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ABSTRACT

Online groups, including chat groups and forums, are be-
coming important avenues for gathering and exchanging in-
formation ranging from troubleshooting devices, to shar-
ing experiences, to finding medical information and advice.
Thus, issues about the health and stability of these groups
are of particular interest to both industry and academia. In
this paper we conduct a large scale study with the objectives
of first, characterizing essential aspects of the interactions
between the participants of such groups and second, char-
acterizing how the nature of these interactions relate to the
health of the groups. Specifically, we concentrate on Twitter
Discussion Groups (TDGs), self-organized groups that meet
on Twitter by agreeing on a hashtag, date and time. These
groups have repeated, real-time meetings and are a rising
phenomenon on Twitter. We examine the interactions in
these groups in terms of the social equality and mobility of
the exchange of attention between participants, according
to the @mention convention on Twitter. We estimate the
health of a group by measuring the retention rate of partic-
ipants and the change in the number of meetings over time.
We find that social equality and mobility are correlated, and
that equality and mobility are related to a group’s health.
In fact, equality and mobility are as predictive of a group’s
health as some prior characteristics used to predict health
of other online groups. Our findings are based on study-
ing 100 thousand sessions of over two thousand discussion
groups over the period of June 2012 to June 2013. These
finding are not only relevant to stakeholders interested in
maintaining these groups, but to researchers and academics
interested in understanding the behavior of participants in
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online discussions. We also find the parallel with findings
on the relationship between economic mobility and equal-
ity and health indicators in real-world nations striking and
thought-provoking.
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1. INTRODUCTION

Online groups are of interest to researchers for a variety of
reasons. First, there is a wealth of information and exper-
tise on a variety of topics being discussed in online groups.
In some cases groups cover solutions on how to deal with
technical issues that are otherwise hard to find. Some dis-
cussions can also provide a sense of the pulse and sentiment
on different socio-political issues. Similarly, information and
opinions on books, music and movies are often shared. Sec-
ond (and the motivation behind our work), these groups
provide an incredible new telescope to study the nature of
human interaction and behavior, albeit in a particular envi-
ronment with all the biases inherent to the media (online in-
teractions), at scale. From a pragmatic point of view, stake-
holders would like to understand how to keep the groups
active and healthy. From a scientific point of view, answers
to these questions provide some insight into the nature of
human interactions.

Online communities manifest in a number of forms —
some examples that have been studied in the literature in-
clude Internet Relay Chats [25], Yahoo groups [3] and Ning
groups [17]. In this work we focus on Twitter discussion
groups (TDGs) [9]. TDGs are synchronized, real-time con-
versations that occur repeatedly (sometimes periodically),
and with sessions usually lasting 1-2 hours. Participants
agree on a hashtag, date and time, and then append the
hashtag to their tweet so others in the group can follow
the conversation at that date and time using the standard
Twitter interface. Topics of these groups are numerous and
varied. For example, there are support groups for postpar-
tum depression and borderline personality disorder. Other
groups enable participants to connect with others with sim-
ilar hobbies and interests like skiing, photography, movies,



wines and food. Some of these groups have a moderator
(which may change with meetings), some invite medical ex-
perts and other personalities, and some are organized around
sport team events. The richness of subject matter and pop-
ularity of Twitter makes it a compelling social network to
study. Additionally, the real-time nature and limited time
window of each TDG session is more similar to real-world
group meetings than some other online forms of discussions
such as forums and message boards.

Our first goal in this paper is to characterize the inter-
actions of participants in a TDG, in terms of the attention
exchange through the “@mention” mechanism. In particu-
lar, we characterize the interaction between the participants
in terms of social equality and mobility, where the analogous
currency is the accumulation and distribution of attention.
Mechanistically, participants in Twitter give and receive at-
tention via an “@mention.” A user directs a tweet to a spe-
cific individual by @mentioning them to strike a conversa-
tion, to reply to a question or comment, or by retweeting
the content of that user. In all these cases a user is explic-
itly signaling the importance of the other user and/or the
content (s)he has generated. In groups with high equality
the attention is divided more evenly between participants.
In groups with bigger degrees of social mobility, members
are able to move between different levels of attention from
session to session. These concepts will be more formally
defined in section 5.

Our second goal is to establish the relationship between
these social equality and mobility characteristics and the
health of a TDG. Specifically, we measure group health by
the retention rate of participants over time and stability in
terms of the number of sessions per period. Intuitively, a
group is healthy if many people continue to attend sessions
and sessions continue to take place regularly. We take in-
spiration from the socioeconomics literature where research
has demonstrated that countries with more egalitarian in-
come distribution and with better possibilities of economic
mobility tend to be healthier [29, 14, 12, 26]. Health in
these studies is measured in a variety of ways including life
expectancy, infant mortality, and homicide rates.

