
On Identifying Stable Ways to Configure Systems

Gagan Aggarwal
�

Mayur Datar
�

Nina Mishra
�

Rajeev Motwani
�

Abstract

We consider the often error-prone process of initially
building and/or reconfiguring a computer system. We for-
mulate a new optimization framework for capturing cer-
tain aspects of this system (re)configuration process. We de-
scribe offline and online algorithms that could aid opera-
tors in making decisions for how best to take actions on
their computers so as to maintain the health of their sys-
tems.

1. Introduction

The purpose of this paper is to describe algorithms that
enable operators to build and alter systems in ways that en-
sure their systems remain healthy and stable. Our efforts
are directed towards helping operators since many studies
suggest that the lack of sufficient knowledge on the part
of operators tends to be the largest cause of system fail-
ures [7, 12, 5]. One study shows that over half of Internet
service failures are due to operator error [12, 5], specifi-
cally hardware or software system misconfiguration. In ad-
dition, operators account for the largest fraction of the cost
of systems (some figures indicate that operators cost 3 to 18
times more than the cost of the hardware itself [5]). Finally,
operators have the single largest influence on time to re-
cover from system failures [7, 12]. Consequently, our algo-
rithms are directed towards helping operators initially build
and also change their system configurations.

Despite the fact that operators are the largest cause of
system failures, they are also the greatest source of knowl-
edge regarding how to avoid system failures. Thus we focus

� gagan@cs.stanford.edu. Department of Computer Science,
Stanford University. Supported in part by a Stanford Graduate Fel-
lowship, NSF Grant ITR-0331640 and NSF Grant EIA-0137761.�
datar@cs.stanford.edu. Google Inc. Supported in part by
NSF Grant EIA-0137761.�
nina.mishra@cs.stanford.edu. HP Labs and Stanford Uni-
versity. Supported in part by NSF Grant EIA-0137761.�
rajeev@cs.stanford.edu. Department of Computer Science,
Stanford University. Supported in part by NSF Grants IIS-0118173,
EIA-0137761, and ITR-0331640, an SNRC grant, and grants from Mi-
crosoft and Veritas.

on methods for enabling operators to benefit from the expe-
riences of other operators so as to create more stable sys-
tems.

In order to accurately direct operators, systems need to
be properly instrumented to collect data about operator ac-
tions and system health. Enriquez, Brown, and Patterson ar-
ticulated the need for instrumentation by drawing on the ex-
periences from the very reliable public telephone network
system [4]. One of their findings was that the detailed logs
collected by operators after each service failure was criti-
cal to understanding and improving reliability. In a related
manner, we propose to collect data about other operators
by recording more precise information about the health of
a system after an operator action. In some cases, computer
systems may be instrumented to automatically collect the
needed data. In other cases, it may be necessary for an op-
erator to manually record such information (as in the case of
the telephone network). By collecting data about the health
of a system after each operator action, we hope to create a
weighted graph (described below) that we can then subse-
quently analyze in order to suggest healthy ways for opera-
tors to perform actions.

In order to motivate the generation of this weighted
graph, we initiate a theoretical investigation into algorithms
that can exploit this graph in order to suggest to operators
safe ways to change the state of their system. The problems
studied are action-based: Given a machine’s current state �

and given a sequence of actions, how can an operator find
an effective way to execute those actions (by possibly per-
forming suitable intermediate actions)? We formally define
the problems in Section 1.3.

1.1. A Motivating Example

Prior to formally defining the problems, we begin with a
sample scenario that is the source of many system problems:
the system (re)configuration problem. Consider specifically
the procedure a system administrator follows in order to ini-
tially build a computer system according to a users’ require-
ments. The requirements typically take the following form:
build a system with software X running stably, software Y
supporting Z simultaneous users, etc. The operator trans-
lates these requirements into several subgoals.

