraction of the sample points lie inside I . If the fraction above is greater than (1 + λ) or
less than 1

1+λ
then the query is unsafe for this sampled data set. To increase our certainty, we repeat the above process

with many consistent datasets, i.e., many consistent answers to the query qt . If many consistent answers lead to a privacy
breach, we deny the answer and otherwise we give the exact answer. In fact, our algorithm in [17] for auditing sum queries
under probabilistic compromise uses the above technique.

While this intuition was given in the context of the uniform distribution, there is nothing specific about the uniform
distribution that this argument utilizes. Indeed, in the rest of this section, we will assume that the underlying data set is
generated from a more general logconcave distribution. We use this distribution because there exist algorithms for approx-
imately sampling from it. However, there is nothing about our general approach that limits its applicability to logconcave
distributions.

7.1. Properties of logconcave distributions

The class of logconcave distributions forms a common generalization of uniform distributions on convex sets and
Gaussian distributions. A distribution over a domain D is said to be logconcave if it has a density function f such
that the logarithm of f is concave on its support. That is, the density function f : D → R+ is logconcave if it satisfies
f (αx + (1 −α)y)� f (x)α f (y)1−α for every x, y ∈ D and 0 � α � 1. These distributions constitute a broad class and play an
important role in stochastic optimization and economics of uncertainty and information [20,24,2].

We assume that each element xi is independently drawn according to the same logconcave distribution H over R. Let
D = Hn denote the joint distribution. Since the product of two logconcave functions is logconcave, the joint distribution D
is also logconcave. Moreover, as the queries and answers impose convex constraints and indicator functions of convex sets
are logconcave, the posteriori distribution DQ ,t (which is D conditioned on

∧t
j=1(sum(Q j) = a j)) is also logconcave. This

is because the density function for the posteriori distribution can be expressed as the product of the density function for
the a priori distribution and the indicator function corresponding to the convex constraints (scaled by a constant).8

Our algorithms make use of randomized, polynomial-time algorithms for sampling (with a small error) from a logconcave
distribution (see for example [20]). We will use the following theorem.

Theorem 7.1. There exists Algorithm Sample(G, ε) for sampling from an arbitrary logconcave distribution G with running time of
O ∗(nk) oracle calls9 ( for some constant k) such that the sampled output follows a distribution G′ where the total variation distance
between G and G′ is at most ε .

The asterisk in the O ∗() notation indicates that (polynomial) dependence on log n, and the error parameter, ε are not
shown (similar to the notation used in [20]). The total variation distance, aka statistical difference between two proba-

8 The density function for the posteriori distribution, fDQ ,t is proportional to the a priori density, fD inside the convex region C and is zero outside the

region. Denoting the indicator function for the region by δC , we get fDQ ,t (·) = fD (·)×δC (·)∫
C fD (�x) d�x .

9 As in [20], we assume that the density function fG is given by an oracle, that is, for any x ∈ Rn , the oracle returns the value fG(x). In our setting,
we assume that the density function fD corresponding to the a priori joint distribution D is given by an oracle. It follows that the posteriori density
function fDQ ,t can be computed using O (nT ) oracle calls. This is because checking whether a point lies inside the convex region defined by at most T
hyperplanes takes O (n) time per hyperplane.
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bility distributions G and G′ is the largest possible difference between the probabilities assigned to the same event,
i.e., supE |PrG(E) − PrG′ (E)|. The current best known algorithm [20] for sampling from a logconcave distribution runs in
time O ∗(n5).

7.2. Estimating the predicate AllSafeλ,β using sampling

We begin by considering the situation when we have the answer to the last query at . Our auditors cannot use at , and we
will show how to get around this assumption. Given at and all previous queries and answers, Algorithm 3 checks whether
privacy has been breached. As described in Section 6.3, it is enough to make sure that each of the � intervals in I is safe
(for a suitable choice of c and hence � in Lemma 6.1). For each xi and each interval I in I , the a priori probability that xi
lies in I is equal to 1

�
, from the definition of I . To estimate the posteriori probability that xi lies in I , we sample many data

sets according to the posteriori distribution DQ ,t (which is logconcave) and compute the fraction of the data sets satisfying
xi ∈ I . This is done using Algorithm Sample from Theorem 7.1.