In this paper we present the results of a large scale study of
over two thousand Twitter discussion groups with over 100
thousand sessions. To the best of our knowledge this is the
first large scale study to quantify the relationship between
social equality and mobility to the health of online groups
at scale. The main contributions of our study are:

1. A probabilistic model that captures interaction pat-
terns between users (based on the models introduced
in [1]). We establish that each participant in the TDG
can be profiled by a probability distribution on three
archetypical patterns of interaction. Archetype A is
the one that receives the most attention (mentions),
archetype B is the one that gives the most attention,
and archetype C is the less active. See Section 4 for
further discussion and definitions.*

1One may try to measure attention by simply counting the
number of @mentions received by a participant (which can
lead to definitions of equality and mobility). Such a “first
approximation” is limited in that it fails to take into account
the source of each @mention (e.g., being mentioned by a cen-
tral participant may be more indicative that the participant
being mentioned is more central t00).

2. We establish that mobility and inequality are statis-
tically correlated and we find that (a) there are high
degrees of inequality in TDGs (the top 10% gets 40%
of the attention) but there are high degrees of mobil-
ity (so it is not always the same 10% that receives the
bulk of the attention).

3. Higher mobility and lower inequality correlate to and
predict healthier groups. In fact, equality and mobil-
ity are so powerful that they are as predictive of a
group’s health as other graph-based statistics used to
predict health. We observe similar results even when
concentrating on natural subsets of TDGs such as co-
hesive groups (where there are high levels of inter-
connectivity between frequent participants).

2. RELATED WORK

We next describe how our work compares to prior research
in machine learning, social networks, and sociology.

Role Identification in Networks.

A variety of techniques aim to discover core and periphery
structures in networks. Borgatti and Everett [6] investigate
techniques for identifying core and periphery nodes. Sub-
sequent work [23] assigned nodes along a continuous spec-
trum from those that lie in the heart of a core to those that
lie in the outer reaches of the periphery. Other methods
core/periphery identification methods include [11, 13].

Another line of work that identifies roles in networks is
the Mixed-Membership Stochastic Block model [1]. In this
model, each node is modeled by a distribution over k types —
these types are defined by a square k X k matrix indicating
the likelihood that type ¢ communicates with type j. One
of the benefits of this model is that a user can probabilis-
tically take on every role (as opposed to being assigned ex-
actly one), and it seamlessly weights the importance of each
role in the communication. We adapt this model for our
setting by using it to identify the different roles of partici-
pants in a session (we expand upon this in Section 4). Note
that there is extensive literature in the sociology community
that describes the functional roles that individuals play in
groups [4]. For example, there are task roles (e.g., opinion
seeker, evaluator), social and maintenance roles (e.g., sup-
porter, harmonizer) and individual Roles (e.g., aggressor).
While these definitions are quite compelling, due to the scale
of data that we process we require automated techniques for
role identification.

Group Growth.

A large-scale study of 44K Yahoo groups was conducted
in [3]. Yahoo groups differ from Twitter discussion groups in
that the former are more akin to a forum without predesig-
nated meetings, while the latter are real-time meetings. One
interesting discovery made in [3] is that people who eventu-
ally become heavily-engaged receive preferential treatment
from the first message that they post (see also [16]). This
finding may be an early indication that mobility, or ability
to reach the core, is signaled in the first communication with
a group.

Kairam et al [17] study Ning groups which are more akin
to forums where people post content at will and not within
predesignated windows of time. The decline of a Twitter dis-
cussion group is thus more readily apparent. In contrast, [17]



define group death as a group that stops adding new mem-
bers. In addition, while the object of study is friendship
links in the Ning graph, in our work, the object of study is
@mention, a finer granularity interaction that can encourage
people to remain in the conversation.

Other factors are also known to affect why people join and
leave online communities. A person with more friends in a
group is more likely to join [18] and the more interconnected
their friends are, the more this likelihood increases [2]. This
finding may also be viewed as a signal of the importance of
mobility in that if a person has many friends already in the
core of a group, it may increase their chances of becoming
core members. On the opposite side, infrequent commu-
nication hampers group responsiveness [19] while excessive
communication is perceived as message overload [7, 15].

Twitter Discussion Groups.

The initial discovery of Twitter groups was reported in [10].
In that work, a group was also represented as a hashtag, but
the definition was more strict. In addition to requiring that
the group met in a synchronized window of time, their work
also required that meetings occur with predictable regular-
ity, i.e., every t days, and that the group was cohesive in
the sense that the people who attended the most meetings
communicated with each other. We investigate synchronized
and cohesive groups, but drop the requirement that groups
meet with strict regularity. Discussion groups were defined
in [9], where the goal was to rank chats according to a spec-
ified query. This paper focuses on modeling social structure
and predicting group health.

Equality and Mobility.

Prior work has investigated the differences between more
and less equal societies [22, 20, 28]. For example, coun-
tries with more egalitarian income distributions tend to have

higher life expectancy rates [27], lower infant mortality rates [29],

lower homicide rates [14, 12, 26] and more social mobility [5,
30]. These correlations were discovered at national scales,
e.g., the US has very inequitable income differences and also
lower life expectancy. While Twitter discussion groups may
lack the diversity and intricacies of real-world economies,
we can see them as a microcosm of society in which peo-
ple form relationships, exchange ideas and participate in a
community. The economic constructs in these works have
inspired us to measure the exchange of attention in Twit-
ter (via the @mention) as a sort of currency. In our work,
we ask whether the correlations found at national levels are
mirrored in the Twitter equivalents of these measures. (No
causal claims are made.)

