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Abstract. We propose a new formulation of the clustering problem that
differs from previous work in several aspects. First, the goal is to explic-
itly output a collection of simple and meaningful conjunctive descriptions
of the clusters. Second, the clusters might overlap, i.e., a point can be-
long to multiple clusters. Third, the clusters might not cover all points,
i.e., not every point is clustered. Finally, we allow a point to be assigned
to a conjunctive cluster description even if it does not completely satisfy
all of the attributes, but rather only satisfies most.
A convenient way to view our clustering problem is that of finding a
collection of large bicliques in a bipartite graph. Identifying one largest
conjunctive cluster is equivalent to finding a maximum edge biclique.
Since this problem is NP-hard [28] and there is evidence that it is diffi-
cult to approximate [12], we solve a relaxed version where the objective
is to find a large subgraph that is close to being a biclique. We give a
randomized algorithm that finds a relaxed biclique with almost as many
edges as the maximum biclique. We then extend this algorithm to iden-
tify a good collection of large relaxed bicliques. A key property of these
algorithms is that their running time is independent of the number of
data points and linear in the number of attributes.

Keywords: Conceptual Clustering, Max Edge Biclique, Unsupervised Learning

1 Introduction

It has become evident that clustering is not a single problem, but rather a collec-
tion of application-specific optimization problems. Conductance-based cluster-
ing [22] is appealing when the objective is to maximize edge connectivity within
a cluster and minimize the weight of inter-cluster edges. Correlation cluster-
ing [6] is practical when each pair of data points can be given a label according
to whether they should or should not belong to the same cluster and when the
objective is to minimize the number of disagreements/maximize the number of
agreements with the given labels. As clustering becomes more clearly defined for
other applications, many new and important formulations will follow.
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In this paper we are motivated by applications where the goal is to identify
tight descriptions of large groups of points. One example is customer segmenta-
tion where one may be interested in describing common customers via a simple
conjunctive description like people who care about “Price AND Quality” when
making product purchase decisions. Such cluster descriptions can then be used
as a basis for target marketing.

We introduce a new kind of clustering that we call Conjunctive Clustering
(CC) where the objective is to identify long conjunctive cluster descriptions
that cover a dense region of the space. More formally, a conjunctive cluster is
a conjunction of attributes c together with the points Y in the data set that
satisfy the conjunction c. In general we are interested in longer, more specific
conjunctions since then the points that satisfy the conjunction have more in
common. We are also interested in having a large number of points satisfy that
conjunction. A natural way to combine these objectives is to maximize |c| · |Y |
so that we cover as many points as possible that have much in common.

A convenient way to think about a conjunctive cluster is as a biclique in a
bipartite graph. For a bipartite graph G = (U, W, E), let U be the points to
be clustered, W the attributes that describe the data, and let there be an edge
between (u, w) if the point u has attribute w. (In the more general categorical
case, there is a vertex in W for each attribute/value combination.) A biclique is a
subgraph (U∗, W ∗) with |U∗|·|W ∗| edges, in other words there is an edge between
each vertex in U∗ and each vertex in W ∗. A biclique naturally corresponds to a
conjunctive cluster since each point u in U∗ satisfies the conjunction of attributes
in W ∗. A maximum edge biclique corresponds to the best conjunctive cluster,
since |W ∗| is precisely the length of the conjunction and |U ∗| is the number of
points that satisfy the conjunction. We define the k best conjunctive clusters as
the k largest clusters that don’t overlap too much (a formal definition can be
found in Section 2).

1.1 Advantages of the Conjunctive Clustering Formulation

Our interpretation of clustering as the problem of identifying large bicliques is
appealing for many reasons:

Cluster Descriptions: For the applications we have in mind, it is not sufficient
for a clustering algorithm to output subsets of points that each belong to the
same cluster. Rather, the identification of a cluster description is crucial.

In practice, the problem of identifying cluster descriptions is overcome by
using a machine learning algorithm. Points in the same cluster are assigned the
same class label, and a machine learning algorithm is used to learn a function
that distinguishes the classes from each other. The problem with this approach
is that typically the clustering algorithm optimizes a cost function unrelated
to the type of cluster description sought. Thus a common byproduct of the
machine learning step is a collection of descriptions that are not necessarily
conjunctive, and usually hard to understand. If on the other hand the learning
algorithm is forced to output conjunctions as hypotheses, then they may serve
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as poor descriptions of clusters (since the clusters found may be inherently more
complex). Thus by performing clustering and learning separately, one may be
sacrificing the descriptive quality of the final clusters – either because they are
too complicated to understand, or they are too simple to describe the clusters.

Clusters Overlap / Some Points Not Clustered: The objective of many
existing clustering algorithms is to identify a strict partition of the points [21,
8, 11, 18, 22]. In practice such a condition is far too stringent: Each point need
not be clustered and further some points can be assigned to multiple clusters.
By viewing a clustering as a collection of bicliques, we allow clusters to overlap,
both in that each point can belong to multiple clusters and that an attribute
can be used to describe multiple clusters.