Algorithm 3 takes as input, the sequence of queries and answers and the parameters, λ (from Definition 6.1), η (prob-
ability of error), c (trade-off parameter from Lemma 6.1), β (from the notion of β-significant interval), and n (the size
of the data set). λ̃ is defined in terms of λ as for Lemma 6.1. However, we check the privacy requirement with re-
spect to a smaller parameter, λ′ = λ̃/3. N denotes the number of data sets sampled and Ne denotes the number of
data sets satisfying xi ∈ I . The ratio, Ne

N is an estimate of the posteriori probability that xi ∈ I . As the a priori probabil-

ity is equal to 1/�, we require that the ratio, �·Ne
N be very close to 1. In Algorithm 3, let � = �c/β�, λ̃ = λ(c−1)−2

c+1 , λ′ = λ̃
3 ,

N = 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2 · max((1 + λ̃)2, (3 + λ̃/3)2) and ε = η
2N . The proof will illustrate why this choice of parameters

works.

Algorithm 3 Safe.
1: Input: queries and answers q j and a j for j = 1, . . . , t , the a priori distribution D, and parameters λ, η, c, β , n.
2: Let safe = true
3: for each xi and for each interval I in I do
4: Sample N data sets according to DQ ,t , using Algorithm Sample(DQ ,t , ε)

5: Let Ne be the number of data sets satisfying xi ∈ I
6: if ( �·Ne

N /∈ [ 1
1+λ′ ,1 + λ′]) then

7: Let safe = false
8: end if
9: end for

10: Return safe

We now prove that Algorithm 3 behaves as desired. Ideally, we would like to prove that if the query is not safe then
we deny the query and if the query is safe then we answer the query. However our claims will not be that strong for a
few reasons: (a) we do not check all (in fact, infinitely many) β-significant intervals for privacy and instead check only �

intervals in the partition (b) we estimate the posteriori probability using sampling and then use Chernoff bounds and (c)
we cannot sample exactly from the underlying logconcave distribution. Consequently, with probability close to 1, whenever
AllSafeλ,β = 0 we deny the query and for a smaller privacy parameter, λ̃/9 and larger significance parameter, �, whenever
AllSafeλ̃/9,� = 1 we answer the query. For the region in between, we make no guarantees. The following lemma is proved in

Appendix A.

Lemma 7.2.

(1) If AllSafeλ,β = 0 then Algorithm Safe returns false with probability at least 1 − η.
(2) If AllSafeλ̃/9,� = 1 then Algorithm Safe returns true with probability at least 1 − 2n�η.

From now on we assume that Algorithm Safe always works, that is, it always returns false when AllSafeλ,β = 0 and
always returns true when AllSafeλ′′,�c/β� = 1, for some λ′′ < λ. This is because the error guarantees of Lemma 7.2 can be
made exponentially small using standard methods (repetition and majority vote) and further the second part of the lemma
can be proved with any value λ′′ < λ̃ (instead of λ̃/9).

7.3. Constructing the simulatable auditor

Without loss of generality, we assume that the input q1, . . . ,qt−1,a1, . . . ,at−1 contains only queries allowed by the audi-
tor. As the auditor is simulatable, denials do not leak any information (and hence do not change the conditional probability
on data sets) beyond what the previously allowed queries already leak. Each data set sampled follows a distribution which
is within a total variation distance, ε from the desired conditional distribution, DQ ,t−1. For a data set X and query Q , let
sumX (Q ) = ∑

i∈Q X(i).
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Algorithm 4 sum simulatable auditor.
1: Input: (allowed) queries and answers q j and a j for j = 1, . . . , t − 1, a new query qt , the a priori distribution D, and parameters λ, λ′′ , η, c, β , n, δ, T .
2: Let ε = δ