1. Install Appropriate Drivers - to enable the operating
system to properly communicate with the hardware

2. Install Level 1 Applications - these are widely-used ap-
plications where most bugs have already been identi-
fied

3. Install Level 2 Applications - these are less understood
applications where some bugs have been identified

4. Install Level 3 Applications - these applications are
largely unknown to the operator, and are also very
rarely used.

The first subgoal is to install the appropriate drivers so
that the operating system may properly communicate with
the hardware. The order in which the drivers are installed
is critical to assuring a healthy system. For a new piece of
hardware, an operator may spend a substantial amount of
time identifying the appropriate drivers and proper order in
which to perform the installation. Since this path must be
followed for all systems of a given hardware type, and since
the success of this part of the installation is crucial to the re-
maining steps of the process, it is worth putting effort into
finding the best path to the needed set of drivers. Indeed,
it is often the case that operators document this path so that
subsequent installations proceed smoothly to this state. This
problem can be cast in a model that has previously been
studied in the networking community and is mentioned in
Section 2.

The second subgoal is to install Level 1 Applications,
i.e., those with an extremely large user base where almost
all bugs have already been fixed. Examples of such appli-
cations are Microsoft Office and Internet Explorer (IE). For
this part of the process, the operator may use knowledge
about previous installations to determine a good method for
installing an ordered sequence of applications. In particu-
lar, an operator may seek to find a good way to first install
IE and then install Office, since IE sets up network func-
tionality used by Office. This problem is similar to the Of-
fline Ordered problem defined in Section 1.3.

The third and fourth goals are to install Level 2 and
Level 3 Applications. This set of applications are less un-
derstood by operators since they tend to have a smaller user
base and don’t necessarily have most bugs resolved. Fur-
thermore, since fewer people request installation of Level
2 and Level 3 applications, there is less incentive for oper-
ators to perform these steps correctly. Thus our algorithms
for the Offline Ordered problem should again be useful for
this step.

Once a system has been successfully built, an operator
may be subsequently called upon to install additional soft-
ware in an online fashion. In such a setting, the start state is
the boot state and the goal of the operator is to find a stable
way to perform the application installation. Once an appli-
cation has been installed, there may be a subsequent need to

install another application. Thus the operator receives a se-
quence of online actions and must always find a stable way
of performing these actions. This problem is similar to the
Online Ordered problem defined in Section 1.3.

1.2. The Model

We formulate a new optimization framework for cap-
turing certain aspects of the system (re)configuration prob-
lem. We model the problem as a directed, multigraph ��������	��

. The vertices in
�

represent the set of possible states
of a system. The states may be determined by any num-
ber of system configuration parameters, e.g., the hardware
configuration (size of memory, type/speed of chip, amount
of disk space, kernel parameters), the software configura-
tion (installed patches, drivers, applications). There is also
a designated start state whose interpretation varies depend-
ing on the problem being solved. In the event that a system
is first being built/configured, the start state may simply be
the hardware configuration. In the event that a system is be-
ing reconfigured, the start state may be the state of the sys-
tem at “boot” time.

The edges in
�

correspond to different actions that
can be performed on the system. Examples of actions in-
clude INSTALL DRIVER MDAC, INSTALL ORACLE 8I,
INSTALL PATCH 29296, etc. Given that the system is in
state � , the execution of an action corresponding to an edge� � ��
�
 , transforms the state of the system from � to

. (It is

possible that in certain cases ���

, in which case the edge� � ��
�
 corresponds to a self loop.) The colors represent pos-

sible actions and the color ��� of an edge ��� � � ��
�
 corre-
sponds to the action that transforms the system from state
� to state

. Different edges may correspond to the same

action and thus will have the same color. The edge-length� � �
 of an edge ��� � � �	
�
 is the cost, in terms of system
health, of executing the corresponding action in state � . For
instance, we could associate a probability � � �
 with each
edge ��� � � ��
�
 , which is the conditional probability that
a particular software does not work reliably when the ac-
tion corresponding to � � is executed in state � . In that case,
the conditional probability of success associated with a path
is the product of the success probabilities along the edges in
the path. To obtain additive path lengths, we then define the
edge-lengths as the negative log of the success probability,
i.e.,

� � �
 �������! "� � �
 . We allow multiple edges between
two states, each possibly of different length and color, re-
taining only the shortest length edge for each color if there
are multiple of the same color. In general, we do not as-
sume that edge lengths are symmetric.

Note that the way in which the knowledge of other op-
erators is utilized is in the edge lengths, since they indi-
cate the likelihood a particular action will negatively influ-
ence the health of the system. In addition, the set of states

is completely determined by how other operators have con-
figured their systems. Thus while the total number of pos-
sible states is quite large, the total number of states reached
by a large fraction of operators is likely to be significantly
smaller.