3. REPRESENTATION OF TWITTER DATA

In this section we describe the process of taking raw tweets
and (a) identifying the sessions that constitute discussion
groups, (b) representing the exchange of attention amongst
the participants in each session using the @mention graph,
and (c) modeling archetypical patterns of interaction and
participant profiles.

3.1 Identifying TDG sessions

In this study we follow [9] and regard TDGs as self-organized

and synchronized group discussions focused on specific top-
ics that use Twitter as a platform to meet with some reg-

ularity. Logistically, members agree on a hashtag and a
meeting time (e.g., 3pm Pacific Time on Sundays) to dis-
cuss a subject of interest. A participant indicates his or her
involvement in the discussion by including the designated
hashtag in each of their tweets. We call a specific instance,
or meeting, of a given group a session.

Operationally, we define a session as a two-hour window
in which at least 20% of the week’s tweets using the hashtag
occur within the window [9]. For our study, we restricted our
analyses to TDGs that had at least 12 sessions in a 12-month
period. In addition, TDGs should contain between 25 and
200 participants 2 in each session and at least 5 participants
who attended at least 5 sessions.

Given the above criteria, we conducted a search on the
complete corpus of Twitter for a 12 month period (June 2012
- June 2013) and identified a total of 2418 different TDGs
consisting of over 113,000 individual sessions. This task re-
quired the analysis of petabytes of data which we achieved
using the SCOPE language [8] on a large distributed com-
puting cluster.

3.2 Representing sessions

For our analysis, we strip away the semantics and content
of the conversation and focus on the structure of interac-
tions by representing each session by an @mention graph.
In Twitter, a user explicitly mentions another user by ap-
pending an “@” symbol to the name of the other user in
the text of the tweet (For example, a tweet mentioning user
Y will include the text “@QY”). We separate mentions into
three types: replies, retweets, and other tweets. When user
X replies to a tweet created by user Y, their new tweet will
mention user Y. Similarly, when user X retweets (an action
similar to forwarding an email) a tweet created by user Y,
X’s new tweet will mention user Y. In general, the author of
a tweet can mention user Y by adding the text “QY” any-
where in the tweet. In each of these situations, we view user
X mentioning user Y as user X giving attention to user Y —
either by responding to something user Y said, promoting
something user Y said, or specifically naming user Y.

An @mention graph is defined as a graph G = (N, &)
where the nodes N are participants in the session and the
edges £ are @Qmentions between participants. For example, if
participant X mentions participant Y, there will be an edge
from X to Y. If participant X mentions multiple participants,
there will be an edge from X to each participant mentioned.
In our analyses we differentiate between replies, retweets
and other tweets. We decompose the set of edges into £ =
{ErT,ERe, E0}, where Err are retweets, Ege are replies and
Eo are all other tweets containing an @mention. In addition,
each edge e € £ has an integer weight corresponding to the
number of times the mention occurred during the session.
A visualization of the @mention graph for an example TDG
session is shown in Figure 1 (a).

4. MODELING SESSIONS

To analyze equality and mobility in terms of attention
(@mention) exchanges, we generate a latent model of in-
teractions based on the explicit evidence in the @mention
graph. Our model is a generalization of a well known genera-
tive probabilistic model called the mized membership stochas-

2We focused on groups small enough to allow interactions be-
tween participants — too large of a group inhibits real discussion.



Figure 1: The @mention graph and learned model for an ex-
ample session of the TDG #mtos, “Movie Talk on Sunday”.
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(a) The @mention graph. Green (dashed) edges are
retweets, red (dotted) edges are replies, purple (solid)
edges are normal @mentions.
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tic blockmodel [1, 24]. The next few subsections describe the
model and its output in the form of a set of roles for the par-
ticipants in the TDG sessions. These roles form the basis
for the characterization of mobility and inequality.

4.1 The interaction model

For modeling the interactions between the participants,
given the @mention graph, we extend the generative model
in [1] as follows: each participant is characterized by a la-
tent vector 7 that represents a distribution over the differ-
ent roles that the participant can take in terms of his/her
actions (e.g., initiating or receiving an @mention) in the ses-
sion. We call these roles archetypes. In addition, we want
to capture (a) the different types of edges that @mention
graph exhibits (i.e., replies, retweets and other tweets) and
(b) the number of times specific mentions are made. To this
end we generalize the model to contain 3 matrices corre-
sponding to the 3 modes of interaction. Each entry in each
of one of the matrices A; represents the probability that a
participant of archetype X interacts (in a specific way) with
a participant of archetype Y. Furthermore, the entries of
the matrix contain the intensity parameter of a Poisson dis-
tribution, which encodes the expected number of times that

the different archetypes interact. Thus the activity in an
@mention graph G = (N, &) where & = {Err,ERe, 0} s
modeled according to the following generative process:

e For each node i € N

— Draw a K dimensional latent archetype vector:
m; ~ Dirichlet(a)

e For each pair of nodes (i,7) € N x N:

— Draw archetype indicator for the initiator,
Zi—; ~ Multinomial(7;).