We also allow our algorithm to ignore some points if they don’t fall into one of
the k desired clusters. In contrast to outlier detection methods, which typically
are viewed as a preprocessing step employed prior to clustering, we directly allow
the clustering algorithm to ignore some points. Furthermore, while clustering
algorithms like EM [10] allow points to be assigned to multiple clusters, such
approaches do not typically produce cluster descriptions.

Move away from Metric Space: Much of the existing research on clus-
tering assumes that the data to be clustered falls in some metric space, e.g.,
k–Median [21, 8, 5, 27] and k–Center [20, 11, 18]. Such a measure is useful in sit-
uations where the goal is to ensure that pairs of points in the same cluster are
“close” according to the metric space. In the CC formulation, if the points to
be clustered are in {0, 1}d, for example, then it is possible that two points in
the same cluster are “far” according to the metric space, but placed in the same
cluster since they share some common subset of variables. In other words, some
dimensions are completely ignored when placing points in the same conjunctive
cluster.

Furthermore, there may be applications where data does not inherently fall
in a metric space, e.g., text and images. In such situations, it may be difficult
to both quantify the distance between two objects as well as ensure that the
distance measure satisfies the triangle inequality. The CC view of the clustering
problem moves away from quantifying the distance between points. Instead it
attempts to find large subsets of points that have many attributes in common.

1.2 Our Results

Maximum Conjunctive Cluster/Maximum Edge Biclique. We start by
considering the problem of finding a maximum conjunctive cluster, that is a clus-
ter/biclique (U∗, W ∗) with the most edges. Since this problem is NP hard [28]
and there is evidence that it is difficult to approximate [12], we consider a re-
laxation of the maximum edge biclique problem where the algorithm is allowed
to output a pair (Û , Ŵ ), where Û ⊆ U and Ŵ ⊆ W , that is ε-close to being a
conjunctive cluster/biclique. That is, every point in Û has at least (1− ε) of the
attributes in Ŵ . More precisely, the algorithm only outputs Ŵ (which corre-
sponds to the cluster description), and Û is implicitly determined by Ŵ (that is,
it contains all vertices in U that neighbor at least (1− ε) of the vertices in Ŵ ).
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We refer to such an approximate biclique (cluster) as an ε-biclique (ε-cluster).
We give an algorithm that outputs a subset Ŵ such that (Û , Ŵ ) has almost as
many edges as the optimum biclique (U∗, W ∗).

Our algorithm runs efficiently provided that ε is constant and the fraction of
points in both U∗ and W ∗ is sufficiently large. In other words, that the length
of the conjunction and the number of points that satisfy the conjunction is
large. Indeed, if |U∗| ≥ ρU · |U | and |W ∗| ≥ ρW · |W |, for certain size parameters
0 < ρU, ρW ≤ 1, then our algorithm draws a sample of size polynomial in all input
parameters, and runs in time linear in |W |, independent of |U |, quasi-polynomial
in 1/ρU and 1/ρW, and exponential in log(1/ε)/ε2.

While it would be more desirable to have an algorithm with running time
polynomial in all problem parameters, we cannot expect to have polynomial
dependence in 1/ε since in such a case we could use the algorithm to solve
the original NP-hard problem in polynomial time by setting ε < 1

|U ||W | . We

leave open the question of whether it is possible to obtain an algorithm with
polynomial dependence on 1/ρU, 1/ρW. This paper addresses the situation when
both 1/ρU and 1/ρW are small (for example, constant); such a situation has
practical motivation. For instance, target marketing schemes are often designed
to affect large portions (e.g., 20-30%) of the customer population.

Collection of Large Conjunctive Clusters. We next discuss the more gen-
eral problem of identifying a collection of large conjunctive clusters. We define
the k best conjunctive clusters as the largest conjunctive clusters that don’t over-
lap too much. Given size parameters 0 < ρU, ρW ≤ 1, and given k the number
of clusters, we give an algorithm that outputs k subsets Ŵ ⊆ W for which the
following holds: |Ŵ | ≥ ρW · |W |; |Û | ≥ ρU · |U | (where Û is as defined above given
Ŵ ); the different ε-bicliques (Û , Ŵ ) don’t overlap too much in terms of edges.
Further, for every true conjunctive cluster (U ′, W ′) such that |U ′| ≥ ρU · |U | and
|W ′| ≥ ρW · |W |, either there is an ε-cluster in our collection that approximately
covers (U ′, W ′) or (U ′, W ′) is smaller (not much bigger) than every ε-cluster in
the collection. The running time of our algorithm is quasi-polynomial in k, 1/ρU

and 1/ρW, exponential in log(1/ε)/ε2, linear in |W |, and independent of |U |.
Finding Approximations to ε-bicliques. The above algorithms can also be
adapted to finding approximations to large ε-bicliques. This may be useful when
there is no large “perfect” conjunctive cluster, but there are large ε-clusters. The
modified algorithm will output an O(ε1/3)-biclique that is almost as large as the
largest ε-biclique and can be further extended to output a collection of such large
approximate bicliques.