1.3. Problem Statement and Results

We formulate and investigate specific Action-based op-
timization problems related to this graph. In the problems
considered, the operator is given a current state of the sys-
tem, � , and a collection of actions ��� � ����� � ��� , specified in an
ordered or unordered fashion, and if ordered, offline or on-
line fashion. The goal is to find a safe way to execute those
actions starting from state � . In the first variant, the actions
are ordered and provided in an offline fashion.

Problem 1 (Offline Ordered Problem) Given a graph
� � �����	��

with start state � and edge lengths
� � �
 and

given an offline sequence of actions ��� � ����� � ��� , find a min-
imum length path starting from � that covers the ac-
tions in the given order. A path covers a particular action
��� if some edge on the path has that action.

Note that the path may include intermediate edges that may
or may not have the actions � � � ����� � � � . We give a simple
dynamic programming algorithm for optimally solving this
problem.

In the next problem, the actions are again ordered, but
now provided one at a time in an online fashion, i.e., one
at a time after the previously-specified action has been per-
formed.

Problem 2 (Online Ordered Problem) Given a graph
� � �����	��

with start state � and edge lengths
� � �
 and

given an online sequence of actions � � � ����� � � � , find a mini-
mum length path starting from � that covers the actions in
the given order.

We show that a natural greedy algorithm has unbounded
competitive ratio1. We give a

�
	�� ��

 deterministic lower
bound for this problem and also a deterministic algorithm
with an � ��� ���
 competitive ratio. In addition, we show that
a ���! ���� ��� � -competitive ratio can be obtained via a random-
ized algorithm.

Finally, we consider the problem where the actions are
provided offline, but in an unordered fashion.

Problem 3 (Offline Unordered Problem) Same as the
Offline Ordered Problem, except that the colors are speci-

1 The competitive ratio of an online algorithm (for a minimization prob-
lem) is the maximum over all input instances of the ratio of the cost of
the solution produced by the online algorithm to the cost incurred by
an optimal offline algorithm that knows the entire input sequence a pri-
ori.

fied as a set
��� ��� � ��� � ����� � �����
 , rather than a sequence. The

path may cover the colors in any order.

We show this problem is hard to approximate.

2. Related Work

Metrical Task Systems. The Action-based problems are
closely related to the Metrical Task System (MTS) prob-
lem (see Chapter 9 [1]). In an MTS instance, we are
given an undirected graph � � �����	�

(a metric space)
and a set of tasks with a cost of executing each task in
each state and a cost of changing states as edge lengths.
Given a task sequence, the goal is to find a way of execut-
ing the tasks so that the sum of the total cost of executing
the tasks and the total cost of changing states is minimized.
Action-based problems and MTS are different to the ex-
tent that in an MTS, a task does not force a change of
state and also each task can be executed in any state (al-
though if the cost of executing a task in a state is infinite,
the MTS can be forced to change state). In fact, many so-
lutions to online MTS exploit the possibility of staying in
a fixed state while executing multiple tasks [1] – some-
thing that is not possible in our case.

Shortest-Path Problems. One problem formulation that fol-
lows from Step 1 of the motivating example “Install Appro-
priate Drivers” is the following: Given a graph � � � � � ��

where each edge has a weight

� � �
 and given a designated
start and end state, find a minimum weight path from the
start to the end state. The relationship between this problem
and installing appropriate drivers is that an operator may
know the current set of drivers and the final set of drivers
(start and end state) and may just wish to find a path from
the start to the end state so as to ensure that the health of
the system can be maximized. We observe that this prob-
lem can be solved via Dijkstra’s shortest path algorithm.

