
Generating all Maximal Independent Sets
of Bounded-degree Hypergraphs

Nina Mishra
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801
nmishra@uiuc.edu

Abstract

We show that any monotone function with a
read-k CNF representation can be learned in
terms of its DNF representation with member-
ship queries alone in time polynomial in the
DNF size and n (the number of variables) as-
suming k is some fixed constant. The problem
is motivated by the well-studied open problem
of enumerating all maximal independent sets
of a given hypergraph. Our algorithm gives a
solution for the bounded degree case and works
even if the hypergraph is not input, but rather
only queries are available as to which sets are
independent.

1 INTRODUCTION

A hypergraph H is a collection of subsets (edges) E of a
finite set of vertices V. An independent set of a hyper-
graph is a subset of vertices, V’ c V such that no edge in
E is contained in V’. An independent set I is maximal
if no superset I’ of I is also an independent set. Given a
hypergraph H, the hypergraph independent set problem
is that of enumerating all maximal independent sets of
H. Note that while finding the maximum cardinality
independent set is NP-hard [GJ79], finding a maximal
independent set I is easy: iteratively add vertices to I
while maintaining the property that I is an independent
set. We consider here the problem of enumerating all
maximal independent sets. It can be shown (see Sec-
tion 2) that the hypergraph independent set problem
is equivalent to the following: Given a monotone CNF
formula f find a (reduced) monotone DNF formula g
such that g is equivalent to f.

A more demanding problem is the setting in which
the CNF description (equivalently, the hypergraph) is
not explicitly given, but rather is hidden inside a “black
box” to which only membership queries may be nosed.

Leonard Pitt

Computer Science Department
University of Illinois at Urbana-Champaign

Urbana, IL 61801
pittQcs.uiuc.edu

A membership query for a Boolean function f is a vector
z E (0, l)“, and is answered “yes” if f(z) = 1, and
“no” otherwise. A membership query for a hypergraph
H = (V, E) is a subset S C_ V, and is answered “yes” if
S is an independent set, and “no” otherwise.

Membership queries have been widely studied in the
context of learning. In Angluin’s seminal paper (Ang88],
information theoretic barriers are given showing that
there is no algorithm for learning monotone DNF (or
CNF) formulas from membership queries alone, in time
polynomial in the size of the target DNF (or CNF) for-
mula. However, these lower bounds do not apply here,
as the learning problem derived from the hypergraph
independent set problem is that of finding a monotone
DNF formula for a monotone function (available in CNF
form, or via membership queries only) in time polyno-
mial in the sum of the CNF and DNF sizes. Put another
way, the problem to be solved is that of exhibiting a
polynomial total time algorithm for finding a monotone
DNF formula. (A polynomial total time algorithm is one
that runs in time polynomial in the sum of the lengths of
the input and output. There are other notions of poly-
nomial time. See (JPY88] for a discussion.) We often
omit the adjective “total” with the understanding that
all of our algorithms run in polynomial total time. Ap-
plications of the hypergraph independent set problem
abound, hence a general solution to the problem has
been sought. After describing some of the applications
and some recent results, we present a polynomial-time
algorithm for the restricted case of bounded degree hy-
pergraphs, using membership queries alone.

Motivation: In the context of data mining, an algo-
rithm for the independent set problem could be used to
find all the keys’ in a relation. In addition to providing
high-level information about a relation, the keys can be
used for verifying that a collection of mined rules are in
fact all the interesting rules in a relation [MT96]. Simi-
larly, key enumeration is related to the problem of find-
ing a small cover for the set of functional dependencies
that hold in a database, a problem useful in database
design or query processing [MR92b, MR92a, KM95].

Another example of the utility of the independent

‘For a relation over attributes R, the keys are the minimal
subsets X of R such that no two rows in the relation agree
on all attributes in X.

211

set problem arises in the context of reasoning. Given a
knowledge base that can be represented as a conjunc-
tion of propositional Horn clauses (with empty conse-
quents), a solution to the independent set problem could
be used to generate a collection of characteristic mod-
els [KKS93, KR94] to use in various reasoning tasks (for
example, determining whether a query is entailed by the
knowledge base) [Kha95, KMR95].