— Draw archetype indicator for the receiver,
Zi«j; ~ Multinomial(7;).

— For each edge type &, € &:

* Sample the weight of the edge,
€ij,m ~ Poisson(zi— jAmzicj).

where A, (i,7) is the Poisson intensity parameter, i.e., the
expected number of type m mentions of archetype j by
archetype i. Our use of a generative model to uncover the
latent roles of the participants, as opposed as for example,
counting directed edges in the @mention graph, provides the
ability to automatically take into account the importance
of the edge in relation to the role of both the participants
(nodes) at the extremes of each edge.

4.2 Fitting session models

We used variational message passing [31] in the Infer. NET
package [21] to fit the parameters of our model for each TDG
session (i.e., the type vector m for each participant and the
interaction matrices A). Although there are a large num-
ber of sessions (>113,000), parallelization was straightfor-
ward as we fit a model for each session independently.> We
used a combination of Dryad/Linq [32] for managing the dis-
tributed (parallel) computation of the models on a cluster
of 20 servers.

The original model as well as our generalized version has
a free parameter: the number of archetypes K. This is a
model selection problem, and it is usually resolved using a
penalized likelihood approach such as the Bayesian Infor-
mation Criterion (BIC) [1]. The tension is that if K is too
small, we may be unable to express important aspects of
the interaction, while if it is too large we may be overfit-
ting. For our analysis, we also need the same K in all mod-
els to enable the computation of statistics of groups (across
sessions) and to be able to compare and contrast among
the different groups.* we performed an exploratory anal-
ysis over a sample covering over 10% of the total number
of sessions. Our observations were that the majority of the
models maximized BIC for K = 3, and over 75% of the
models maximized BIC for K < 4. We therefore settled on
K = 3.We observed in our explorations that increasing K
by 1 has the effect of identifying subgroups inside the ses-
sion rendering two (essentially) indistinguishable archetypes
in terms of the mentioning action. Thus, we don’t lose any
information relevant to our analysis by forcing K = 3 in
these cases. Similarly, the addition of an archetype in those

3Note that fitting a model per TDG (as opposed to by session)
would remove traces of the evolution of the archetypes over time.
4This need is different, for example, from trying to analyze in
more detail the roles of participants in an isolated session.



sessions where BIC was maximized by K = 2, forces the
split of one archetype into two very similar archetypes in
terms of the mentioning action.

4.3 Naming the archetypes

In addition, we must address the identifiability issue in

comparing latent models between different sessions and groups.

To this end we examined the expected number of mentions
for each archetype (according to the A matrices), and de-
vised a naming convention in order to match archetypes
between sessions. We use the letters A, B, and C to de-
note the three archetypes. Formally, the expected number
of mentions received by archetype k is computed as:

E[k is mentioned] = Z Z:I_I(Z)Am(l7 k),

m £k

where II(1) is the prior probability of archetype I, i.e., II(I) =
+ Ef\il m;(l). Similarly, the expected number of mentions
sent by archetype k is

E[k mentions] = Z ZH(Z)Am(k,l).

m l#k

We define A to be the archetype that has the highest ex-
pected number of mentions in a session. On average, A dis-
plays a significantly higher probability of being mentioned
than any other archetype. The two other archetypes are
not as well distinguished by their expected number of times
being mentioned, but are quite different on average when
considering their expected number of times mentioning oth-
ers. We thus define B to be the archetype with the higher
expected number of mentions (among the two remaining).
The remaining archetype is named C.

In our data analysis over the 113K sessions, we found that
100% of groups have E[A is mentioned] more than double
E[B is mentioned], while 57% of groups had E[B mentions]
more than double E[C mentions] and 73% of groups had E[B
mentions] at least 50% more than E[C mentions].

4.4 A qualitative look at session models

The sessions models learn abstractions describing proto-
typical patterns of interaction that are directly interpretable.
Figure 1 shows an example session for the TDG “#MTOS”
(Movie Talk on Sunday). Each session of Movie Talk on Sun-
day is centered on a set of movie-related questions. Through-
out the session, a host or moderator tweets questions and
participants in the chat answer the questions and discuss
their answers. In this session of “mtos”, there was a guest
host who wrote the list of questions. He is introduced at
the beginning of the session by the group’s founder. Partici-
pants often reply to him when answering questions (although
answers are often provided using only the hashtag #mtos,
without mentioning anyone), and thank him at the end of
the session by mentioning him. As participants respond to
questions throughout the session, they often retweet answers
they agree with, or reply to a user to engage more about an
answer they made. In part (b) of Figure 1 the archetypes A,
B and C are represented graphically in terms of the probabil-
ities of mentioning other archetypes. We see that the most
common modes of interaction are archetype B mentioning
archetype A, or archetype A mentioning another archetype
A. The most likely type of mention is a reply from B to A. In
part (c) the latent profiles 7 of each participant in the ses-
sion are visualized on the simplex. The guest host is located