10T

3: for O ( T
δ

log T
δ
) times do

4: Sample a data set X ′ according to DQ ,t−1, using Algorithm Sample(DQ ,t−1, ε)

5: Let a′
t = sumX ′ (Q t )

6: Evaluate Algorithm Safe on input q1, . . . ,qt ,a1, . . . ,at−1,a′
t ,D and parameters λ, λ′′ , η, c, β , n

7: end for
8: if the fraction of sampled data sets for which Algorithm Safe returned false is more than δ

2T then
9: Output “Deny” and return

10: else
11: Output “Answer” and return
12: end if

Theorem 7.3. Algorithm 4 is a (λ, δ,β, T )-private simulatable auditor.

Proof. By Definition 6.2, the attacker wins the game in round t if he poses a query qt for which AllSafeλ,β(q1, . . . ,qt ,

a1, . . . ,at) = 0 and the auditor does not deny qt .
Consider first an auditor that allows every query. Given answers to the first t − 1 queries, the true data set is distributed

according to the distribution D, conditioned on these answers. Given qt (but not at ), the probability the attacker wins hence
equals

pt = Pr
D

⎡
⎣AllSafeλ,β

⎛
⎝ q1, . . . ,qt,

a1, . . . ,at−1,

sumX ′′(qt)

⎞
⎠ = 0

∣∣∣ q1, . . . ,qt−1,a1, . . . ,at−1

⎤
⎦

where X ′′ is a data set drawn truly according to DQ ,t−1 (i.e., D conditioned on q1, . . . ,qt−1,a1, . . . ,at−1). Let p̃t, j denote
the corresponding probability under the distribution sampled by Algorithm Sample in the jth iteration. From Theorem 7.1,
p̃t, j � pt − ε . Let p̃t = min j p̃t, j so that p̃t � pt − ε . Note that, since a′

t = sumX ′ (Q t) is precisely what the algorithm
computes, the algorithm essentially estimates p̃t via multiple draws of random data sets X ′ from DQ ,t−1.

Our auditor, however, may deny answering qt . First consider the case when pt > δ
T so that p̃t > 9δ

10T . Then, by the
Chernoff bound, the fraction computed in step 8 is expected to be higher than δ

2T , with probability at least 1 − δ
T . Hence,

if pt > δ
T , the attacker wins with probability at most δ

T . When pt � δ, the attacker wins only if the query is allowed, and
even then only with probability pt . We get that in both cases the attacker wins with probability at most δ

T . By the union
bound, the probability that the attacker wins any one of the T rounds is at most δ, as desired. �
7.4. Running time

Denoting the running time of Algorithm Sample by TIME(Sample, ε), the running time of Algorithm Safe is O (n c
β

N ·
TIME(Sample, ε)) and hence the running time of Algorithm 4 is O (n c

β
N T

δ
log T

δ
· TIME(Sample, ε)).

We observe that the above algorithm can be modified to handle the case when the number of rounds T is not known
a priori or could be potentially unbounded. Suppose the number of rounds is estimated to be within a constant factor of T0.
We allot an error budget of δ/2 for the first T0 queries, δ/4 for the next T0 queries, and so on. In other words, we set δ/2
as the error parameter for the first T0 rounds, δ/4 as the error parameter for the next T0 rounds, and so on. Then, we get
that the attacker wins the first T0 rounds with probability at most δ

2 , the next T0 rounds with probability at most δ
4 , and

so on. By the union bound, the probability that the attacker wins any one of the T rounds is at most δ
2 + δ

4 + · · · < δ.

Remark. We further remark that our simulatable auditing algorithm for sum queries can be extended to any linear combi-
nation queries. This is because, as in the case of sum auditing, (

⋂t
j=1(

∑n
i=1 q ji xi = a j)) defines a convex constraint where

q j1, . . . ,q jn are the coefficients of the linear combination query q j .