The independent set problem is also related to the
problem of determining if a version space has converged.
For a concept class C the version space [Mit82] induced
by positives P and negatives N is the set of concepts
in C consistent with P and N. A version space V has
converged if IV] = 1. A solution to the CNF to DNF
translation problem could be used to determine if a ver-
sion space has converged for the class of monotone func-
tions [HMP97] (the idea being to translate examples in
P into terms in a DNF formula and examples in N into
clauses in a CNF formula).

Finally, we note that the independent set problem
is an example of knowledge compilation. The compila-
tion process is often used to translate one representation
of knowledge into another so as to make it easier to use
that knowledge. One example, discussed in [SK91], con-
siders compiling arbitrary (non-monotone) CNF formu-
las into Horn lower and upper bounds in order to make
answering entailment questions easier. The independent
set problem is also a form of compilation since we are
given a CNF (hypergraph) and wish to compile that
information into a DNF (all the maximal independent
sets). Our membership query result strengthens this
statement since it implies that regardless of what form
the function is provided to us (e.g., it could be an ar-
bitrary Boolean formula) as long as that representation
is polynomially evaluable (and, of course, corresponds
to a monotone read-k CNF), we can efficiently compile
the function into its DNF form.

A more thorough review of applications of the max-
imal independent set problem can be found in [EG95].

Related Work: To date, however, there is no known
polynomial-time algorithm for the general independent
set problem. Some work has investigated relationships
between the maximal independent set problem and other
open problems [BI95, EG95]. Others have given super-
polynomial time algorithms for the problem. For exam-
ple, Bshouty et al. [BCGf96] have shown that with an
NP-oracle and membership queries, both the minterms
and maxterms (that is, all the maximal independent sets
and the hypergraph itself) can be efficiently enumer-
ated. More recently, Fredman and Khachiyan [FK96]
have given the fastest known algorithm for the prob-
lem: Their algorithm runs in time O(mO(l”sml) (where
m is the sum of the size of the hypergraph H (CNF),
and the size of all the maximal independent sets of H
(DNF)), hence providing evidence that the problem is
unlikely to be NP-hard.

Since an efficient solution to the general problem is
not known, some research has focussed on determining
which natural subcases of the general problem have effi-
cient solutions. For example, in the event that each edge

consists of two vertices (i.e., when the hypergraph is a
graph) efficent solutions have been given under various
definitions of polynomial time [JPYBB, LLKBO, TIAS77,
KW85]. Extending this work, when the cardinality of
each edge of the hypergraph is bounded by some con-
stant or when the hypergraph is acylic, there is a known
efficient solution to the independent set problem [EG95].

The restriction considered in this paper is based on
limiting the degree of each vertex in the hypergraph -
the maximum number of edges in which any vertex is
contained. In Boolean terminology, the restriction lim-
its the number of “reads” (occurrences of a variable) in a
formula, a restriction that has been well-investigated in
the learning-theory literature [AHK93, PR94b, PR94a,
BHH95a, BHH95b, ABK+97, AHHPar]. Previous work
has shown that it is possible to find the minterms of
a read-once (A, V) formula under a stronger notion of
polynomial time [AHK93, GK95]. In the hypergraph
setting, this restriction trivializes to enumerating all
maximal independent sets of degree-one (read-once) hy-
pergraphs. We show here that if the degree of each ver-
tex is bounded by some constant that there is an efficient
solution to the independent set problem. In Boolean
terminology, we show that if each variable appears in at
most k clauses (i.e., the CNF formula is read-k), then
there exists an efficient algorithm to generate the DNF
formula, using membership queries alone.

Overview: The techniques we use are based on an in-
ductive characterization of the problem - the question
being, when can the minterms of a subset of the clauses
of a monotone CNF formula be used to compute all
of the minterms of the entire CNF formula? (Alterna-
tively, when can the maximal independent sets of a sub-
set, E’, of the edges of a hypergraph be used to compute
the maximal independent sets of a larger subset of edges,
E” > E’?) In S ec t ion 3 we begin with a simple yet inef-
ficient algorithm for the general problem based on such
an inductive characterization. The algorithm is not nec-
essarily efficient since no order is imposed on how larger
and larger subsets of the clauses of the CNF formula are
considered. We demonstrate that a possible source of
inefficiency is when minterms of a subset of the clauses
of the CNF formula do not correspond to minterms of
the entire CNF formula. When we do impose an order,
by considering minterms over larger and larger subsets
of the variables, we can (in Section 4) show that there is
an efficient algorithm for finding a monotone DNF rep-
resentation of a given monotone read-k CNF formula -
in other words, that there is an efficient solution to the
bounded degree hypergraph independent set problem.
We generalize the result in Section 5 by giving an al-
gorithm that uses membership queries alone to find the
DNF formula.