Generalizing this further, one may consider the setting
where each edge has a cost

� � �
 and multiple weights� � � �
 � ����� � ��� � �
 and the goal is to find a minimum cost
path � from the start to the end state subject to the constraint
that the edge weights do not exceed a specified threshold,
i.e., minimize ��! � � � �
 so that ��! � � � � �
#"%$ � for spec-
ified thresholds

$ � , & �'
 � ������(. Such a problem statement
corresponds to the setting where an operator may wish to
find a path that minimizes the amount of work required by
the operator and yet also ensures that the probability soft-
ware X works is greater than .95, the probability that soft-
ware Y works is greater than .95, etc. This optimization
problem has been studied in the context of network routing.
When designing a network routing algorithm, many factors
come into play: a feasible route must be discovered, e.g.,
one that satisfies bandwidth, delay, and jitter constraints
while also efficiently utilizing network resources. The prob-
lem is known as the Multi-Constrained Optimal Path Prob-

lem. In the case that there is only one weight � � � �
 , the
problem is known to have a polynomial-time approxima-
tion scheme [8]. In the case where each edge has multiple
weights, algorithms are known that find a path with cost
no larger than the optimum, but that exceed the specified
thresholds by a small factor [6]. Heuristics have also been
studied by Korkmaz and Krunz [9] as well as Yuan and
Li [14]. Other results from the network routing literature
can be found in [13, 10, 3].

3. Algorithms

In this section we describe our results for each of the
three Action-based problems.

3.1. Offline Ordered Problem

This is the easiest variant of the Action-based problems.
We present a simple offline algorithm that solves the prob-
lem optimally. The algorithm uses dynamic programming
and is similar to the offline algorithm for MTS (see Section
9.4 [1]). For each state � , we define a variable

� � � � &
 which
represents the length of the shortest path from � to � that
covers the first & colors. We set

� �
�
���
 � �

, and for ���� �

we set
� � � ���
 � � �

�
� �
 .2 The following recurrence com-

putes
� � � � &��

 assuming

� �
 � &
 has already been com-
puted for all

	� �
.

� � � � &
�

 � �
���� ��� ����� � �
� ��!������������! �"$#�%
� � � � &
 � � � � �	
�
 � � �
 � �

In addition to the preprocessing of computing all-pairs
shortest paths, the running time of the algorithm is
� � � � � � �
 , where � is the length of the color sequence.
Note that the additional colors on the intermediate edges
correspond to suggested actions that the user should per-
form in order to sustain the system’s health.

3.2. Online Ordered Problem

First we show that the natural greedy algorithm has un-
bounded competitive ratio. The greedy algorithm works as
follows: On seeing a request for a color � in state � , if� � ��
�
 �'&)(��
��� �*�+� � �-,/.1032�4�5 416 �

� � � � � �
 � � � � ��
�
�
 , then the
algorithm traverses edges

� � � �
 and
� � ��
�
 . Consider the

state space represented in Figure 1. Starting in state
 , if
given a request sequence of colors 7 ��8�� 7 ��8 � 7 � ����� , the
optimal algorithm incurs a cost of
9��: while the greedy al-
gorithm incurs a cost equal to the length of the sequence.

2 Throughout, we assume that the graph is complete, i.e., there is an
edge between each pair of states. This can be achieved by adding in
any missing edge ;*<>=@?BA with length equal to that of the shortest path
from < to ? . The preprocessing involves computing all-pairs short-
est paths in the graph C .

3

A,B

0

A,B
1+ε

1

2

1

1+ε

Figure 1. Counterexample for Greedy

As mentioned earlier, Action-based and MTS are closely
related. An instance of MTS can be reduced to an in-
stance of the Online Ordered Problem as follows: The graph
� � � � � ��

for the Online Ordered Problem instance is
the same as the metric space of the MTS instance. In ad-
dition, we add the following edges to � : for every pair of
state � and task D , such that there is a finite cost D � �
 of ex-
ecuting the task in that state, we add a self-loop on � of
length D � �
 and color D . This reduction implies that the On-
line Ordered Problem is at least as hard as MTS in terms of
competitive ratio. Thus, the

� 	�� �

 lower bound for MTS
[2, 11] also applies to the Online Ordered Problem.

We next give a reduction from the undirected case of the
Online Ordered Problem to MTS that implies an � � � � �

competitive ratio for undirected Online Ordered. (The ar-
gument will also apply to the directed case as we describe
later.) In the undirected case, for each edge

� � ��
�
 there is
also an edge

�
 � �
 of the same length and color. Given
an Online Ordered instance � � � � � ��

, we define a met-
ric space �FE for MTS. At an intuitive level it is convenient
to view the construction of �FE from � as follows: make
two copies of � (� � � � �) and for each of the copies, place
an imaginary node in the middle of every edge, i.e., for
each edge � � � , create a node � � � � � and � � � � � .
Additionally “join” the two copies � � � � � , by connecting
all pairs of nodes corresponding to the same edge � in �
(� � � ���) with edges of length

� � �
 respectively. These imag-
inary nodes are the nodes (states) in �GE . For adjacent edges
� � �HE in � , we will also introduce appropriate edges connect-
ing � � � � E � � ��� � � E� .