1.3 Related Work

As mentioned previously, the maximum-edge biclique problem is NP-hard [28].
Recently, Feige [12] has shown that under the assumption that refuting 3SAT is
hard on average, the maximum-edge biclique problem is hard to approximate to
within a certain constant. Furthermore, for certain constants α < β, it is hard
to distinguish between the case in which the maximum biclique has size at least
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β · |U | · |W | (where G = (U, W, E) is the given bipartite graph) and the case in
which the maximum biclique has size less than α · |U | · |W |.

Related to the problem of finding almost bicliques is finding dense subgraphs
(i.e., with maximum average degree). Finding a densest subgraph of a partic-
ular size is NP-hard (since CLIQUE is NP-hard). The algorithm in [30] gives
an approximation factor of O(n1/3) and the algorithm of [4] gives a PTAS for
dense graphs. Finding the densest subgraph (without size constraints) can be
performed in polynomial time (cf. [16, 7]).

Our algorithms are related to Property Testing algorithms on dense graphs [17]
(and in particular are inspired by the CLIQUE-testing algorithm in [17]). Such
algorithms are designed to decide whether a given (dense) graph has a certain
property or whether many edge modifications should be performed so that it
obtains the property. Many testing algorithms can be modified so as to obtain
approximate solutions to the corresponding search problems, similarly to the ap-
proximate solutions studied in this paper. However, none of the known property
testing algorithms (and their extensions to approximation algorithms) directly
applies to our problem. In particular, the most general family of graph proper-
ties studied in [17] does not capture our definition of clustering which allows for
overlapping subsets of vertices. Other related work on approximation algorithms
and testing algorithm on dense graphs includes [4, 14, 3].

The general notion of finding cluster descriptions is known as conceptual
clustering [24]. Pitt and Reinke [29] show that the Hierarchical Agglomerative
Clustering (HAC) algorithm finds an optimum clustering under particular con-
ditions on intra and inter cluster distance. A separate conjunctive clustering
problem, considered in [25], was that of finding k ≥ 2 disjoint conjunctive de-

scriptions c1 . . . , ck such that
∑k

i=1 |ci||Yi| is maximized, and no point satisfies
both ci and cj . These two results are not applicable to our problem since in
particular we do not require that each point be assigned to a cluster, that the
clusters be disjoint, or that a point exactly satisfy a conjunction in order to be as-
signed to it. Another paper on identifying descriptions of clusters, by Agrawal et
al [1], gives algorithms for identifying DNF descriptions for each cluster. In this
work the objective function is different in that a cluster is a union of connected,
high density regions, where a region has high density if it has more density than
the area around it.

Research on discovering web communities [23, 15, 13] is also related to CC. A
web community is a set of web pages that are all relevant to each other. One way
to view the community discovery problem is as a bipartite graph G = (U, W, E)
where U = W are the pages on the web and E consists of edges (u, w) if there
is a hyperlink from u to w or if u = w. A biclique (U ′, W ′) forms a community
since each page in U ′ is linked to each page in W ′. Our results can be used
to identify a good cover of the large communities on the web. In contrast, our
algorithms are not designed to find small communities, also known as “cores” as
studied by [23], where the goal is to for example find all K3,2’s.

The frequent itemset problem [2, 19] is also closely related to CC. Given a
collection of points P in {0, 1}d, the frequent itemset problem is that of identi-
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fying all subsets of variables that have high support, i.e., all subsets of variables
that satisfy a sufficiently large fraction of P . A large conjunctive cluster is in
some sense a maximally frequent itemset. The key difference between the two is
that whereas in the frequent set formulation the identification of a border sep-
arating the frequent from the infrequent sets is critical, our objective is to find
a collection of k conjunctions that don’t overlap too much and that “dominate”
all the big conjunctions.

2 Preliminaries and Problem Definitions

As noted in the introduction, it will be convenient to define our problems using
a graph-theoretic formulation. Given a bipartite graph G = (U, W, E) and two
subsets U ′ ⊆ U and W ′ ⊆ W , we denote by E(U ′, W ′) the subset of all edges

between vertices in U ′ and vertices in W ′. That is, E(U ′, W ′)
def
= {(u, w) ∈ E :

u ∈ U ′, w ∈W ′}. We refer to such a pair (U ′, W ′) as a bisubgraph. For a vertex
v we denote the neighbor set of v by Γ (v). For a subset S of vertices, we let

Γ (S)
def
= ∩v∈SΓ (v) denote the set of vertices that neighbor every vertex in S. For

a subset S and a parameter ε < 1, we let Γε(S)
def
= {w : |Γ (w)∩S| ≥ (1− ε)|S|}

denote the set of vertices that neighbor all but an ε-fraction of S.

Definition 1. Given a bipartite graph G = (U, W, E), a bisubgraph (U ′, W ′) is
a biclique if E(U ′, W ′) = U ′ ×W ′. That is, W ′ ⊆ Γ (U ′). The (edge-)size of
a biclique (U ′, W ′) is |E(U ′, W ′)| = |U ′| · |W ′|, and a maximum biclique is a
biclique (U ′, W ′) for which |U ′| · |W ′| is maximized over all bicliques.