Our results demonstrate a well-known phenomenon
in learning theory: relaxing the hypothesis class often
makes learning easier. An example of this fact is given
in [PV88], where it is observed that k-term DNF formu-
las cannot be properly PAC learned, but can be PAC
learned in terms of k-CNF expressions. Another exam-
ple of this fact is in learning the class of DNF formulas.

212

While there is currently no known polynomial-time al-
gorithm for this concept class, Bshouty shows that any
Boolean function can be learned with equivalence and
membership queries, using the hypothesis class of dis-
junctions of unate CNF formulas, in time polynomial in
the sum of the sizes of the DNF and CNF representa-
tions [Bsh95].

For the class of read-k CNF formulas, Angluin shows
that finding a description of the read-k CNF formula
with membership queries only requires at least 2”f2 - 1
membership queries (where n is the number of vari-
ables) [Anggg]. (Actually, she gives the equivalent dual
result for DNF formulas.) We show here that when
we expand the hypothesis space to arbitrary monotone
DNF formulas, there is an efficient algorithm for learn-
ing the class of read-k CNF formulas with a number of
membership queries polynomial in the DNF size and n,
for k some fixed constant.

2 PRELIMINARIES

Let V = {~,...,v~ } be a collection of Boolean vari-
ables. A Boolean function f(vi, . . , v,) is a function
f : {O,l}” -+ {O,l}. A (monotone, since no negations
are allowed) term t is the function represented by a con-
junction (AND) t = o,, An,, A. . . AV,~ of variables. The
term t evaluates to 1 if and only if each of the variables

v11, vz,, . . ’ > 211.. have value 1. Similarly, a (monotone)
clause c is the function represented by a disjunction
(OR) c = Vj, V Vj2 V ’ ’ ’ V vj,,, of variables. The clause c
evaluates to 1 if and only if at least one of the variables
V 31, IJ~, , . . 7 vj,, has value 1.

A monotone DNF expression is a disjunction (OR)
of monotone terms tl V t2 V- . . V t,, and evaluates to 1 iff
at least one of the terms has value 1. If T = (ti, . . . , to}
is a set of terms, then VT is the DNF expression ti V

tz v . v t,. Similarly, a monotone CNF expression is a
conjunction of monotone clauses cl A cz A . .. A cb, and
evaluates to 1 iff each of the clauses has value 1. If
C={q,... , cb} is a set of clauses then AC is the CNF
expression cl A c2 A A cb.

A term t implies a function f iff for any boolean
assignment v’to the variables of V, (t(G) = 1) -+ (f(q =
1). Any such term is called an implicant. A prime
implicant, or minterm, of f, is an implicant t such that
no implicant of f can be formed by removing one or
more variables from the conjunction t. It is easily shown
and well-known that every monotone Boolean function
has a unique monotone DNF expression, formed by the
disjunction of all of its minterms. We call such a DNF
expression reduced.

A hypergraph H is a pair H = (E,V), where V is
a finite set of vertices, and E C 2’ is a set of subsets
(“hyperedges”) of V. A subset I & V is independent in
H if for every e E E, e - I # 9. An independent set I is
maximal if no superset of 1 is also an independent set
of H.

A hitting set (or vertex cover) of a hypergraph H
is a subset of vertices V’ C V such that for each edge
e E E,]e n I/‘(2 1. A hitting set S is minimal if no
proper subset of S is also a hitting set of H.

It is well known and easily observed that I is a maxi-
mal independent set of H if and only if V-I is a minimal
hitting set of H. Consequently, the problem of gener-
ating all maximal independent sets trivially reduces to
that of generating all minimal hitting sets. (In the liter-
ature, generating all minimal hitting sets is also referred
to as the hypergraph transversal problem [EGSS].)