at the bottom left corner of the simplex, indicating that he
is the most dominant archetype A participant in the session.
This is expected, as the host he sends and receives the most
attention. Participants along the left edge of the simplex
have low weight on archetype B — they may be mentioned
frequently but rarely mention others. For example, one par-
ticipant that falls in this location provided some answers
that others agreed with and retweeted. Participants along
the right edge of the simplex have low weight on archetype
A — they may mention others often but are rarely men-
tioned. Onme participant that falls near the middle of this
area is a user who often retweeted answers to signify agree-
ment. Notice that the bottom right corner is fairly empty
of participants, indicating that in this session, there were
no participants who mentioned others often but were never
mentioned themselves. This seems to indicate that if you
initiate discussion in this community you will receive some
attention in exchange.

S. STATISTICS

In order to examine concepts of social mobility and in-
equality in TDGs, we define a set of statistics based on the
session models learned in the previous section.

Equality.

We propose a set of statistics characterizing whether at-
tention is distributed equally amongst participants in the
discussion (or to what extent it is concentrated in the hands
of the privileged few). The intent is to mirror notions of eco-
nomic inequality, namely, to what extent the total wealth in
a country is controlled by the wealthiest X% of people (com-
monly “the 1%”). We propose three sets of statistics with the
objective of obtaining analogous metrics of inequality over
TDG participants. These statistics are computed on the ses-
sion models described in the previous section and averaged
over all the sessions of a TDG.

The first statistic consists of the proportion of the total
weight on archetype k that is held by the 10% of participants
who have the largest weight on archetype k:

ZiES mi(k)
Ei\;1 mi(k)

where S = is the set of N/10 participants with largest 7.
Note that as Top10x approaches 1, more attention is focused
on a select few. A small value suggests that attention is
spread more evenly.

We explore two other ways to measure disparity in at-
tention. For each archetype, we can first order participants
according to their weight on the archetype, and then iden-
tify the top fraction of participants required to reach 50% of
the weight on the archetype. A third simple set of statistics
is the average weight on each archetype. A complete list of
inequality statistics can be found in Table 1.

Topl0,, =

)

Mobility.

Similarly to inequality, we are interested in character-
izing the ability of participants to change their dominant
archetype over time. For example, a change in proportion
from archetype C to archetype A in the profile of a partic-
ipant will signal a change in the status of that participant.
This also mirrors the notion of mobility in economic terms
that characterize ability to move (usually upward) in income



over time. Mobility statistics are computed over a sequence
of session models, and thus can only be measured for partic-
ipants that attend multiple sessions. We compute mobility
statistics over the set N, of participants who attended at
least five sessions. As with the equality statistics, we ex-
plore three sets of measures of mobility.

The first statistic is the average range of participants’
weight on a specific archetype, computed as,

N
1 = .
AvgRange, = A Eﬂ max i (k) — min it (k).

It follows that larger ranges signal greater mobility in par-
ticipants’ archetype over time.

The second statistic is the probability that a given partic-
ipant will have at least half their membership in a specific
archetype (most notably the archetype A),

Na
Half), = Pr(r(k) >=0.5) = Nia ;H[m(k) >=0.5]
Since A is the archetype that receives the most attention,
Half4 measures the fraction of participants that receive a
lot of attention in at least one session.

The third and final set of statistics encodes the probability
of transitioning between archetypes. We construct a state
space model over the archetypes and build a Markov chain to
describe the probabilities that a participant will transition
between archetypes in subsequent sessions. The model has
four states: A, B, C and not present. The transition prob-
abilities between each state are calculated by summing the
changes between each participant’s type from one session to
the next (only participants who attended at least 5 meet-
ings were included). Higher between-state transition prob-
abilities indicate higher mobility between archetypes. For
example a high Pr(B — A) indicates “upward” mobility, as
a participant is more likely to move from the less attention-
gathering to the more attention-gathering archetype.

Additional Statistics.

In addition to mobility and equality, we consider other
statistics derived from the session models. These include
the expected number of mentions of each tweet type (re-
ply, retweet, etc.), and the probability of each archetype
being mentioned. Details can be found in Table 1. Further,
we compute several statistics independently of the models.
These include the number of sessions, average size of ses-
sions, clique sizes and other graph-based statistics that have
been successfully used in previous work to predict growth
and decline of online groups [17]. We will compare these ad-
ditional statistics to the model-based mobility and equality
statistics in upcoming sections.

6. CHARACTERIZING EQUALITY AND MO-

BILITY IN TDGS

Figure 2 summarizes inequality and mobility statistics for
the TDGs we studied. Overall, we found that groups exhibit
significant levels of inequality. On average, the top 10% of
archetype A held 41% of the weight on archetype A. At the
same time we also see that many groups exhibit high levels
of mobility. On average, the range of weight on archetype
A is 0.3, and in many groups a significantly higher range is
observed. In fact, the distribution is highly bimodal.