Note that if we have one side of the biclique W ∗ then we can obtain the other
side of the biclique U∗ since U∗ = Γ (W ∗) (and vice versa). This implies that
outputting the conjunctive description W ∗ suffices for identifying the cluster.

As noted previously, the maximum biclique problem is NP-hard. Here we
suggest a relaxation of the maximum biclique problem which allows the output
to be close to a biclique.

Definition 2. We say that (U ′, W ′) is ε-close to being a biclique, for 0 ≤ ε ≤ 1,
if every vertex in U ′ neighbors at least (1− ε) of the vertices in W ′. For the sake
of succinctness, we say that (U ′, W ′) is an ε-biclique. The size of an ε-biclique
is |E(U ′, W ′)| (which is ≥ |U ′| · |W ′| · (1− ε)).

In the context of conjunctive clusters, an ε-biclique corresponds to a pair
(Y, c) such that every point in Y satisfies most (at least (1−ε)) of the attributes in
c. Note that the asymmetry between U ′ and W ′ in the definition of an ε-biclique
corresponds to our needs in the context of clustering where the two sides of the ε-
biclique in fact have a different role. Similarly to the biclique case, if we discover
W ′ then U ′ is completely determined, i.e., (U ′, W ′) = (Γε(W

′), W ′). This is
especially useful in the context of clustering since W ′ = c is the description of
the cluster, and so we do not need to output explicitly all points Y in the cluster.

Our first problem formulation follows.
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Problem 1. Given a bipartite graph G = (U, W, E), find a subset W ′ ⊆W such
that the ε-biclique (Γε(W

′), W ′) is at least (1−bε) times as large as the maximum
biclique for a small constant b.

For our sublinear result, b = 2. If we are allowed time linear in |U |, then we can
show that b = 0.

Collections of Large Bicliques. The above relaxation addresses the issue of
finding a single approximate maximum biclique. We now turn to defining a good
collection of at most k bicliques where k is a given parameter.

As in the case of a single biclique, we would like the bicliques in the collection
to be large. On the other hand, the number of bicliques in the collection should
be bounded. Therefore, if there are several large bicliques that are very similar,
we may prefer including only one of them in the collection as a “representative”,
so as to allow ourselves to include other bicliques that are possibly smaller but
less similar. We next introduce the notion of coverage.

Definition 3. Let G = (U, W, E) be a bipartite graph and let U ′, U ′′ ⊆ U and
W ′, W ′′ ⊆W . We say that (U ′, W ′) is a δ-cover of (U ′′, W ′′) if

|E(U ′′, W ′′) \E(U ′, W ′)|
|E(U ′′, W ′′) ∪ E(U ′, W ′)| ≤ δ .

We next define domination which essentially states that a subgraph (U ′, W ′)
is dominated by a collection of subgraphs C if there is a subgraph in C that
covers (U ′, W ′) or if every pair in C is either larger or only slightly smaller than
(U ′, W ′).

Definition 4. Let G = (U, W, E) be a bipartite graph and let C = {(Ui, Wi)}ki=1

be a collection of pairs of vertex subsets where Ui ⊆ U , and Wi ⊆ W . We say
that C (δ,ε)-dominates a pair (U ′, W ′) if either there exists a pair (Ui, Wi) ∈ C
that δ-covers (U ′, W ′), or |E(U ′, W ′)| ≤ (1 + ε) ·minj{|E(U ′

j , W
′
j)|}.

We will also sometimes say that a collection C1 of subgraphs dominates another
collection of subgraphs C2 if C1 dominates each subgraph (U2, W2) ∈ C2.

The following definition ensures that the collection of subgraphs output by
the algorithm don’t overlap with each other too much.

Definition 5. Let G = (U, W, E) be a bipartite graph and let C = {(Ui, Wi)}ki=1

be a collection of pairs of vertex subsets where Ui ⊆ U , and Wi ⊆ W . We say
that C is δ-diverse if for every two different pairs (Ui, Wi) and (Uj , Wj) in C,
neither is a δ-cover of the other.

Since this paper is focused on identifying large conjunctive clusters, we in-
troduce two lower-bound parameters, ρU and ρW, which the algorithm is pro-
vided with, and consider only bicliques (U ′, W ′) such that |U ′| ≥ ρU · |U | and
|W ′| ≥ ρW · |W |. These parameters prevent the algorithm from outputting clus-
ters with few points (ρU) or with little in common (ρW). Let B(ρU, ρW) denote
the set of all bicliques (U ′, W ′) in G such that |U ′| ≥ ρU · |U | and |W ′| ≥ ρW · |W |.
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Given the above definitions, a natural problem is to find a collection of at
most k bicliques in B(ρU, ρW), that is both δ-diverse and (δ, ε)-dominates every
(U ′, W ′) ∈ B(ρU, ρW). Here we define a relaxation:

Problem 2. Let G = (U, W, E) be a given bipartite graph, 0 < ρU, ρW ≤ 1 two
size parameters, k an integer, 0 ≤ δ ≤ 1 a diversity/covering parameter, and 0 ≤
ε ≤ 1 an approximation parameter. Find a collection C̃ of at most k ε-bicliques in
Bε(ρU, ρW) such that C̃ is δ-diverse and for every (U ′, W ′) ∈ B(ρU, ρW), (U ′, W ′)
is (b · (δ + ε), b′ · ε)-dominated by C̃ for some small constants b and b′.