It is now easy to see that this problem is also equiv-
alent to the following problem: Given a monotone CNF
expression C, find an equivalent (reduced) monotone
DNF D. To see this, let H = (V,E) be a hypergraph.
We form a CNF expression C whose variables are named
by the vertices of V. For each edge e = {vi,. . . , v,} E E,
define the clause c, = (vi VQV.. .Vv,). Let C = A{ce :
e E E}. It is now easily argued that {v,, , , ~1~. } is a
minimal hitting set of H if and only if vJ1 A . . . A II,.

is a minterm in the DNF representation of C. Conse-
quently, the problem of generating all minimal hitting
sets of H (and, as above, the problem of generating
all maximal independent sets of H) reduces to that of
generating all minterms of the DNF for C. Since C is
monotone, generating all the minterms of the DNF for
C is in turn equivalent to finding the unique reduced
DNF expression equivalent to C.

3 A FIRST STAB

Throughout the rest of the paper, we will be manipulat-
ing DNF/CNF expressions. We assume that any such
expression is monotone, and that it has been put into
reduced (minimal) form.

We first give a simple inefficient algorithm for the
general case which motivates the efficient solution to
the bounded degree (read-k) case. If C = cr A. . AC, is
a monotone CNF formula (for which we wish to find an
equivalent DNF representation), we construct the DNF
for C inductively by constructing the DNF expressions
for cl A. . . A ci for each i 5 m. Assume inductively that
g = t1 v ... v t, is the (unique, since C is monotone)
DNF for cl A . . . A c,. Then the DNF formula for cl A
. . . A Ci A ci+i is equivalent to

g A ci+1 = (t* v ‘. . v ts) A cl+1

= (tl A cl+1) V . V (ts A &+I)

The above is not quite in DNF form since each dis-
junct is not necessarily a term. Each disjunct can be
translated to a collection of terms by a simple applica-
tion of the distributive property. We define the func-
tion “term-and-clause” that takes a term t and a clause
c = (y1v. ’ ‘vy,,,) as input and returns their conjunction
as follows: term-and-clause(t , c) =

{

t if t and c share a variable
(t A yl) V . . . V (t A y,,,) otherwise

It is easy to see that the function term-and-clause re-
turns the disjunction of its arguments: Independent of
whether t and c share a variable, their conjunction, by
the distributive property, is (t A ye) V . . . V (t A ym). In
the special case that t and c do share a variable, say
yl, the conjunction t A yi = t. Further, in this case t

213

would subsume the remaining terms, and consequently
the disjunction would be equivalent to t.

We also find useful the function “dnf-and-clause”
that simply takes a (reduced) DNF formula and clause
as input, and returns the (reduced) result of calling
term-and-clause with each term of the DNF. Thus,

dnf-and-clause(D, c) = V term-and-clause(t, c).
tell

We now have an algorithm to construct a DNF for-
mula equivalent to the CNF formula cl A. . *AC~+I, given
a DNF formula tl V.. -Vt, for cl A. . .Aci. We simply call
dnf-and-clause on the input (tl V . . . V t,, Ci+r)a Doing
the above for each i yields our “first stab” algorithm at
translating a CNF formula to a DNF formula:

first-stab(C = ci A . . . A c,)
DcTrue
for i:= 1 to m

D t dnf-and-clause(D, ci)
output D

Observe that the order in which clauses are pro-
cessed is irrelevant to first-stab’s correctness, since af-
ter the last clause is processed, the DNF D produced is
equivalent to the original CNF C. But, first-stab is not
necessarily efficient: Let

C= A (ZiVyj).

i,jE{l,...,n}

Suppose the order in which the clauses are considered is
(Xi V f./i), i = 1,. . . , n followed by the remaining clauses
(in any order). Then, after the first n clauses, the DNF
formula D obtained by first-stab is exactly:

D = v (bl A . *. A b,,)
b;=z. or yi

There are 2” terms in D, yet the DNF formula equiva-
lent to C has only 2 terms, namely,

(x1 A ... A 2,) V (~1 A . . . A yn).

In summary, first-stab works correctly regardless of
the ordering of clauses, but is not guaranteed to do so
in polynomial total time.

4 THE BOUNDED DEGREE CASE

We now show how in some circumstances we can im-
pose an order on the clauses so that the sizes of the
intermediate DNFs remain small. The result implies a
polynomial-time algorithm for the bounded degree hy-
pergraph independent set problem.

Let C be a monotone CNF formula over variables

{Xl, . . . , t,}, and for each i between 0 and n define

Ci(zl,** . y 2,) = C(Xl,. s. y Xi, 1,. . . , 1).

