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Abstract 

We show that any monotone function with a 
read-k CNF representation can be learned in 
terms of its DNF representation with member- 
ship queries alone in time polynomial in the 
DNF size and n (the number of variables) as- 
suming k is some fixed constant. The problem 
is motivated by the well-studied open problem 
of enumerating all maximal independent sets 
of a given hypergraph. Our algorithm gives a 
solution for the bounded degree case and works 
even if the hypergraph is not input, but rather 
only queries are available as to which sets are 
independent. 

1 INTRODUCTION 

A hypergraph H is a collection of subsets (edges) E of a 
finite set of vertices V. An independent set of a hyper- 
graph is a subset of vertices, V’ c V such that no edge in 
E is contained in V’. An independent set I is maximal 
if no superset I’ of I is also an independent set. Given a 
hypergraph H, the hypergraph independent set problem 
is that of enumerating all maximal independent sets of 
H. Note that while finding the maximum cardinality 
independent set is NP-hard [GJ79], finding a maximal 
independent set I is easy: iteratively add vertices to I 
while maintaining the property that I is an independent 
set. We consider here the problem of enumerating all 
maximal independent sets. It can be shown (see Sec- 
tion 2) that the hypergraph independent set problem 
is equivalent to the following: Given a monotone CNF 
formula f find a (reduced) monotone DNF formula g 
such that g is equivalent to f. 

A more demanding problem is the setting in which 
the CNF description (equivalently, the hypergraph) is 
not explicitly given, but rather is hidden inside a “black 
box” to which only membership queries may be nosed. 
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A membership query for a Boolean function f is a vector 
z E (0, l)“, and is answered “yes” if f(z) = 1, and 
“no” otherwise. A membership query for a hypergraph 
H = (V, E) is a subset S C_ V, and is answered “yes” if 
S is an independent set, and “no” otherwise. 

Membership queries have been widely studied in the 
context of learning. In Angluin’s seminal paper (Ang88], 
information theoretic barriers are given showing that 
there is no algorithm for learning monotone DNF (or 
CNF) formulas from membership queries alone, in time 
polynomial in the size of the target DNF (or CNF) for- 
mula. However, these lower bounds do not apply here, 
as the learning problem derived from the hypergraph 
independent set problem is that of finding a monotone 
DNF formula for a monotone function (available in CNF 
form, or via membership queries only) in time polyno- 
mial in the sum of the CNF and DNF sizes. Put another 
way, the problem to be solved is that of exhibiting a 
polynomial total time algorithm for finding a monotone 
DNF formula. (A polynomial total time algorithm is one 
that runs in time polynomial in the sum of the lengths of 
the input and output. There are other notions of poly- 
nomial time. See (JPY88] for a discussion.) We often 
omit the adjective “total” with the understanding that 
all of our algorithms run in polynomial total time. Ap- 
plications of the hypergraph independent set problem 
abound, hence a general solution to the problem has 
been sought. After describing some of the applications 
and some recent results, we present a polynomial-time 
algorithm for the restricted case of bounded degree hy- 
pergraphs, using membership queries alone. 

Motivation: In the context of data mining, an algo- 
rithm for the independent set problem could be used to 
find all the keys’ in a relation. In addition to providing 
high-level information about a relation, the keys can be 
used for verifying that a collection of mined rules are in 
fact all the interesting rules in a relation [MT96]. Simi- 
larly, key enumeration is related to the problem of find- 
ing a small cover for the set of functional dependencies 
that hold in a database, a problem useful in database 
design or query processing [MR92b, MR92a, KM95]. 

Another example of the utility of the independent 

‘For a relation over attributes R, the keys are the minimal 
subsets X of R such that no two rows in the relation agree 
on all attributes in X. 
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set problem arises in the context of reasoning. Given a 
knowledge base that can be represented as a conjunc- 
tion of propositional Horn clauses (with empty conse- 
quents), a solution to the independent set problem could 
be used to generate a collection of characteristic mod- 
els [KKS93, KR94] to use in various reasoning tasks (for 
example, determining whether a query is entailed by the 
knowledge base) [Kha95, KMR95]. 