For our sublinear result, b = 4 and b′ = 2. If we are given time linear in |U | then
we can show that b = 3 and b′ = 0.

Note that Problem 2 allows clusters to overlap in the sense that a given point
may belong to multiple clusters. Note also that the problem definition doesn’t
require that all points be clustered. These two facts are an interesting contrast to
clustering problem formulations that require a strict partition of the points [21,
8, 11, 18, 22, 6].

3 A Good Seed

In this section we discuss a central building block of our algorithms. Consider a
fixed biclique (U∗, W ∗) and assume it is maximal. As noted in the preliminaries
section, if we knew U∗ we could obtain W ∗ exactly by simply considering Γ (U∗).
We can then get U∗ back by considering Γ (Γ (U∗)). Clearly we do not have U∗,
or else we would be done. Suppose instead, as a mental experiment, that we
were able to obtain a (small) random sample S from U ∗. Then for every sample
S ⊂ U , W ∗ is contained in Γ (S). However, Γ (S) may contain many additional
vertices outside of W ∗. As a consequence, if we now take Γ (Γ (S)) we may get
a very small subset (or even an empty set). However, as we show below, if we
instead take Γε(Γ (S)), then with high probability over the choice of a sufficiently
large sample S, the ε-biclique (Γε(Γ (S)), Γ (S)) is at least as large as the biclique
(U∗, W ∗).

We think of the sample S as being a “good seed” for the biclique (U ∗, W ∗).
In the next section we shall get rid of the imaginary assumption that we can
directly sample from U∗ in order to obtain the good seed. Let ρW be a lower
bound on |W ∗|/|W |, and let m̂ = 16

ε2 log 40
ρWε .

Good Seed Algorithm
1. S ← sample from U∗ of size m̂
2. Ŵ ← Γ (S)
3. Output Ŵ

Lemma 1. Let Ŵ be as constructed in the Good Seed Algorithm on a sample S
of size m̂ drawn uniformly from U∗. With probability at least 9

10 over the choice

of S ⊂ U∗, |E(Γε(Ŵ ), Ŵ )| ≥ |U∗| · |W ∗|.
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In order to prove the lemma, it will be helpful to partition the vertices in Ŵ ,
i.e., the intersection of the neighbors of S, into those that are in the optimum
biclique, W ∗, those that neighbor a significant fraction of U ∗ (H , for high degree)
and those that don’t (L, for low degree). Note again that since S is a subset of
U∗, Ŵ must contain all of W ∗. We’ll show that with high probability there
are very few L vertices. Thus, since most of the vertices in Ŵ are either in the
optimum biclique or have high degree with U ∗, we’ll argue that the bisubgraph
(Γε(Ŵ ), Ŵ )) has at least as many edges as the optimum. We now precisely define
the terms High and Low.

Definition 6. We say that a vertex w ∈ W has high degree with respect
to U∗ if

|Γ (w) ∩ U∗|
|U∗| ≥ 1− (ε/4)2 .

Otherwise it has low degree with respect to U ∗.

Note that in particular, every w ∈ W ∗ has high degree with respect to U∗ (since

for every w ∈ W ∗, |Γ (w)∩U∗|
|U∗| = 1). We will be interested in samples of U∗ that

are “good seeds”: we would like a sample S so that Γ (S) contains W ∗ plus
mostly vertices that have high degree with respect to U ∗.

Definition 7. We say that a subset S ⊆ U ∗ is a good seed of U∗ if the
number of vertices in Γ (S) ⊆ W that have low degree with respect to U ∗ is at
most (ε/4)|W ∗|.

We now claim that our sample S is sufficiently large to ensure that Γ (S) has
few low degree vertices with respect to U ∗, i.e., that S is a good seed of U∗. The
lemma (proof in [26]) can be proved via probabilistic techniques.

Lemma 2. With probability at least 9
10 the sample S drawn in step 1 of the

Good Seed Algorithm is a good seed of U ∗.

We next show that if S is a good seed of U ∗ then the ε-biclique (Γε(Ŵ ), Ŵ ) =
(Γε(Γ (S)), Γ (S)) has as many edges as (U∗, W ∗).