8. Conclusions and future directions

We investigated the fundamental issue that query denials leak information. While existing online auditing algorithms
do not explicitly account for query denials, we believe that future research must account for such leakage if privacy is
to be ensured. We suggest one natural way to get around the leakage that is inspired by the simulation paradigm in
cryptography – where the decision to deny can be equivalently decided by either the attacker or the auditor.

Next we introduced a new definition of privacy. While we believe that this definition overcomes some of the limitations
discussed, there is certainly room for future work. The current definition does not ensure that the privacy of a group of
individuals or any function of a group of individuals is kept private.

Our sum simulatable auditing algorithm demonstrates that a polynomial-time solution exists. But the sampling algo-
rithms that we invoke are still not practical – although they have been steadily improving over the years. Simulatable sum
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queries over Boolean data is an interesting avenue for further work, as is the study of other classes of queries such as the
kth ranked element, variance, clusters and combinations of these.
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Appendix A. Proof of Lemma 7.2

To simplify the analysis, we will assume that Algorithm Sample always returns a sample from the true distribution.
We will first take into account the error due to this assumption. For 1 � j � N , let G j be the distribution followed by the
output of Algorithm Sample(DQ ,t, ε) in jth iteration of the algorithm. Then, the variation distance between the distributions,
dist(G j,DQ ,t) � ε . Using a standard argument (simple hybrid argument), it follows that, the variation distance between the
two product distributions, dist(G1 × G2 × · · · × G N ,DN

Q ,t) � Nε = η/2.
We will use the subscript ‘real’ to refer to probabilities under the distribution sampled by Sample and ‘ideal’ to denote

the probabilities under the assumption that Sample returns a sample from the true distribution. Then, for any event E ,
Prreal(E)� Prideal(E) + η/2.

We now prove the two parts of the lemma.
Part 1: Using Lemma 6.1, it follows that Safeλ̃,i,I = 0 for some i ∈ [n] and I ∈ I . Let pe = PrDQ ,t (xi ∈ I) denote the

posteriori probability. From the definition of I , the a priori probability PrD(xi ∈ I) = 1/�.

Suppose 1 + λ̃ <
PrD(xi∈I|∧t

j=1(sum(Q j)=a j))

PrD(xi∈I) = pe�.

We use Chernoff bounds to show that �·Ne
N > 1 +λ′ with probability at least 1 −η. Let θ1 = pe�−(1+λ′)

pe�
� λ̃−λ′

pe�
= 2λ̃

3pe�
> 0.

Then,

Pr
ideal

(
� · Ne

N
� 1 + λ′

)
= Pr

ideal

(
Ne � Npe(1 − θ1)

)

� e− Npeθ2
1

4

� η/2

where the last step is obtained using N � 9�2 ln(2/η)

λ̃2 , so that
Npeθ

2
1

4 � 9�2 ln(2/η)

λ̃2 · pe
4 · ( 2λ̃

3pe�
)2 � ln(2/η). Hence,

Pr
real

(
� · Ne

N
� 1 + λ′

)
� Pr

ideal

(
� · Ne

N
� 1 + λ′

)
+ η/2

� η.

Thus Algorithm Safe returns false with probability at least 1 − η.
Now suppose pe� < 1

1+λ̃
. Let θ2 = 1−pe�(1+λ′)

pe�(1+λ′) > 0. Using a similar argument as above, we get

Pr
real

(
� · Ne

N
� 1

1 + λ′

)
� Pr

ideal

(
� · Ne

N
� 1

1 + λ′

)
+ η/2

= Pr
ideal

(
Ne � Npe(1 + θ2)

) + η/2

� e− Npeθ2
2

4 + η/2

� η

where the last step is obtained using N � 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(1 + λ̃)2 and θ2 = 1−pe�(1+λ′)
pe�(1+λ′) �

1− 1+λ′
1+λ̃

pe�(1+λ′) = λ̃−λ′
pe�(1+λ′)(1+λ̃)

=
2λ̃

3pe�(1+λ̃/3)(1+λ̃)
, so that

Npeθ
2
2

4 � 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(1 + λ̃)2 · pe
4 · ( 2λ̃

3pe�(1+λ̃/3)(1+λ̃)
)2 � ln(2/η).