The independent set problem is also related to the 
problem of determining if a version space has converged. 
For a concept class C the version space [Mit82] induced 
by positives P and negatives N is the set of concepts 
in C consistent with P and N. A version space V has 
converged if IV] = 1. A solution to the CNF to DNF 
translation problem could be used to determine if a ver- 
sion space has converged for the class of monotone func- 
tions [HMP97] (the idea being to translate examples in 
P into terms in a DNF formula and examples in N into 
clauses in a CNF formula). 

Finally, we note that the independent set problem 
is an example of knowledge compilation. The compila- 
tion process is often used to translate one representation 
of knowledge into another so as to make it easier to use 
that knowledge. One example, discussed in [SK91], con- 
siders compiling arbitrary (non-monotone) CNF formu- 
las into Horn lower and upper bounds in order to make 
answering entailment questions easier. The independent 
set problem is also a form of compilation since we are 
given a CNF (hypergraph) and wish to compile that 
information into a DNF (all the maximal independent 
sets). Our membership query result strengthens this 
statement since it implies that regardless of what form 
the function is provided to us (e.g., it could be an ar- 
bitrary Boolean formula) as long as that representation 
is polynomially evaluable (and, of course, corresponds 
to a monotone read-k CNF), we can efficiently compile 
the function into its DNF form. 

A more thorough review of applications of the max- 
imal independent set problem can be found in [EG95]. 

Related Work: To date, however, there is no known 
polynomial-time algorithm for the general independent 
set problem. Some work has investigated relationships 
between the maximal independent set problem and other 
open problems [BI95, EG95]. Others have given super- 
polynomial time algorithms for the problem. For exam- 
ple, Bshouty et al. [BCGf96] have shown that with an 
NP-oracle and membership queries, both the minterms 
and maxterms (that is, all the maximal independent sets 
and the hypergraph itself) can be efficiently enumer- 
ated. More recently, Fredman and Khachiyan [FK96] 
have given the fastest known algorithm for the prob- 
lem: Their algorithm runs in time O(mO(l”sml) (where 
m is the sum of the size of the hypergraph H (CNF), 
and the size of all the maximal independent sets of H 
(DNF)), hence providing evidence that the problem is 
unlikely to be NP-hard. 

Since an efficient solution to the general problem is 
not known, some research has focussed on determining 
which natural subcases of the general problem have effi- 
cient solutions. For example, in the event that each edge 

consists of two vertices (i.e., when the hypergraph is a 
graph) efficent solutions have been given under various 
definitions of polynomial time [JPYBB, LLKBO, TIAS77, 
KW85]. Extending this work, when the cardinality of 
each edge of the hypergraph is bounded by some con- 
stant or when the hypergraph is acylic, there is a known 
efficient solution to the independent set problem [EG95]. 

The restriction considered in this paper is based on 
limiting the degree of each vertex in the hypergraph - 
the maximum number of edges in which any vertex is 
contained. In Boolean terminology, the restriction lim- 
its the number of “reads” (occurrences of a variable) in a 
formula, a restriction that has been well-investigated in 
the learning-theory literature [AHK93, PR94b, PR94a, 
BHH95a, BHH95b, ABK+97, AHHPar]. Previous work 
has shown that it is possible to find the minterms of 
a read-once (A, V) formula under a stronger notion of 
polynomial time [AHK93, GK95]. In the hypergraph 
setting, this restriction trivializes to enumerating all 
maximal independent sets of degree-one (read-once) hy- 
pergraphs. We show here that if the degree of each ver- 
tex is bounded by some constant that there is an efficient 
solution to the independent set problem. In Boolean 
terminology, we show that if each variable appears in at 
most k clauses (i.e., the CNF formula is read-k), then 
there exists an efficient algorithm to generate the DNF 
formula, using membership queries alone. 