Figure 2: Distribution of (a) inequality and (b) mobility
statistics for all 2418 TDGs. Groups are separated by graph
structure into star, fragmented, and other groups.
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Star and fragmented @mention graphs.

We find that the bimodality in the distribution of mobility
across TDGs can be explained by identifying two subtypes
of very different structures of @mention graphs. We define
star graphs as @mention graphs in which over X% of in-
coming edges are directed to one or two participants. We
define fragmented graphs as @mention graphs in which less
than Y% of participants are in the largest connected com-
ponent. For our analyses we set X to 90% and Y to 75%.
With these subclasses of graph structures, the bimodality
of the mobility statistic seen in Figure 2 can be explained
by grouping TDGs into fragmented and star groups. We see
that groups corresponding to star graphs display the highest
degree of inequality and the lowest degree of mobility, while
the fragmented groups display the opposite characteristics.

We notice that many star graphs correspond to groups
that center around a celebrity or a television show. The
celebrity might tweet something, and many people retweet
or reply to them. Similarly, when the TV show airs, many
people will mention the TV show handle in their tweets dis-
cussing the show. In these cases the celebrity-like participant
commands an unequal share of the attention, and it is very
unlikely for any other given participant to move into such
a position of power. Conversely, many fragmented graphs
correspond to groups that center around a common interest,
such as a sports team. For example, when the team plays,
many people will tweet to each other about the game, al-



Table 1: List of all statistics.

Feature name Description
B I1[k] Average weight on archetype k
T:vs Weight50y The fraction of participants required to reach 50% of the weight
. g on archetype k
£ 5 Topl0g The proportion of the total weight on archetype k that is held
2z by the top 10% of participants
%3 é’ AvgRangey, The average range of weight on archetype k
) IS Hal f, The probability that a given participant will have at least 0.5
< EO weight on archetype k
= Pr(k —1) Probability of transitioning from archetype k to archetype 1 from
one session to the next
E[k is mentioned] Expected number of times archetype k is mentioned
E[k mentions] Expected number of mentions made by archetype k
E[k recevies a mention of type (] Expected number of times archetype k is mentioned with a cer-
tain tweet type (retweet, reply or normal)
E[k mentions of type ] Expected number of times archetype k mentions with a certain
tweet type (retweet, reply or normal)
Pr(k is mentioned) Probability that a given tweet mentions archetype k
Pr(k mentions) Probability that a given tweet is sent by archetype k
numsSessions Number of sessions between 25 and 200 participants in the 12
month period we observed
avgN Average number of participants in each session
& ratioActiveN Ratio of the number of participants who attended at least 5
Kz meetings over the average number of participants
E avgAttendance Average number of meetings participants attended
U: density Average number of tweets per participant
2 avgTime Average number of days between sessions
5 stdTime Standard deviation of the number of days between sessions
maxClique Size of the maximal clique
nClusters Number of disconnected clusters
maxCluster Size of largest cluster
cliqueRatio Fraction of participants in the maximal clique
clusterRatio Fraction of partcipants in the largest connected cluster
centralityDegree Average degree of centrality
closeness Average closeness (transitivity)

though there is no central participant leading discussion. In
these cases attention can be spread more equally among par-
ticipants and upward mobility in terms of attention may be
more easily achieved. Figure 3 shows a few example @men-
tion graphs belonging to these subtypes.

6.1 Correlation of equality and mobility

We find that mobility and equality in TDGs are not inde-
pendent. Using T'opl104 to represent inequality and AvgRange a
to represent mobility®, the coefficient of correlation between
inequality and mobility is —0.512%. This negative correlation
between inequality and mobility mirrors the relationship
observed in socioeconomic studies — as inequality grows,
it becomes more difficult to move between social strata.
This relationship is intuitive when considering the “extreme”
star and graph structures discussed in Section 6. However,
concern that groups with these extreme graph structures
may not represent “true discussion” (i.e., groups that are so

5We chose Topl04 and AvgRange as intuitive measures of in-
equality and mobility; the alternative statistics listed in table 1
show similar correlations.

SCorrelation for star and fragmented groups is -0.324 and -0.068,
respectively.

tightly organized around a central figure have limited inter-
action) leads us to consider another subtype of group that
is more aligned with our traditional notion of a discussion-
based community. Toward this end, we define a subtype of
TDGs called cohesive groups.

Cohesive groups.

Cohesive TDGs have a solid core of members that inter-
act among themselves and persist between sessions. More
specifically, we define a group as “cohesive” if the 5 partic-
ipants who attended the most sessions (over the course of
a year) have at least 4 shared edges in the @mention graph
representing every session. These “cohesive” groups capture
our idea of a discussion-based group, requiring consistent
interaction between several key participants. This cohesion
measure has been used previously to identify Twitter groups
[10]. When we restrict our analysis to only cohesive TDGs,
we find that the inverse relationship between inequality and
mobility holds — in fact, it is strengthened. The coefficient
of correlation between Topl04 and AvgRangea is —0.661.
Figure 4 graphically displays this relationship. In Section
7, as we investigate how mobility and equality affect group
health, we will pay special attention to the cohesive groups.