Thus, C; is just C with all variables indexed greater
than i hardwired, or projected, to 1. Note that Cs is
the constant 1 function, represented by the empty set
of clauses, and that C,, = C. It is readily apparent

that the CNF Ci is obtained from C by removing any
clause containing a variable in {zi+r , . . . , x,}. (If no
clauses remain then Ci is equivalent to the constant 1
function.) Analogously, if Di is the DNF for Ci, then
Di is obtained from the DNF D for C by removing each
of the variables {zi+l, . . . , x,} from any term in which
it participates. (If an empty term results, the DNF
becomes the constant 1 function.) We thus have the
following

Observation 1 If C, D, Ci, and Di are defined as above,
then for 0 5 i 5 n, ICil 5 (Cl and [Dil 2 IDI.

The example in Section 3 demonstrated that if the
clauses of C are processed by dnf-and-clause in a “bad”
order, an intermediate CNF C’, containing a subset of
clauses of C, might have a DNF, D’ that is exponen-
tially larger than the size of the actual DNF D for C.
Observation 1 points out that if C’ is in fact a projec-
tion of C, then the size of D’ will be bounded by the
size of D.

By a safe stage of first-stab, we mean a stage where
the terms that have been passed to dnf-and-clause so
far correspond to a projection of C. As long as we can
ensure that the time spent by the algorithm in between
these safe stages is small, we can guarantee that there is
not enough opportunity for the algorithm to construct
a DNF that is too much larger than the actual DNF D.

We can employ these observations to our advantage
in the case of read-k CNF formulas. We order the
clauses in such a way so that after at most every kth
clause passed to dnf-and-clause, the intermediate for-
mula C’ corresponds to some projection Ci of C, hence
is a safe stage. In between safe stages, the intermediate
formula does not have a chance to grow by a factor of
more than C(n”), where n is the number of variables,
and k is constant.

Algorithm read-k-cnf-to-dnf (Figure 1) begins with
the projection Cs that sets all variables to 1. The al-
gorithm then iteratively “unprojects” each variable zi
such that at most k clauses of C that had been projected
away because of xi, now “reappear”. We show that Al-
gorithm read-k-cnf-todnf works correctly in polynomial
total time.

Theorem 2 Let C be a read-k monotone CNF formula
over n variabIes. Then read-k-cnf-to-dnf(C) outputs the
DNF formula D equivalent to C in time O(lDl . nk+‘).

Proof: We first argue that the algorithm halts with
the correct output and then discuss the algorithm’s ef-
ficiency. Let Pi be the set of clauses of Ci that are not
contained in Ci-1. Step 3 is executed by read-k-cnf-to-
dnf for each value of i between 1 and n. During such
a step, for each clause c in Pi, the statement G t dnf-
and-clause(G, c) is executed. Since the clauses of C are
exactly the disjoint union PI U 9 U . . . U P,,, it follows
from the discussion in Section 3 and the correctness of
first-stab that the algorithm processes all clauses, and
outputs the DNF equivalent to C.

To see that the algorithm runs within the stated
time bound, first note that for each k, 1 5 k 5 n,

214

read-k-cnf-to-dnf(f)

Input: read-k CNF monotone formula C
Output: DNF formula D equivalent to C

1. G t True
2. for i = 1 to n
3. for each clause c of C, that is not in Ci-1
4. G t dnf-and-clause(G, c)
5. return G

Figure 1: An algorithm to obtain a DNF representation of a read-k CNF formula

after the iteration of the for loop of step 2 with i =
k, the algorithm is at a safe stage, because the DNF
returned is the projection Di. We need to show that the
formula does not grow too large in between safe stages.
Since C (hence Ci) is read-k, during any execution of
the for loop in step 3 dnf-and-clause is called at most
k times, because there are at most k terms that are in
Pi. Moreover, after each call of dnf-and-clause in step 4,
the growth of the intermediate DNF G is bounded by
a factor of n, since it is the result of multiplying G by
a clause of size at most n. Consequently, after calling
dnf-and-clause (at most) k times (i.e., until the next safe
stage is reached), the size of each intermediate formula
G between safe stages can grow to at most 1Dl.n”. Once
the next safe stage is reached, the size of G is guaranteed
again to be at most 1 DI. Since there are n iterations of
the loop in step 2, and for each iteration of this loop,
at most k calls are made to dnf-and-clause on a DNF
formula of size at most
is bounded by O(lDl . n i,

DI . nk, the total running time
+l). 0

Observe that a dual statement can be made for read-
k DNF formulas - namely, that there is a polynomial
total time algorithm that converts read-k DNF formulas
into their corresponding CNF formulas.