Overview: The techniques we use are based on an in- 
ductive characterization of the problem - the question 
being, when can the minterms of a subset of the clauses 
of a monotone CNF formula be used to compute all 
of the minterms of the entire CNF formula? (Alterna- 
tively, when can the maximal independent sets of a sub- 
set, E’, of the edges of a hypergraph be used to compute 
the maximal independent sets of a larger subset of edges, 
E” > E’?) In S ec t ion 3 we begin with a simple yet inef- 
ficient algorithm for the general problem based on such 
an inductive characterization. The algorithm is not nec- 
essarily efficient since no order is imposed on how larger 
and larger subsets of the clauses of the CNF formula are 
considered. We demonstrate that a possible source of 
inefficiency is when minterms of a subset of the clauses 
of the CNF formula do not correspond to minterms of 
the entire CNF formula. When we do impose an order, 
by considering minterms over larger and larger subsets 
of the variables, we can (in Section 4) show that there is 
an efficient algorithm for finding a monotone DNF rep- 
resentation of a given monotone read-k CNF formula - 
in other words, that there is an efficient solution to the 
bounded degree hypergraph independent set problem. 
We generalize the result in Section 5 by giving an al- 
gorithm that uses membership queries alone to find the 
DNF formula. 

Our results demonstrate a well-known phenomenon 
in learning theory: relaxing the hypothesis class often 
makes learning easier. An example of this fact is given 
in [PV88], where it is observed that k-term DNF formu- 
las cannot be properly PAC learned, but can be PAC 
learned in terms of k-CNF expressions. Another exam- 
ple of this fact is in learning the class of DNF formulas. 
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While there is currently no known polynomial-time al- 
gorithm for this concept class, Bshouty shows that any 
Boolean function can be learned with equivalence and 
membership queries, using the hypothesis class of dis- 
junctions of unate CNF formulas, in time polynomial in 
the sum of the sizes of the DNF and CNF representa- 
tions [Bsh95]. 

For the class of read-k CNF formulas, Angluin shows 
that finding a description of the read-k CNF formula 
with membership queries only requires at least 2”f2 - 1 
membership queries (where n is the number of vari- 
ables) [Anggg]. (Actually, she gives the equivalent dual 
result for DNF formulas.) We show here that when 
we expand the hypothesis space to arbitrary monotone 
DNF formulas, there is an efficient algorithm for learn- 
ing the class of read-k CNF formulas with a number of 
membership queries polynomial in the DNF size and n, 
for k some fixed constant. 

2 PRELIMINARIES 

Let V = {~,...,v~ } be a collection of Boolean vari- 
ables. A Boolean function f(vi, . . , v,) is a function 
f : {O,l}” -+ {O,l}. A ( monotone, since no negations 
are allowed) term t is the function represented by a con- 
junction (AND) t = o,, An,, A. . . AV,~ of variables. The 
term t evaluates to 1 if and only if each of the variables 

v11, vz,, . . ’ > 211.. have value 1. Similarly, a (monotone) 
clause c is the function represented by a disjunction 
(OR) c = Vj, V Vj2 V ’ ’ ’ V vj,,, of variables. The clause c 
evaluates to 1 if and only if at least one of the variables 
V 31, IJ~, , . . 7 vj,, has value 1. 

A monotone DNF expression is a disjunction (OR) 
of monotone terms tl V t2 V- . . V t,, and evaluates to 1 iff 
at least one of the terms has value 1. If T = (ti, . . . , to} 
is a set of terms, then VT is the DNF expression ti V 

tz v . v t,. Similarly, a monotone CNF expression is a 
conjunction of monotone clauses cl A cz A . .. A cb, and 
evaluates to 1 iff each of the clauses has value 1. If 
C={q,... , cb} is a set of clauses then AC is the CNF 
expression cl A c2 A A cb. 

A term t implies a function f iff for any boolean 
assignment v’to the variables of V, (t(G) = 1) -+ (f(q = 
1). Any such term is called an implicant. A prime 
implicant, or minterm, of f, is an implicant t such that 
no implicant of f can be formed by removing one or 
more variables from the conjunction t. It is easily shown 
and well-known that every monotone Boolean function 
has a unique monotone DNF expression, formed by the 
disjunction of all of its minterms. We call such a DNF 
expression reduced. 