Formally, the state set
� E of �IE consists of� E � � ��J � � , where

� � � � � � �
. Thus, there is

a state � � � � � (respectively, � � � � �) correspond-
ing to each edge � � � . For every pair of nodes � � � � � cor-
responding to the edge � in � , we add the edge

� � � � � �

of length

� � �
 . In addition, for every ordered pair of adja-
cent edges ��� � � �
K
 and �HE�� �LK ��M�

in
�

, there are four
edges

� � � � �NE �
 � � � � � �HE�
 � � ��� � �HE �
 and
� ��� � �NE�
 in �IE , each of

length O � � �LP O � ��Q �� . It can be shown that �FE is indeed a met-
ric, assuming that all edge lengths are nonnegative. Corre-
sponding to each color � , we define two tasks � � and � � as
follows: The task � � (respectively, � �) when executed in any
node in

� � (respectively,
� �) that corresponds to an edge of

color � has cost zero, but has cost R on all other nodes. Fi-

nally, for any sequence of requests � ��� � � ��� � � � ����� in
Online Ordered, we introduce a sequence of task re-
quests in MTS such that the odd tasks � � � � � � ����� generate
requests � � � � � � � � � ����� , while the even tasks

� ��� � � � ����� gen-
erate requests

� � ��� � � � � � ����� . Let ��� be any edge in
�

that is
incident onto the start state � in

�
; then, we choose � � � as

the start state for MTS. Let � be the largest edge-length in�
.

Lemma 3.1 Given any path � in � � � � � ��

starting at

state � , and covering a sequence of colors � ��� � � ��� � � � ����� ,
there exists a path �FE in �IE of length at most the length of
� plus � . Moreover, the path �GE visits a sequence of states
�$E � ��� E� � � E � ��� E� � ����� in �IE , where the cost of executing tasks
� � ��� � � � � ��� � � ����� , respectively is 0.

Proof: Consider the path � . Let � � � � � � ����� � �
	 denote the
sequence of edges in this path. The path � E is constructed
as follows: It starts from start state �
� � in �IE , and then traces
the edges � � � � � � ����� � �
	 in � by the corresponding states,
� � � � � (denotes � � � or � �� depending on the current state) cor-
responding to � � , in �IE . It “jumps across copies” � � � � �
of the state space, whenever required, to ensure that when-
ever the path � picks a new color, path � E is in a state
where the cost of the corresponding action is

�
. More pre-

cisely, if edge � � in path � picks a new color (in the se-
quence � ��� � � ��� � �����), then corresponding to � � , path �IE will
contain the state � � � ��P � � 	
��� �1P � , where the cost of that ac-
tion is

�
. This guarantees that corresponding to the color se-

quence � ��� � � ��� � � � ����� in � , path �FE visits a sequence of
states �-E � ��� E� � � E � ��� E� � ����� in �IE , where the cost of executing
tasks � � ��� � � ��� ��� � � ����� , respectively is 0. In addition, the
path �IE goes from � � � to � �*P �� or from � �� to � �*P �� when
the same edge occurs consecutively in the edge sequence
� � � � � � ����� � �
	 , i.e. � � � � ��P � .

Since the path � starts from the start state � , the first
edge � � is incident on � . By construction of �GE , the edge
��� corresponding to the start state �
� � in �IE is incident on � .
Thus, they are adjacent3. Moreover, since � is a path in �
any two consecutive edges in the sequence � � � � � � ����� � � 	
are adjacent. Thus, by construction of �GE the cost of go-
ing from � � � � � to � ��P �� � � , corresponding to the pair � � � � ��P � in
� , is equal to

� � � �
�� 	 � � � � ��P �
�� 	 . Moreover the first transi-
tion, if it exists, is �
� � to � �� � � with cost

� � � � �

 � � � � �
�
�� 	 .