Figure 3: Examples of @mention graphs of three subtypes of TDGs. “Star” TDGs (a) have one (or two) participant(s)
mentioned far more than the rest. “Fragmented” graphs (b) represent discussions with many disjointed participants. “Cohesive”
TDGs (c) have a strongly connected main component of participants that persist between multiple sessions.
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Figure 4: Inequality and mobility are inversely correlated.
For clarity, we show the relationship only for cohesive groups
(r =-0.661, MSE = 0.018).
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7. GROUP HEALTH

Finally, we study the relationship between the statistics
computed in Section 5 and the health of a TDG. We use two
measures of health: the stability or decline of the number of
sessions of the group over time, and the power of retention of
participants. Since this is a complex multivariate problem,
we use machine learning and statistical pattern recognition
to quantify these associations.

7.1 Session decline

Problem setup.

First, we attempt to use the statistics to actually forecast
the decline or stability of the TDGs. More specifically, we
use statistics computed from one year of data (June 2012 to
June 2013) to predict changes in the following six months.
We measure the change in the number of sessions between
the 6 months from June 2012 to November 2012 and the
6 months from June 2013 to November 2013. We selected
these time periods (the same six months of the year) to
avoid any confounding seasonality effect (e.g., chats about
football going dormant in the springtime). We define two
populations: those TDGs that declined by at least 70% in
the number of sessions, and an equal number of the most sta-
ble TDGs (this resulted in 398 stable groups, namely those
with less than 5% change). We build a classifier that takes
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as input the statistics of interest for a TDG (e.g., mobility,
inequality) and as output a decision on whether the group
will remain stable or decline. The accuracy of this classi-
fier is a measure of the precision by which one can establish
the future change of a TDG just by looking at these com-
puted statistics, and quantifies the predictive power of the
statistics for the decline or stability of the TDG.

After benchmarking several classifiers, including random
forests and support vector machines, we settled on logistic
regression (augmented with L1 and L2 regularization) as the
main classifier. The estimation of accuracy is done using 10
fold cross-validation. We gather results using the mobility
and equality statistics, as well as some additional statistics
we computed from the model (see Section 5. We also com-
pare some statistics that are unrelated to the model — such
as the number of sessions of the group, average number
of participants, and maximal clique size in the @mention
graph. These features correspond to some previously used
to predict online group growth in related literature [17]. A
full list of statistics is shown in Table 1. It is important to
note here that our intention with these experiments is not
to build the optimal classifier for precisely forecasting group
decline, but to understand the relationships between these
statistics (particularly those with meaningful interpretations
in terms of social interactions, i.e., mobility and inequality)
and group health.

Results.

The results are presented in Table 2. We present classi-
fication results for all declining or stable TDGs (N = 796)
and also for the subset of cohesive TDGs (N = 260). Despite
the fact that forecasting is a very difficult problem, accura-
cies are still well above the 0.5 baseline.”. The accuracy
using just the mobility statistics as input to the classifier is
between 0.721 and 0.772. Most notably, the mobility statis-
tics alone capture between 96% to 98% of the maximum
accuracy (achieved using all the features), and comparable
accuracy to the non-model features that have been success-
fully used in previous work to predict group growth [17]. As
we relax the constraints on the definition of a stable TDG
from exhibiting a change of 5% to plus/minus 14%, and sim-

"The two populations of declining and stable TDGs have an equal
number of groups, namely 398.



ilarly we label a TDG as declining when it presents at least
a 50% reduction, the accuracy of the forecasting exercise is
reduced from 0.72 to 0.63, as this is a very noisy exercise.
Yet, we remark that (a) this is still significant (i.e., above
the baseline of 0.50 — again equal populations) and (b) the
relationships between the different group of statistics remain
the same.

Table 2: Accuracy of predicting groups that declined (>
70% decline in number of meetings) vs. those that stayed
stable ( < 5% change in number of meetings) in the next six
months (based on features from the previous year).

All Cohesive

Inequality 0.680 (0.052) 0.760 (0.090)
Mobility ~ 0.721 (0.047)  0.772 (0.086)
All model 0.751 (0.064) 0.779 (0.074)
Non-model 0.693 (0.061) 0.772 (0.090)
Al 0.754 (0.062) 0.785 (0.070)

Py

Figure 5: Distributions of the mobility statistic measuring
the average range of ma, grouped by declining and stable
TDGs.
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To understand the directionality of the relationship be-
tween equality or mobility and decline or stability, we build
classifiers based on a single statistic. Using the equality
statistic Topl04 (see Table 1) alone, the threshold to clas-
sify a chat as “declining” is a value greater than or equal to
0.466 (0.59 accuracy®). This indicates that greater inequal-
ity in the distribution of attention over the participants in
a TDG is associated with greater likelihood of the num-
ber of sessions declining in the future. Using the mobility
statistics AvgRangea (see Table 1) alone, the threshold to
classify a group as “declining” is a value less than or equal
to 0.350 (0.62 accuracy). This indicates that lower mobility
over the attention receiving archetype (A) between session
to session is associated with greater likelihood of the num-
ber of sessions declining in the future. Figure 5 shows the
distributions of the mobility statistic AvgRangea for declin-
ing and stable chats. We recall that the direction of these
relationships match those found in socioeconomic research,
where higher mobility and lower inequality were found to be
associated with healthier nations.