A hypergraph H is a pair H = (E,V), where V is 
a finite set of vertices, and E C 2’ is a set of subsets 
(“hyperedges”) of V. A subset I & V is independent in 
H if for every e E E, e - I # 9. An independent set I is 
maximal if no superset of 1 is also an independent set 
of H. 

A hitting set (or vertex cover) of a hypergraph H 
is a subset of vertices V’ C V such that for each edge 
e E E, ]e n I/‘( 2 1. A hitting set S is minimal if no 
proper subset of S is also a hitting set of H. 

It is well known and easily observed that I is a maxi- 
mal independent set of H if and only if V-I is a minimal 
hitting set of H. Consequently, the problem of gener- 
ating all maximal independent sets trivially reduces to 
that of generating all minimal hitting sets. (In the liter- 
ature, generating all minimal hitting sets is also referred 
to as the hypergraph transversal problem [EGSS].) 

It is now easy to see that this problem is also equiv- 
alent to the following problem: Given a monotone CNF 
expression C, find an equivalent (reduced) monotone 
DNF D. To see this, let H = (V,E) be a hypergraph. 
We form a CNF expression C whose variables are named 
by the vertices of V. For each edge e = {vi,. . . , v,} E E, 
define the clause c, = (vi VQV.. .Vv,). Let C = A{ce : 
e E E}. It is now easily argued that {v,, , , ~1~. } is a 
minimal hitting set of H if and only if vJ1 A . . . A II,. 

is a minterm in the DNF representation of C. Conse- 
quently, the problem of generating all minimal hitting 
sets of H (and, as above, the problem of generating 
all maximal independent sets of H) reduces to that of 
generating all minterms of the DNF for C. Since C is 
monotone, generating all the minterms of the DNF for 
C is in turn equivalent to finding the unique reduced 
DNF expression equivalent to C. 

3 A FIRST STAB 

Throughout the rest of the paper, we will be manipulat- 
ing DNF/CNF expressions. We assume that any such 
expression is monotone, and that it has been put into 
reduced (minimal) form. 

We first give a simple inefficient algorithm for the 
general case which motivates the efficient solution to 
the bounded degree (read-k) case. If C = cr A. . AC, is 
a monotone CNF formula (for which we wish to find an 
equivalent DNF representation), we construct the DNF 
for C inductively by constructing the DNF expressions 
for cl A. . . A ci for each i 5 m. Assume inductively that 
g = t1 v ... v t, is the (unique, since C is monotone) 
DNF for cl A . . . A c,. Then the DNF formula for cl A 
. . . A Ci A ci+i is equivalent to 

g A ci+1 = (t* v ‘. . v ts) A cl+1 

= (tl A cl+1 ) V . V (ts A &+I) 

The above is not quite in DNF form since each dis- 
junct is not necessarily a term. Each disjunct can be 
translated to a collection of terms by a simple applica- 
tion of the distributive property. We define the func- 
tion “term-and-clause” that takes a term t and a clause 
c = (y1v. ’ ‘vy,,,) as input and returns their conjunction 
as follows: term-and-clause( t , c) = 

{ 

t if t and c share a variable 
(t A yl) V . . . V (t A y,,,) otherwise 

It is easy to see that the function term-and-clause re- 
turns the disjunction of its arguments: Independent of 
whether t and c share a variable, their conjunction, by 
the distributive property, is (t A ye) V . . . V (t A ym). In 
the special case that t and c do share a variable, say 
yl, the conjunction t A yi = t. Further, in this case t 
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would subsume the remaining terms, and consequently 
the disjunction would be equivalent to t. 