Lemma 3. Let Ŵ be as constructed in the Good Seed Algorithm on a sample
S of size m̂ drawn from U∗. If S is a good seed of U∗ then (Γε(Ŵ ), Ŵ ) is an
ε/4-cover of (U∗, W ∗) and |E(Γε(Ŵ ), Ŵ )| ≥ |U∗| · |W ∗|.
Proof. The subset Ŵ consists of three parts: (1) the vertices of W ∗; (2) a subset
of vertices, denoted H , that have high degree with respect to U ∗; (3) a subset
of vertices, denoted L, having low degree with respect to U ∗. We will show that
most of U∗ neighbors Ŵ by considering two cases based on whether |H | is small

or large. In what follows, let Û
def
= Γε(Ŵ ).

|H| ≤ ε

2
|W ∗|: If W ∗ accounts for at least (1 − ε) of Ŵ then by Step 3 of the

algorithm, U∗ will be part of Û . Indeed this is true:

|W ∗|
|Ŵ |

=
|W ∗|

|H |+ |L|+ |W ∗| >
|W ∗|

ε
2 |W ∗|+ ε

4 |W ∗|+ |W ∗| =
1

1 + ε
2 + ε

4

≥ (1−ε) (1)
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(recall that |L| < ε
4 |W ∗| since S is a good seed). Since U∗ ⊆ Û and W ∗ ⊆ Ŵ

we have that (Û , Ŵ ) completely covers (U∗, W ∗) and so |E(Û , Ŵ )| ≥ |U∗||W ∗|
as desired.

|H| >
ε

2
|W ∗|: We first show that all but at most an ε/4-fraction of the vertices

in U∗ have at least (1− ε/4)|H | neighbors in H . Let the subset of vertices in U ∗

having at least (1− ε/4)|H | neighbors in H be denoted Q∗. Thus we would like
to show that |Q∗| ≥ (1− ε/4)|U∗|.

Let α be such that |Q∗| = (1 − α)|U∗|. Assume contrary to the claim, that
α > ε/4. Then the total number of edges between U ∗ and H would be less than:

|Q∗| · |H |+ |U∗ \Q∗| · (1− ε/4)|H |
= (1− α)|U∗| · |H | + α|U∗| · (1− ε/4)|H |
= (1− α + α− α · (ε/4))|U∗| · |H | < (1− (ε/4)2)|U∗| · |H | . (2)

But by definition of H , |E(U∗, H)| ≥ |H | · (1− (ε/4)2)|U∗|, and we have reached
a contradiction.

Since |L| ≤ (ε/4)|W ∗|, every vertex in Q∗ has at least (1 − ε)|Ŵ | neighbors
in Ŵ , and hence Q∗ ⊆ Û . Since we have shown that |Q∗| ≥ (1− ε/4)|U∗| (where
Q∗ ⊆ U∗), we have that E(Û , Ŵ ) contains all edges in E(U∗, W ∗) but at most
(ε/4) · |U∗| · |W ∗| And so (Û , Ŵ ) certainly (ε/4)-covers (U∗, W ∗). Finally, by
definition of Q∗ and what we have shown concerning its size,

|E(Q∗, Ŵ )| ≥ |Q∗| · (|W ∗|+ (1− ε/4)|H |)
≥ (1− ε/4)|U∗| · (|W ∗|+ |H |(1− ε/4))

> |U∗| · |W ∗| · (1− ε/4) · (1 + ε/2(1− ε/4)) > |U ∗| · |W ∗| (3)

Since |E(Û , Ŵ )| ≥ |E(Q∗, Ŵ )|, we are done. ut

The proof of Lemma 1 directly follows from Lemmas 2 and 3.

4 Conjunctive Clustering Algorithm

We now turn to the problem of identifying conjunctive clusters. We begin by
considering the problem of finding one large approximate conjunctive cluster.
Then we consider finding a good collection of them.

4.1 Approximate Maximum Biclique

Given ρU and ρW (for which B(ρU, ρW) is non-empty) we shall show how to find
an ε-biclique in which the number of edges is almost as large as in a maximum
biclique in B(ρU, ρW).4 Solving this problem is interesting in its own right and
the solution is also later used to identify k conjunctive clusters.

4 If the algorithm is not provided with lower bounds ρU and ρW then it can search for
them using a standard doubling process.
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Since we cannot actually sample from the left-hand-side U ∗, we instead use
what is sometimes referred to as exhaustive sampling (see e.g. [9, 4, 17, 14]).
Namely, we sample from U , and consider all subsets of the sample whose size is
lower bounded by a certain threshold. It can then be verified that if the sample
is sufficiently large, then with high probability one of these subsets is a good
seed. However, now we have to address a new problem: How do we decide which
subset is the good seed? We could of course check the resulting ε-biclique for
each subset, but this would take time linear in U , and we are interested in an
algorithm having time independent of |U |. As one may guess at this point, we
solve this by sampling again from U .

Let m̂ be as defined in the Good Seed Algorithm. Also, let m = m(ε, ρU, ρW) =
2

ρU

· m̂, and let t = t(ε, ρU) = 96
ρU·ε2 ·m.

Algorithm Approximate Maximum Biclique

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw another sample T of t vertices uniformly and independently from U .
3. For each subset S of X that has size m̂ do:

(a) Ŵ (S)← Γ (S)
(b) T̂ (S)← vertices in T that neighbor most of Ŵ , i.e., T ∩ Γε(Ŵ (S)).

4. Among all subsets S considered by the algorithm for which T̂ (S) ≥ (3ρU/4)t,
let Z be the one for which |T̂ (Z)| · |Ŵ (Z)| is maximized. Output Ŵ (Z).