In addition, it is possible to show that if the CNF
formula C has the property that each variable occurs
at most k times or at least (Cl - j times, then we can
efficiently find a DNF representation of C. For example,
a formula where each variable appears in at most one
clause or all but one clause is:

(The variables 21, x2,23, x4 appear in at most one clause
and the variables x5,%6 appear in all but one clause.)

To see how to obtain the DNF for such a formula,
note that the clauses of C can be partitioned into those
that consist exclusively of variables that occur in at
least (Cl - j clauses (call these Tc-~) and those that
do not. If we unproject all the variables that occur in
all but j clauses then we obtain a subset of the clauses
in the CNF formula C, namely Tc-J. For any subset
of the clauses of C, each variable appears in all but j
clauses. Thus, for Tc-j, each variable appears in all
but j clauses. Note that any minterm of a CNF for-
mula where each variable occurs in all but j clauses has
length at most (j + 1) - if x occurs in all but j clauses,
including x in a term means that all but j clauses are

hit, and there are at most j ways to hit these remaining
clauses. Since Tc-, has a DNF representation where
each term has length at most (j + l), we can enumerate
all such possible terms (there are O(nj+2) such terms)
and eliminate those that are not consistent. Using this
DNF formula as a starting point for algorithm read-k-
cnf-to-dnf in Figure 1, we can iteratively unproject the
remaining read-k variables and call dnf-and-clause for
each new term.

Claim 3 Let C be a monotone CNF formula where each
variable either appears in at most k clauses or all but
j clauses. There exists an algorithm that finds a DNF
representation of C in time O(~ZJ+~ +)g) . nkc’).

Finally, it is possible to show that the claim can
be extended to the class of unate CNF formulas where
each variable appears in at most k clauses or all but j
clauses. (A formula is unate if each variable does not
appear both negated and unnegated.)

5 MEMBERSHIP QUERIES

We now consider a more general version of the problem
where the algorithm has access to a membership oracle
only instead of the actual read-k CNF formula. Before
giving an algorithm that uses membership queries ex-
clusively, we present a few alternative approaches that
assume we have C. These approaches shed light on how
C can be replaced with a membership oracle.

The algorithm read-k-cnf-to-dnf constructs the DNF
Di from Di-1 by iteratively processing clauses in Pi
(where, as in the proof of Theorem 2, Pi is the collection
of clauses in C, that are not in Ci-1). An alternative
is to process the clauses in Pi all at once to first obtain
a DNF for the conjunction of clauses of P,, which we
denote by DNF(APi), and then conjoin DNF(r\P,) to
Di-1. Stated more precisely, D, is characterized by:

D, = DNFIDipl A DNF(r\P,)]

The first two methods of computing D, are, in fact,
based on finding DNF(/\P,) in a different manner.

Exhaustive Method: The obvious way to find the
formula DNF(APi) is to simply multiply out the clauses
in Pi. The critical observation here is that lP,l 5 k
since C is read-k. Consequently, repeatedly distributing

215

clauses over clauses (each of length < n) requires time
O(nk). Conjoining D;-l (whose size & bounded by IDI)
with a formula of length nk requires time O(jDl . n”).
After eliminating redundant terms, we know that) DiJ 5
JDJ, and we are once again at a safe stage, prepared to
compute Ditl.

k-DNF Method: Since IPil 5 k, it is easy to see that
each term in DNF(r\Pi) has length at most k. Thus, Pi
has a /c-DNF representation. DNF(APi) is easily com-
puted by the following characterization:

DNF@P;) = v{t : ItI 2 k and t + Pi}

The remainder of the computation of Di proceeds in a
manner similar to the Exhaustive Method.

Projection Method: Since each term in Di is a con-
junction of a term in Di-1 and some term of length at
most k, every implicant u of Di (equivalently, of Ci) is
in the set

U = {S A t : s E Di-1, ItI 5 k,t c (~1,. . . ,xc~}}.

Thus, we can enumerate every such u E U (there are
only O((D(. nk) such terms) and include u in Di if and
only if u implies Ci. If C is available, we can determine
Ci, and check whether or not u implies Ci immediately.