We also find useful the function “dnf-and-clause” 
that simply takes a (reduced) DNF formula and clause 
as input, and returns the (reduced) result of calling 
term-and-clause with each term of the DNF. Thus, 

dnf-and-clause(D, c) = V term-and-clause(t, c). 
tell 

We now have an algorithm to construct a DNF for- 
mula equivalent to the CNF formula cl A. . *AC~+I, given 
a DNF formula tl V.. -Vt, for cl A. . .Aci. We simply call 
dnf-and-clause on the input (tl V . . . V t,, Ci+r )a Doing 
the above for each i yields our “first stab” algorithm at 
translating a CNF formula to a DNF formula: 

first-stab(C = ci A . . . A c,) 
DcTrue 
for i:= 1 to m 

D t dnf-and-clause(D, ci) 
output D 

Observe that the order in which clauses are pro- 
cessed is irrelevant to first-stab’s correctness, since af- 
ter the last clause is processed, the DNF D produced is 
equivalent to the original CNF C. But, first-stab is not 
necessarily efficient: Let 

C= A (ZiVyj). 

i,jE{l,...,n} 

Suppose the order in which the clauses are considered is 
(Xi V f./i), i = 1,. . . , n followed by the remaining clauses 
(in any order). Then, after the first n clauses, the DNF 
formula D obtained by first-stab is exactly: 

D = v (bl A . *. A b,,) 
b;=z. or yi 

There are 2” terms in D, yet the DNF formula equiva- 
lent to C has only 2 terms, namely, 

(x1 A ... A 2,) V (~1 A . . . A yn). 

In summary, first-stab works correctly regardless of 
the ordering of clauses, but is not guaranteed to do so 
in polynomial total time. 

4 THE BOUNDED DEGREE CASE 

We now show how in some circumstances we can im- 
pose an order on the clauses so that the sizes of the 
intermediate DNFs remain small. The result implies a 
polynomial-time algorithm for the bounded degree hy- 
pergraph independent set problem. 

Let C be a monotone CNF formula over variables 

{Xl, . . . , t,}, and for each i between 0 and n define 

Ci(zl,** . y 2,) = C(Xl,. s. y Xi, 1,. . . , 1). 

Thus, C; is just C with all variables indexed greater 
than i hardwired, or projected, to 1. Note that Cs is 
the constant 1 function, represented by the empty set 
of clauses, and that C,, = C. It is readily apparent 

that the CNF Ci is obtained from C by removing any 
clause containing a variable in {zi+r , . . . , x,}. (If no 
clauses remain then Ci is equivalent to the constant 1 
function.) Analogously, if Di is the DNF for Ci, then 
Di is obtained from the DNF D for C by removing each 
of the variables {zi+l, . . . , x,} from any term in which 
it participates. (If an empty term results, the DNF 
becomes the constant 1 function.) We thus have the 
following 

Observation 1 If C, D, Ci, and Di are defined as above, 
then for 0 5 i 5 n, ICil 5 (Cl and [Dil 2 IDI. 

The example in Section 3 demonstrated that if the 
clauses of C are processed by dnf-and-clause in a “bad” 
order, an intermediate CNF C’, containing a subset of 
clauses of C, might have a DNF, D’ that is exponen- 
tially larger than the size of the actual DNF D for C. 
Observation 1 points out that if C’ is in fact a projec- 
tion of C, then the size of D’ will be bounded by the 
size of D. 

By a safe stage of first-stab, we mean a stage where 
the terms that have been passed to dnf-and-clause so 
far correspond to a projection of C. As long as we can 
ensure that the time spent by the algorithm in between 
these safe stages is small, we can guarantee that there is 
not enough opportunity for the algorithm to construct 
a DNF that is too much larger than the actual DNF D. 

We can employ these observations to our advantage 
in the case of read-k CNF formulas. We order the 
clauses in such a way so that after at most every kth 
clause passed to dnf-and-clause, the intermediate for- 
mula C’ corresponds to some projection Ci of C, hence 
is a safe stage. In between safe stages, the intermediate 
formula does not have a chance to grow by a factor of 
more than C(n”), where n is the number of variables, 
and k is constant. 

Algorithm read-k-cnf-to-dnf (Figure 1) begins with 
the projection Cs that sets all variables to 1. The al- 
gorithm then iteratively “unprojects” each variable zi 
such that at most k clauses of C that had been projected 
away because of xi, now “reappear”. We show that Al- 
gorithm read-k-cnf-todnf works correctly in polynomial 
total time. 

Theorem 2 Let C be a read-k monotone CNF formula 
over n variabIes. Then read-k-cnf-to-dnf(C) outputs the 
DNF formula D equivalent to C in time O(lDl . nk+‘). 