Part 2: We actually prove a stronger claim than what is given in the statement of the lemma, by assuming a weaker
condition. The stronger claim was not given as part of the lemma so that the two parts of the lemma are symmetric and
easier to understand. By definition, AllSafeλ̃/9,� = 1 means that the sequence of queries and answers is λ̃/9-safe for all
entries and all �-significant intervals. In particular, this holds for the � intervals in the partition I . Our stronger claim,
which requires only this weaker assumption, is stated and proved below.

Claim 1. Whenever Safeλ̃/9,i,I = 1 for every i ∈ [n] and each of the � intervals I in the partition I , the following statements hold:

(i) AllSafe
( λ + 16 ),β

= 1. (ii) Algorithm Safe returns true with probability at least 1 − 2n�η.

9 9(c−1)
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Proof. The part (i) of the claim follows directly from the proof of Lemma 6.1, by replacing λ̃ with λ̃/9. This is because the
sequence of queries and answers is (( d+1

d−1 )(1 + λ̃/9) − 1)-safe for the interval J (as defined in that proof). In order to see
why AllSafe

( λ
9 + 16

9(c−1)
),β

= 1, note that:

(
d + 1

d − 1

)
(1 + λ̃/9)�

(
c + 1

c − 1

)
(1 + λ̃/9) = 1 +

(
λ

9
+ 16

9(c − 1)

)
.

We next prove part (ii) of the claim. By assumption, for any i and I ∈ I ,

1

1 + λ̃/9
� pe�� 1 + λ̃/9.

We will show that for each i and I ∈ I , Algorithm Safe returns false with probability at most 2η. Using the union bound
on all i ∈ [n] and I ∈ I yields the proof.

Let θ3 = (1+λ′)−pe�
pe�

> 0 and θ4 = pe�(1+λ′)−1
pe�(1+λ′) > 0.

Pr
real

(
� · Ne

N
> 1 + λ′

)
� Pr

ideal

(
� · Ne

N
> 1 + λ′

)
+ η/2

= Pr
ideal

(
Ne > Npe(1 + θ3)

) + η/2

� e− Npeθ2
3

4 + η/2

� η.

The last step is obtained using N � 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(3 + λ̃/3)2 � 81�2 ln(2/η)

λ̃2 and θ3 = (1+λ′)−pe�
pe�

� (1+λ′)−(1+λ̃/9)
pe�

=
2λ̃

9pe�
, so that

Npeθ
2
3

4 � 81�2 ln(2/η)

λ̃2 · pe
4 · ( 2λ̃

9pe�
)2 � ln(2/η).

Similarly,

Pr
real

(
� · Ne

N
<

1

1 + λ′

)
� Pr

ideal

(
� · Ne

N
<

1

1 + λ′

)
+ η/2

= Pr
ideal

(
Ne < Npe(1 − θ4)

) + η/2

� e− Npeθ2
4

4 + η/2

� η.

The last step is obtained using N � 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(3 + λ̃/3)2 and θ4 = pe�(1+λ′)−1
pe�(1+λ′) �

1+λ′
1+λ̃/9

−1

pe�(1+λ′) = λ′−λ̃/9
pe�(1+λ′)(1+λ̃/9)

=
2λ̃

3pe�(1+λ̃/3)(3+λ̃/3)
, so that

Npeθ
2
4

4 � 9�2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(3 + λ̃/3)2 · pe
4 · ( 2λ̃

3pe�(1+λ̃/3)(3+λ̃/3)
)2 � ln(2/η). �
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