Up to this point we have assumed that the CNF C is
provided to the algorithm. We turn now to the question
of how C can be replaced with a membership oracle.
Actually, we begin by showing how we can replace C
with a membership oracle for Ci. Using the Projection
Method, we can test whether or not u implies Ci by
simply testing whether or not the characteristic vector
xu of u is a positive example of Ci. (The characteristic
vector of a term t contains a 1 in position i if Zi appears
in t and a 0 in position i otherwise.) While a mem-
bership oracle for Ci is not available, we can simulate
such an oracle with a membership oracle for C, since by
definition

C,(X) =C(Z1,...,2i,l,...,l).

Summarizing, the algorithm proceeds as follows: For
each projection Ci for i ranging from 0 to n, using the
DNF we have computed from Di-1, we test if u -+ Ci
where u is the conjunction of some term from Di-1 and a
term of length at most k over the variables {xl,. . . , Zi}.
We determine if u is an implicant of Ci by posing a
membership query on the example y, where the jth bit
of y is (x,,)j if j 5 i and 1 otherwise. We keep the term
u in Di if and only if the membership query returns true.
The algorithm is given in Figure 2. Thus, we have:

Theorem 4 The class of monotone functions f express-
ible as read-k CNF formulas is learnable with member-
ship queries aione in time O(JDNF(f)J .r~~+~).

ACKNOWLEDGEMENTS

We would like to thank Dan Oblinger for entertaining
our numerous, random musings, and Heikki Mannila for
his encouragement and for his comments on an earlier
draft.

References

[ABK+97]

[AHHPar]

[AHK93]

bg881

[BCG+96]

[BHH95a]

[BHH95b]

[BI95]

[Bsh95]

[EG95]

[FK96]

[GJ79]

[GK95]

H. Aizenstein, A. Blum, R. Khardon,
E. Kushilevitz, L. Pitt, and D. Roth. On
learning read-ksatisfy-j dnf. To appear,
SIAM Journal on Computing. Preliminary
version appears in Proceedings of the Sev-
enth Annual ACM Conference on Computa-
tional Learning Theory, 1997.
H. Aizenstein, T. Hegedus, L. Hellerstein,
and L. Pitt. Complexity theoretic hardness
results for query learning. Computational
Complexity, To appear.
Dana Angluin, Lisa Hellerstein, and Marek
Karpinski. Learning read-once formu-
las with queries. Journal of the ACM,
40(1):185-210, January 1993.
Dana Angluin. Queries and concept learn-
ing. Machine Learning, 2(4):319-342, April
1988.
Nader H. Bshouty, Richard Cleve, Ricard
Gavaldb, Sampath Kannan, and Christino
Tamon. Oracles and queries that are suf-
ficient for exact learning. Journal of Com-
puter and System Sciences, 52(3):421-433,
June 1996.
Nader H. Bshouty, Thomas R. Hancock, and
Lisa Hellerstein. Learning arithmetic read-
once formulas. SIAM Journal on Comput-
ing, 24(4):706-735, August 1995.
Nader H. Bshouty, Thomas R. Hancock,
and Lisa Hellerstein. Learning Boolean
read-once formulas over generalized bases.
Journal of Computer and System Sciences,
50(3):521-542, June 1995.
Jan C. Bioch and Toshihide Ibaraki. Com-
plexity of identification and dualization of
positive Boolean functions. Information and
Computation, 123(1):50-63, 15 November
1995.
Nader H. Bshouty. Exact learning Boolean
functions via the monotone theory. Infor-
mation and Computation, 123(1):146-153,
15 November 1995.
Thomas Eiter and Georg Gottlob. Identi-
fying the minimal transversals of a hyper-
graph and related problems. SIAM Journal
on Computing, 24(6):1278-1304, December
1995.
Michael L. Fredman and Leonid Khachiyan.
On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of
Algorithms, 21(3):618-628, November 1996.
M. R. Garey and D. S. Johnson. Computers
and intractability- A guide to the theory of
NP-completeness. freeman; Bell Lab, Mur-
ray Hill NJ, 1979.
Vladimir Gurvich and Leonid Khachiyan.
Generating the irredundant conjunctive
and disjunctive normal forms of monotone
boolean functions. Technical Report, LCSR-

216

find-DNF(I)