Proof: We first argue that the algorithm halts with 
the correct output and then discuss the algorithm’s ef- 
ficiency. Let Pi be the set of clauses of Ci that are not 
contained in Ci-1. Step 3 is executed by read-k-cnf-to- 
dnf for each value of i between 1 and n. During such 
a step, for each clause c in Pi, the statement G t dnf- 
and-clause(G, c) is executed. Since the clauses of C are 
exactly the disjoint union PI U 9 U . . . U P,,, it follows 
from the discussion in Section 3 and the correctness of 
first-stab that the algorithm processes all clauses, and 
outputs the DNF equivalent to C. 

To see that the algorithm runs within the stated 
time bound, first note that for each k, 1 5 k 5 n, 
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read-k-cnf-to-dnf(f) 

Input: read-k CNF monotone formula C 
Output: DNF formula D equivalent to C 

1. G t True 
2. for i = 1 to n 
3. for each clause c of C, that is not in Ci-1 
4. G t dnf-and-clause(G, c) 
5. return G 

Figure 1: An algorithm to obtain a DNF representation of a read-k CNF formula 

after the iteration of the for loop of step 2 with i = 
k, the algorithm is at a safe stage, because the DNF 
returned is the projection Di. We need to show that the 
formula does not grow too large in between safe stages. 
Since C (hence Ci) is read-k, during any execution of 
the for loop in step 3 dnf-and-clause is called at most 
k times, because there are at most k terms that are in 
Pi. Moreover, after each call of dnf-and-clause in step 4, 
the growth of the intermediate DNF G is bounded by 
a factor of n, since it is the result of multiplying G by 
a clause of size at most n. Consequently, after calling 
dnf-and-clause (at most) k times (i.e., until the next safe 
stage is reached), the size of each intermediate formula 
G between safe stages can grow to at most 1Dl.n”. Once 
the next safe stage is reached, the size of G is guaranteed 
again to be at most 1 DI. Since there are n iterations of 
the loop in step 2, and for each iteration of this loop, 
at most k calls are made to dnf-and-clause on a DNF 
formula of size at most 
is bounded by O(lDl . n i, 

DI . nk, the total running time 
+l). 0 

Observe that a dual statement can be made for read- 
k DNF formulas - namely, that there is a polynomial 
total time algorithm that converts read-k DNF formulas 
into their corresponding CNF formulas. 

In addition, it is possible to show that if the CNF 
formula C has the property that each variable occurs 
at most k times or at least (Cl - j times, then we can 
efficiently find a DNF representation of C. For example, 
a formula where each variable appears in at most one 
clause or all but one clause is: 

(The variables 21, x2,23, x4 appear in at most one clause 
and the variables x5,%6 appear in all but one clause.) 

To see how to obtain the DNF for such a formula, 
note that the clauses of C can be partitioned into those 
that consist exclusively of variables that occur in at 
least (Cl - j clauses (call these Tc-~) and those that 
do not. If we unproject all the variables that occur in 
all but j clauses then we obtain a subset of the clauses 
in the CNF formula C, namely Tc-J. For any subset 
of the clauses of C, each variable appears in all but j 
clauses. Thus, for Tc-j, each variable appears in all 
but j clauses. Note that any minterm of a CNF for- 
mula where each variable occurs in all but j clauses has 
length at most (j + 1) - if x occurs in all but j clauses, 
including x in a term means that all but j clauses are 

hit, and there are at most j ways to hit these remaining 
clauses. Since Tc-, has a DNF representation where 
each term has length at most (j + l), we can enumerate 
all such possible terms (there are O(nj+2) such terms) 
and eliminate those that are not consistent. Using this 
DNF formula as a starting point for algorithm read-k- 
cnf-to-dnf in Figure 1, we can iteratively unproject the 
remaining read-k variables and call dnf-and-clause for 
each new term. 

Claim 3 Let C be a monotone CNF formula where each 
variable either appears in at most k clauses or all but 
j clauses. There exists an algorithm that finds a DNF 
representation of C in time O(~ZJ+~ + )g) . nkc’). 