Let (U∗, W ∗) be a maximum biclique. For any subset S, let Ŵ (S) = Γ (S) and
let Û(S) = Γε(Ŵ (S)). Let Ĝ(S) = (Û(S), Ŵ (S)) be the bisubgraph determined
by S. We define the true relative size of Ĝ(S) to be (|Û (S)| · |Ŵ (S)|)/(|U | · |W |)
and the estimated relative size of Ĝ(S) to be (|T̂ (S)|·|Ŵ (S)|)(t·|W |). (Recall that
|T | = t.) We also define a good subset Sg to be one for which |Û(Sg)|/|U | ≥ ρU/2

and a bad subset Sb to be one for which |Û(Sb)|/|U | < ρU/2.
The algorithm works via the following reasoning. We show that one of the

subsets S considered in step 3 of the algorithm is a good seed of U ∗ with high
probability. We denote this subset by S∗. By Lemma 3, we will then know that
the bisubgraph (Γε(Ŵ (S∗)), Ŵ (S∗)) has at least as many edges as the optimum.
We then show that, with high probability, the algorithm won’t consider any bad
subset Sb (since for bad subsets, T̂ (Sb) will be too small). On the other hand,
the estimated relative size of Ĝ(Sg) for any good subset Sg is close to its true

relative size. Thus in particular, the estimated relative size of Ĝ(S∗) for the seed
S∗ (which is a good subset), is close to its true relative size. It will then follow
that for Ŵ (Z) output by the algorithm, the bisubgraph (Û(Z), Ŵ (Z)) must have
about as many (not much fewer) edges as the optimum true maximum biclique
(U∗, W ∗).

Theorem 1. With probability at least 2/3, Algorithm Approximate Maximum
Biclique outputs a subset Ŵ = Ŵ (Z) so that |E(Γε(Ŵ ), Ŵ ))| ≥ (1 − 2ε) ·
|U∗| · |W ∗|. The running time of the algorithm is exponential in log(1/ε)

ε2 , quasi-
polynomial in 1

ρU

and 1
ρW

, linear in |W | and independent of |U |.
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Proof. It can be shown via multiplicative Chernoff bounds, that the following
holds with probability at least 9/10: (1) One of the subsets considered in step
3 of Algorithm Approximate Maximum Biclique is a good seed. (2) In step 4 of
Algorithm Approximate Maximum Biclique, no bad subset X of size m̂ will be
considered. (3) In step 4 of Algorithm Approximate Maximum Biclique, for any
good subset Sg of X of size m̂,

(1− ε/4)
|Û(Sg)|
|U | ≤ |T̂ (Sg)|

t
≤ (1 + ε/4)

|Û(Sg)|
|U |

For the rest of the proof, assume that these events in fact happen.
Now we show that the specific subset S∗ will not (with high probability)

be excluded by Step 4 of the algorithm. First observe that the subset S∗ is
good since |Û(S∗)| ≥ (1 − ε/4)|U∗| > (ρU/2)|U |. Further, it can be shown that
T̂ (S∗)/t ≥ 3ρU/4 since ε < 1/2:

|T̂ (S∗)|/t ≥ (1− ε/4)|Û(S∗)|/|U | ≥ (1− ε/4)(1− ε/4)ρU ≥ (1− ε/2)ρU ≥ 3ρU/4

and thus S∗ will be considered by the algorithm. By the proof of Lemma 3, we
have that

|T̂ (S∗)| · |Ŵ (S∗)|
t · |W | ≥ (1− ε/4) · |Û(S∗)| · |Ŵ (S∗)|

|U | · |W | . (4)

Next we show that the number of edges in the bisubgraph output by the
algorithm (Û(Z), Ŵ (Z)) is not much smaller than the number of edges in the
maximum biclique (U∗, W ∗).

|E(Û(Z), Ŵ (Z))| ≥ (1− ε)|Û(Z)| · |Ŵ (Z)| (5)

≥ 1− ε

1 + ε/4
· |U |

t
· |T̂ (Z)| · |Ŵ (Z)| (6)

≥ 1− ε

1 + ε/4
· |U |

t
· |T̂ (S∗)| · |Ŵ (S∗)| (7)

≥ (1− ε)(1− ε/4)

1 + ε/4
· |Û(S∗)| · |Ŵ (S∗)| (8)

≥ (1− 2ε)|U∗| · |W ∗| (9)

The bound on the running time follows from the fact that we enumerate over
all subsets of size m̂ of the m vertices drawn in Step 1. The total number of such
subsets is

(

m
m̂

)

. For each subset S we compute Γ (S) and T ∩ Γε(Γ (S)). Thus for
each subset S, the algorithm spends time O(t · |W |). Hence the total running

time is O(mm̂|W |t|) = O(( 1
ρUε2 log 1

ρWε)
O( 1

ε2
log 1

ρWε
)|W |( 1

(ρUε2)2 log 1
ρWε)). ut

4.2 Conjunctive Clustering

Recall that given ρU, ρW, k, ε and δ, our goal is to output a collection C̃ of k
ε-bicliques that is δ-diverse and that (b(δ + ε), b′ε)-dominates every biclique in
B(ρU, ρW) for small constants b and b′.
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We reset m̂, m and t as follows: m̂ = m̂(k, ε, ρU, ρW) = Θ
(

1
ε2 log k

ρW·ε

)

, m =

m(k, ε, ρU, ρW) = 2 log k
ρU
· m̂, and t = t(k, ε, ρU, ρW) = Θ

(

log(1/ε)
ρU·ρW·ε3

)

·m.