Thus the total cost of the path �FE is equal to
� � � �

�� 	 �� � � �
 � � � ���
 � ����� � � � � 	�� �

 � � � � 	

�� 	
which is at most� � � �
 � � � ���
 � ����� � � � � 	

 ��� , where � as defined ear-
lier is the length of the longest edge in

�
. �

Lemma 3.2 Let �FE be any path in �FE that starts in � � � and
executes a sequence of tasks � � ��� � � ��� ��� � � ����� , i.e., visits a
sequence of states �>E � ��� E� � � E � ��� E� � ����� , where the cost of ex-
ecuting the tasks � � ��� � � � � ��� � � ����� is respectively zero. We

3 They could be identical in which case path ��� starts at ���� .

can translate �FE into a path � in � , starting in state � , and
of length at most twice the length of �GE plus � , such that it
covers the sequence of colors � ��� � � ��� � ����� .
Proof: Let � � � � ��� � � � �� # � � ���� � ����� � �
	�! denote the sequence
of states in path �IE , where each "�� is either
 or

	
. The se-

quence of tasks given as input to the MTS forces any fi-
nite solution to alternately visit states in

� � and
� � to exe-

cute the given sequence of tasks. This precludes any solu-
tion that involves staying in the same state. Thus, no two
adjacent states in the sequence can be identical. The path �
is constructed as follows: For every state � �� in � E , path �
crosses the corresponding edge � � in � , sometimes cross-
ing it twice. By construction, every pair of adjacent states
in the sequence � � � � � �� # � � ���� � ����� � � 	�! correspond to adjacent
edges in � . Consider an adjacent pair � �� � � ��P �� �"$# . The path
� crosses � � corresponding to � �� . After crossing � � , it ends
up on one of the two nodes corresponding to the edge � � . If
this is the appropriate node to cross � �*P � , i.e. � ��P � is also
incident on this node, then it crosses � �*P � corresponding
to � �*P �� *"-# . Otherwise, if after crossing � � it ends up on the
wrong node, it has to cross � � one more time in order to be
on the appropriate node to cross � ��P � . For the first state � � �
in the sequence, note that it corresponds to an edge ��� , ad-
jacent to the start state � in � . Thus, the cost of path �
in � is at most

	 � � � ���
 � � � � �
 � ����� � � � ��	
�
 . On the
other hand, since no two adjacent states in the sequence
��� � � � �� # � � �� � � ����� � ��	� are identical, the cost of path �FE is at
least

� � � �
�� 	 � � � � �
 � � � � �
 � ����� � � � � 	#� �
 � � � � 	
�� 	 .
Thus, the cost of path � is at most twice the length of �GE
plus � . �

The reduction described above is approximation-
preserving, i.e., if we have an online algorithm for MTS
with competitive ratio (, we can use it to solve the undi-
rected case of Online Ordered with competitive ratio

	 (.
The Work Function Algorithm (WFA) ([2] and Sec-
tion 9.4 [1]) can be used to solve the online MTS with com-
petitive ratio of

	�� E �
 where
� E is the number of states

in the metric space. Since the reduced instance has
	 � ���

states, we have a competitive ratio of $ � � � � 	 for the undi-
rected case of Online Ordered.

The above reduction also works for the general case of
Online Ordered when � � � � � ��

is a directed graph, al-
though the reduced MTS instance � E � ��� E � � E
 is no more
a metric, in that the edge lengths are not symmetric although
they do satisfy the triangle inequality. The Work Function
Algorithm (WFA) is

	 � E �
 competitive for such an asym-
metric case of MTS as well (Section 9.7 [1]), thus giving a
$ � � � � 	

competitive algorithm for the general Online Or-
dered problem.

While our discussion so far has been strictly about de-
terministic algorithms, by virtue of the fact that we have re-
duced our problem to an MTS problem, we note that the

competitive ratio can be improved to � � � � � � � via random-
ized algorithms for MTS [1].

To summarize, we have proved the following:

Theorem 3.1 There is a deterministic (resp., randomized)
algorithm that solves the Online Ordered Problem with an
� � � � �
 (resp., � � ���� ��� �) competitive ratio. There is no de-
terministic algorithm that can achieve a competitive ratio
better than

	 � �%
 .