Finally, it is possible to show that the claim can 
be extended to the class of unate CNF formulas where 
each variable appears in at most k clauses or all but j 
clauses. (A formula is unate if each variable does not 
appear both negated and unnegated.) 

5 MEMBERSHIP QUERIES 

We now consider a more general version of the problem 
where the algorithm has access to a membership oracle 
only instead of the actual read-k CNF formula. Before 
giving an algorithm that uses membership queries ex- 
clusively, we present a few alternative approaches that 
assume we have C. These approaches shed light on how 
C can be replaced with a membership oracle. 

The algorithm read-k-cnf-to-dnf constructs the DNF 
Di from Di-1 by iteratively processing clauses in Pi 
(where, as in the proof of Theorem 2, Pi is the collection 
of clauses in C, that are not in Ci-1). An alternative 
is to process the clauses in Pi all at once to first obtain 
a DNF for the conjunction of clauses of P,, which we 
denote by DNF(APi), and then conjoin DNF(r\P,) to 
Di-1. Stated more precisely, D, is characterized by: 

D, = DNFIDipl A DNF(r\P,)] 

The first two methods of computing D, are, in fact, 
based on finding DNF(/\P,) in a different manner. 

Exhaustive Method: The obvious way to find the 
formula DNF(APi) is to simply multiply out the clauses 
in Pi. The critical observation here is that lP,l 5 k 
since C is read-k. Consequently, repeatedly distributing 
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clauses over clauses (each of length < n) requires time 
O(nk). Conjoining D;-l (whose size & bounded by IDI) 
with a formula of length nk requires time O(jDl . n”). 
After eliminating redundant terms, we know that ) DiJ 5 
JDJ, and we are once again at a safe stage, prepared to 
compute Ditl. 

k-DNF Method: Since IPil 5 k, it is easy to see that 
each term in DNF(r\Pi) has length at most k. Thus, Pi 
has a /c-DNF representation. DNF(APi) is easily com- 
puted by the following characterization: 

DNF@P;) = v{t : ItI 2 k and t + Pi} 

The remainder of the computation of Di proceeds in a 
manner similar to the Exhaustive Method. 

Projection Method: Since each term in Di is a con- 
junction of a term in Di-1 and some term of length at 
most k, every implicant u of Di (equivalently, of Ci) is 
in the set 

U = {S A t : s E Di-1, ItI 5 k,t c (~1,. . . ,xc~}}. 

Thus, we can enumerate every such u E U (there are 
only O((D( . nk) such terms) and include u in Di if and 
only if u implies Ci. If C is available, we can determine 
Ci, and check whether or not u implies Ci immediately. 

Up to this point we have assumed that the CNF C is 
provided to the algorithm. We turn now to the question 
of how C can be replaced with a membership oracle. 
Actually, we begin by showing how we can replace C 
with a membership oracle for Ci. Using the Projection 
Method, we can test whether or not u implies Ci by 
simply testing whether or not the characteristic vector 
xu of u is a positive example of Ci. (The characteristic 
vector of a term t contains a 1 in position i if Zi appears 
in t and a 0 in position i otherwise.) While a mem- 
bership oracle for Ci is not available, we can simulate 
such an oracle with a membership oracle for C, since by 
definition 

C,(X) =C(Z1,...,2i,l,...,l). 

Summarizing, the algorithm proceeds as follows: For 
each projection Ci for i ranging from 0 to n, using the 
DNF we have computed from Di-1, we test if u -+ Ci 
where u is the conjunction of some term from Di-1 and a 
term of length at most k over the variables {xl,. . . , Zi}. 
We determine if u is an implicant of Ci by posing a 
membership query on the example y, where the jth bit 
of y is (x,,)j if j 5 i and 1 otherwise. We keep the term 
u in Di if and only if the membership query returns true. 
The algorithm is given in Figure 2. Thus, we have: 

Theorem 4 The class of monotone functions f express- 
ible as read-k CNF formulas is learnable with member- 
ship queries aione in time O(JDNF(f)J .r~~+~). 
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