Input: i
Output: DNF formula D, equivalent to C,

1. If i = 0 return True
2. Dip1 t find-DNF(i - 1)
3. D, t 0
4. for each clause u = s A t where s E Di-1, ItI 5 Ic, t C (~1,. . . ,z,}

5. (9,‘)j = { jxJJ ft;,;?,,
6. if MQ(q,)=l then D, t D, U {IL}
7. return Di

Figure 2: An algorithm to obtain a DNF representation of a read-k CNF formula using membership queries only

[HMP97]

[JPY88]

[Kha95]

[KKS93]

[KM951

(KMR95j

[KR94]

[KW85]

[LLK80]

[Mit82]

TR-251, Dept of Computer Science, Rutgers
University, Discrete Applied Math, to ap-
pear, August 1995.
Haym Hirsh, Nina Mishra, and Leonard
Pitt. Version spaces without boundary sets.
AAAI, 1997. To appear.
D. S. Johnson, C. H. Papadimitriou, and
M. Yannakakis. On generating all maximal
independent sets. Information Processing
Letters, 27(3):119-123, 1988.
Roni Khardon. Translating between
horn representations and their characteristic
models. Journal of AI Research, 3:349-372,
1995.
H. A. Kautz, M. J. Kearns, and B. Sel-
man. Reasoning with characteristic models.
In Proceedings of the 11th National Confer-
ence on Artificial Intelligence, pages 34-39,
Washington, DC, July 1993. AAAI Press.
Jyrki Kivinen and Heikki Mannila. Approx-
imate inference of functional dependencies
from relations. Theoretical Computer Sci-
ence, 149(1):129-149, 18 September 1995.
Roni Khardon, Heikki Mannila, and Dan
Roth. Reasoning with examples: Proposi-
tional formulae and database dependencies.
Technical Report, TR-15-95, Harvard Uni-
versity, 1995.
R. Khardon and D. Roth. Reasoning with
models. In Proceedings of the 12th Na-
tional Conference on Artificial Intelligence,
volume 2, pages 1148-1153, Seattle, Wash-
ington, July-August 1994. AAAI Press.
Richard M. Karp and Avi Wigderson. A
fast parallel algorithm for the maximal inde-
pendent set problem. Journal of the ACM,
32(4):762-773, October 1985.
E. L. Lawler, J. K. Lenstra, and A. H.
G. Rinnooy Kan. Generating all max-
imal independent sets: NP-hardness and
polynomial-time algorithms. SIAM Journal
on Computing, 9(3):558-565, August 1980.
Tom Mitchell. Generalization as search. Art.

[MR92a]

[MR92b]

[MT961

[PR94a]

[PR94b]

[PV88]

[SK911

[TIAS77]

Int., 18:203-226, 1982.
Mannila and Raiha. On the complexity of in-
ferring functional dependencies. DAMATH:
Discrete Applied Mathematics and Combi-
natorial Operations Research and Computer
Science, 40, 1992.
H. Mannila and K.-J. Rtihi. The Design
of Relational Databases. Addison-Wesley,
1992.
Heikki Mannila and Hannu Toivonen. On
an algorithm for finding all interesting sen-
tences. Cybernetics and Systems, R. Trappl,
ed., pages 973-978, 1996.
K. Pillaipakkamnatt and V. Raghavan. On
the limits of proper learnability of sub-
classes of DNF formulas. In Proc. 7th Annu.
ACM Workshop on Comput. Learning The-
ory, pages 118-129. ACM Press, New York,
NY, 1994.
K. Pillaipakkamnatt and V. Raghavan.
Read-twice DNF formulas are properly
learnable. In Computational Learning The-
ory: Eurocolt ‘93, volume New Series Num-
ber 53 of The Institute of Mathematics and
its Applications Conference Series, pages
121-132, Oxford, 1994. Oxford University
Press.
L. Pitt and L. Valiant. Computational limi-
tations on learning from examples. J. ACM,
35:965-984, 1988.
Bart Selman and Henry Kautz. Knowledge
compilation using horn approximations. In
Kathleen Dean, Thomas L.; McKeown, ed-
itor, Proceedings of the 9th National Con-
ference on Artificial Intelligence, pages 904-
909. MIT Press, July 1991.
Shuji Tsukiyama, Mikio Ide, Hiromu
Ariyoshi, and Isao Shirakawa. A new algo-
rithm for generating all the maximal inde-
pendent sets. SIAM Journal on Computing,
6(3):505-517, September 1977.

217