3.3. Offline Unordered Problem

The following reduction shows that it is NP-hard to ap-
proximate the Offline Unordered problem to within any
bounded factor: Consider a SAT formula with

�
vari-

ables (� � � ����� � ���) and � clauses (
� � � ����� � �). Construct

a graph with
� �
 primary states

�
�	
 � � ����� ��
 � . Be-

tween each pair of states

 � � � and

 � , for
 " & " �
, there

are two vertex disjoint (induced) paths, whose intermedi-
ate states are disjoint with respect to all other paths. For
each clause

� � containing the variable � � , there is an edge
colored " in the first path. For each clause

� � contain-
ing the negation � � , there is an edge colored " in the second
path. The total length of each path is 1, with the length be-
ing uniformly divided amongst the edges in the path.
Thus, traversing the first path corresponds to setting
� � �
 and traversing the second path corresponds to set-
ting � � � �

. The request set of colors is the set
�
 � ����� � � �

which corresponds to satisfying all clauses. A feasi-
ble path of length at most

�
covering all the requested

colors gives a satisfying truth assignment for the SAT for-
mula, and, similarly, a satisfying truth assignment defines a
feasible path of length at most

�
. If there is no satisfying as-

signment, there is no path that covers all the requested
colors.

4. Future Work

Our efforts have so far only been directed towards de-
veloping theoretically sound algorithms for solving certain
action-based problems. We do recognize that there are re-
search obstacles to overcome in order to create the directed
graph that we assume we are given: collecting enough data
to have probabilities on edges will be difficult given that
systems are currently not instrumented to collect data at the
granularity we require. Given that a system is in some state,
our algorithms assume that we know how the health of a
system is affected after an operator action. As system col-
lection tools continue to mature, we believe that this type of
data will be available [4]. In addition, the number of pos-
sible states of a computer system is extremely large. More
research will have to be done to understand how the state
space can be reduced to a manageable size. This problem
can best be overcome once real data is available.

From an algorithmic perspective, many interesting ques-
tions also remain. Can our algorithms be extended to han-
dle the situation where there is a probability distribution
over the next state? For the Online Ordered Problem, can
we close the gap between the lower bound (

	�� �
) and
the upper bound ($ � � � � 	

= � � � �
) on the competitive ra-
tio of a deterministic online algorithm?

5. Acknowledgments

We thank Alan Lau for providing motivating examples
for the problem.

References

[1] A. Borodin and R. El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

[2] A. Borodin, N. Linial, and M. Saks. An optimal on-line
algorithm for metrical task system. Journal of the ACM,
39(4):745–763, Oct. 1992.

[3] S. Chen and K. Nahrstedt. On finding multi-constrained
paths. In Proc. of the IEEE International Conference on
Communications, pages 874 –879, 1998.

[4] P. Enriquez, A. Brown, and D. Patterson. Lessons from the
pstn for dependable computing. Workshop on Self-Healing,
Adaptive, and Self-Managed systems, 2002.

[5] A. Fox and D. Patterson. Self-repairing computers. Scientific
American, June 2003.

[6] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logo-
thetis. Efficient computation of delay-sensitive routes from
one source to all destinations. In INFOCOM, pages 854–858,
2001.

[7] J. Gray. Why do computers stop and what can be done about
it? Proc. of the 5th Symposium on Reliablity in Distributed
Software and Database systems, Jan. 1986.

[8] R. Hassin. Approximation schemes for the restricted shortest
path problem. Mathematics of Operations Research, 17:36–
42, 1992.

[9] T. Korkmaz and M. Krunz. Multi-constrained optimal path
selection. In INFOCOM, pages 834–843, 2001.

[10] T. Korkmaz, M. Krunz, and S. Tragoudas. An efficient algo-
rithm for finding a path subject to two additive constraints.
In Measurement and Modeling of Computer Systems, pages
318–327, 2000.

[11] M. Manasse, L. McGeoch, and D. Sleator. Competitive
algorithms for server problems. Journal of Algorithms,
11(2):208–230, June 1990.

[12] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do
internet services fail, and what can be done about it? 4th
USENIX Symposium on Internet Technologies and Systems,
Mar. 2003.

[13] P. Paul and S. Raghavan. Survey of qos routing. In Proc.
of the 15th Intl Conference on Computer Communication,
2002.

[14] X. Yuan and X. Liu. Heuristic algorithms for multi-
constrained quality of service routing. In INFOCOM, pages
844–853, 2001.