Conjunctive Clustering Algorithm

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw another sample T of t vertices uniformly and independently from U .

Let Ŵ ← ∅.
3. For each subset S of X that has size m̂ do

(a) Ŵ (S)← Γ (S).
(b) T̂ (S)← T ∩ Γε(Ŵ (S)).
(c) If |Ŵ (S)| ≥ ρW · |W | and |T̂ (S)| ≥ (ρU/2) · t then add Ŵ (S) to Ŵ .

4. Order the subsets Ŵ (S) in Ŵ according to the magnitude of |T̂ (S)| · |Ŵ (S)|.
Perform the following at most k times: Add to W̃ the next subset Ŵ (S)
(according to the above order) such that (T̂ (S), Ŵ (S)) is not yet (δ + 2ε)-
covered by any (T̂ (S′), Ŵ (S′)) where Ŵ (S′) ∈ Ŵ .

The next theorem establishes that our algorithm works as desired. Due to
space constraints its proof appears in the full version of this paper [26].

Theorem 2. With probability at least 4/5 Algorithm Conjunctive Cluster-
ing outputs a collection W̃ of at most k ε-bicliques such that C̃ =
{(

Γε(Ŵ ), Ŵ
)

: Ŵ ∈ W̃
}

is δ-diverse, and C̃ ((2δ +4ε), 2ε)-dominates every bi-

clique in B(ρU, ρW). The running time of the algorithm is exponential in log 1/ε
ε2 ,

quasi-polynomial in k, 1/ρU, and 1/ρW linear in |W | and independent of |U |.
An algorithm that runs in time independent of both |U | and |W | can be found
in the full version of this paper [26].

5 Finding Approximate ε-Bicliques

In Section 4.1 we showed that if the graph contains a large biclique (U ∗, W ∗),
then we can find a subset Ŵ such that |E(Γε(Ŵ ), Ŵ )| ≥ (1 − 2ε)|U∗| · |W ∗|.
Let us define a strong ε-biclique to be a pair (U ′, W ′) such that every vertex
in U ′ neighbors at least (1 − ε) of the vertices in W ′ and every vertex in W ′

neighbors at least 1− ε of the vertices in U ′. Thus this is a strengthening of the
definition of an ε-biclique. Suppose we know that there exists a strong ε-biclique
(Ũ , W̃ ) such that |Ũ | ≥ ρU · |U | and |W̃ | ≥ ρW · |U | (but there isn’t necessarily
such a large biclique). We next show how the Approximate Maximum Biclique
algorithm can be modified so as to obtain an O(ε1/2)-biclique (Û , Ŵ ) such that
|E(Û , Ŵ )| ≥ (1 − O(ε1/2))|E(Ũ , W̃ )|. By small modifications it is possible to
deal with the case in which (Ũ , W̃ ) is an ε-biclique (i.e., not a strong one). The
extension of finding a collection of large O(ε1/2)-bicliques is done analogously to
what is described in Section 4.2.

Let m̂ and m be as in the Approximate Maximum Biclique algorithm, where
we assume that ρU · |U | and ρW · |W | are lower bounds on the sizes of Ũ and W̃ ,
respectively. We also assume that ε is sufficiently small (ε < 1/12), or else we
can replace each occurrence of ε with min{ε, 1/12}.
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Algorithm Approximate Maximum ε-Biclique

1. Draw a sample X of m vertices uniformly and independently from U .
2. Draw another sample T of t vertices uniformly and independently from U .
3. For each subset S of X that has size m̂ do:

(a) Ŵ (S)← Γ2ε(S)
(b) T̂ (S)← T ∩ Γ2

√
ε(Ŵ (S)).

4. Among all subsets S considered by the algorithm for which T̂ (S) ≥ (3ρU/4)t,
let Z be such that |T̂ (Z)| · |Ŵ (Z)| is maximized. Output Ŵ (Z).

The proof of the following theorem can be found in the full version [26].

Theorem 3. With probability at least 2/3, Algorithm Approximate Maximum
ε-biclique outputs a subset Ŵ = Ŵ (S) such that |E(Γ2

√
ε(Ŵ ), Ŵ )| ≥ (1− 3

√
ε) ·

ρ̃|U ||W |, where ρ̃|U ||W | is the size of a maximum strong ε-biclique.

6 Future Work

Some interesting problems left open by our research include: (1) Algorithms with
polynomial dependence on 1

ρU

and 1
ρW

; (2) Variations where the vertices or edges

are weighted; (3) Alternate definitions of k best conjunctive clusters; and (4)
Extensions to descriptions that are not conjunctive in nature, e.g., disjunctions.
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