8Performance was similar for the other features when taken in-
dividually. Higher performance with combined features indicates
that they capture complementary information.

7.2 Participant retention

Problem Setup.

A second measure of a group’s health is the retention rate
of its participants, i.e., how likely participants are to return
to the group. We quantify the retention rate over 12 months
of data as follows: Given that a participant attends a session
in the first 10 months, what is the probability that he or she
returns to a second session in those 12 months? Similar to
the forecasting exercise in the previous section, we study the
relationship between the group statistics and the retention
rate using the accuracy of learned classifiers as a measure
of association. We define two populations: the 300 groups
that had the lowest retention rate and the 300 groups with
highest retention rate. The resulting “low retention” popula-
tion has retention rates below 12%, and the “high retention”
population has retention rates above 42%. As before, we
use logistic regression and 10 fold cross-validation to esti-
mate performance.

Results.

Results of the retention rate classification task are pre-
sented in Table 3. Again, we show results for all groups
(N = 600) and the subset of groups that are cohesive (N =
172). These results show that association between the group
statistics and retention rate is even stronger than with de-
cline (part of this is due to the fact that we are no longer
predicting the future — retention rate is calculated for only
the first 12 months of data). Mobility statistics alone re-
sult in accuracies between 0.830 and 0.872 — between 93
and 98 percent of the maximum accuracy. While highest
classification accuracy is obtained using a combined set of
statistics, comparable performance with the equality and
mobility statistics alone indicates the presence of a relation-
ship between these characteristics and the retention rate of
a TDG.

Table 3: Classification accuracy distinguishing groups with
high retention vs. low retention. 300 groups with lowest
retention rate (< 0.12) vs. 300 groups with highest retention
rate (> 0.42).

All Cohesive
Inequality 0.773 (0.054) 0.814 (0.081)
Mobility ~0.834 (0.040) 0.872 (0.059)
All model  0.875 (0.039) 0.895 (0.061)
Non-model  0.800 (0.044) 0.855 (0.051)
(0.037) (0.044)

All  0.887 (0.037) 0.890 (0.044

8. CONCLUSIONS

In this paper we have proposed a framework for char-
acterizing the interactions of participants in online discus-
sion groups in terms of social equality and mobility. We
have shown that in the context of TDGs, (a) mobility and
inequality are statistically correlated, with an inverse rela-
tionship that mirrors the socioeconomic literature, and (b)
higher mobility and lower inequality correlate to and pre-
dict healthier groups. In fact, equality and mobility are as
predictive of a group’s health as other characteristics of on-
line groups that have been previously used to predict the
health of online groups and communities. Such observations
may be useful to group moderators or other stakeholders,
as a more tangible metric on which to monitor the group.



These results hold even when restricting analysis to cohe-
sive groups, which fit the natural idea of discussion-based
communities with recurring members. We find these micro-
level analogs in online discussion groups non-obvious and
thought-provoking.

In any analysis such as this, some initial assumptions must
be made. We chose to use a generative model to uncover
latent spheres of attention and intuitive metrics of mobil-
ity and inequality, although there are many possible ways
of defining these concepts. Future work should investigate
how robust these results are to the modeling assumptions
and parameter choices made. It would also be interesting to
see if our findings hold for other types of online communities.
In addition, while our results uncovered interesting correla-
tions and predictive relations, further research is needed to
establish causal relationship. In such a case, it could also
be fascinating to uncover the social mechanisms in which
equality and mobility may contribute to the health of an
online community.

This work also spawns other interesting avenues for fu-
ture research. Other measures of group health may be in-
teresting, including: the quality of the exchanged content or
diversity in terms of the demographic characteristics of par-
ticipants. Also, while we shed some light on the demise of
a group, there is much to be understood about their birth.
If group formation is itself sparked on Twitter then there
may be electronic trails that help us understand the dif-
ferent ways that groups form and there is an opportunity
to characterize how the interactions between participants
determine this birth. Additionally, our work is based on
“machine-perceived” measures of equality and mobility. This
gives us the advantage of quantifying at scale the connection
to group health. Future work might explore how human-
perceived notions of equality or mobility (which can perceive
more than changes in the @mention graph) differs from these
automatic measures. Finally, the level of attention that dif-
ferent participants receive within a typical session exhibit
significant levels of inequality. Yet, over many sessions typi-
cal discussion groups display high levels of mobility (it is not
the case that the same participants receive the attention).
This raises the question of whether online communities (or
at least those we examined) are closer to meritocracies than
“real-word” communities.
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