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Abstract

One view of computational learning theory is that of a learner acquiring the knowledge of
a teacher. We introduce a formal model of learning capturing the idea that teachers may have
gaps in their knowledge. In particular, we consider learning from a teacher who labels examples
“4” (a positive instance of the concept being learned), “—” (a negative instance of the concept
being learned), and “?” (an instance with unknown classification), in such a way that knowledge
of the concept class and all the positive and negative examples is not sufficient to determine the
labelling of any of the examples labelled with “?”. The goal of the learner is not to compensate
for the ignorance of the teacher by attempting to infer “4” or “—” labels for the examples
labelled with “?” but is rather to learn (an approximation to) the ternary labelling presented
by the teacher. Thus, the goal of the learner is still to acquire the knowledge of the teacher, but
now the learner must also identify the gaps. This is the notion of learning from a consistently
ignorant teacher. We present general results describing when known learning algorithms can
be used to obtain algorithms that learn from a consistently ignorant teacher. We investigate
the learnability of a variety of concept classes in this model, including monomials, monotone
DNF formulas, Horn sentences, decision trees, DFAs, and axis-parallel boxes in Euclidean space,
among others. Both learnability and non-learnability results are presented.

“Consistency requires you to be as ignorant today as you were a year ago.”

— Bernard Berenson (1865-1959)
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1 Introduction

Building machines that learn from experience is an important research goal in artificial intelligence.
Considerable attention is devoted to the theoretical study of machine learning for the domain of
concept learning. The general concept learning problem is to learn to discriminate between objects
that satisfy some unknown rule, or “concept”, and those that do not. More formally, we assume a
space X’ of possible examples, and that some subset f C X" cleaves A into positive examples x € f,
and negative examples @ ¢ f. The unknown set f is referred to as the target concept, and is often
assumed to come from some known concept class C of possible target concepts. Equivalently, we
view f as a boolean-valued function on X', with f(z) = “47 (respectively, “~") indicating that z is
a positive (respectively, negative) example of f. Typically, a learning algorithm obtains examples
of f either randomly from nature, or from a teacher, and is told which examples are positive and
which are negative. Often the learning algorithm is also allowed to pose a membership query which
is an example z of its own choice, in response to which a teacher classifies x as either a positive or
negative example. Such membership queries model not only the interaction with a human expert,
but perhaps also the careful crafting of experiments by a learning agent in order to observe the
response of the environment.

Variations of the basic theoretical models of concept learning allow for the possibility that the
information given to the learning algorithm does not come from an “omniscient” teacher, but in-
stead may be inaccurate. Nonetheless, in most of these variations, it is assumed that underlying the
inaccurate information is some “correct” classification of examples as positive or negative examples
of the concept to be learned. Thus, it is assumed that there is a well-defined border separating
positive examples from negative ones. In practice, though, classification is often unclear. For ex-
ample, an algorithm designed to read handwritten cheques will likely encounter many handwritten
characters that look somewhat like a “4”, and somewhat like a “9”. In such cases, where even an
expert does not have the knowledge to classify all objects, determining which objects are unclassi-
fiable seems at least as important as determining the classification of objects which are classifiable.
From the learner’s perspective, the regions of the example space that defy classification create a
blurry border between the positive and negative examples that the learner must determine.

In this paper we introduce a formal learning model in which the teacher (or environment) with
which the learner interacts has incomplete information about the target concept due to intrinsic
uncertainty, or due to gaps in the teacher’s knowledge. A key requirement we place on the teacher
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is that all examples labeled with (indicating unknown classification) are consistent with the

teacher’s background knowledge about the concept class C from which the target concept is known to
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belong. In particular, the classification of any example labeled with should not be determinable

from the positive and negative examples, and knowledge of the concept class C. (Thus the teacher



is “consistently” ignorant.) The goal of the learner is similar to that for standard learning models:
construct a reasonably accurate approximation to the knowledge of the teacher. However, in this
case, the learner must construct a ternary classifier (i.e. with values {+,—,7}) that, with high
probability, classifies most examples exactly as the teacher does. We call such a ternary classifier
a blurry concept, to distinguish it from standard concepts, which are typically boolean-valued
classifiers. By “learning a blurry concept” we mean the problem of learning a (standard) concept
from a consistently ignorant teacher.

We first review, in Section 2, the standard “PAC” learning model and discuss related work.
In Section 3 we give precise definitions for the blurry concept class C7 induced by a concept class
C containing nonblurry (boolean-valued) classifiers; we consider basic structural properties of the
blurry concepts in C», and show that each such concept f» € (- is naturally representable by
unions and intersections of boolean-valued concepts from C. This representation as unions and
intersections of boolean-valued concepts leads to an exact characterization of blurry concepts of
any class Cr as an agreement of boolean-valued concepts from C. Intuitively, an agreement of a set
F C C of concepts is a ternary function, that on input =z, if all f € F agree on the classification

“?” otherwise. Hence, the problem of learning

of z, outputs the label they agree on and outputs
concepts from C from a consistently ignorant teacher (or learning the ternary blurry concepts from
C-) is exactly the problem of learning agreements of (boolean-valued) concepts from C.

We show in Section 4 that for any concept class C for which efficient PAC-learning algorithms
are known, these algorithms can be used to build an efficient algorithm for learning the agreement
of nested concepts from C. For the problem of learning the agreement of concepts from C that are
not necessarily nested, we show that if the intersection and union of arbitrarily many concepts from
C are learnable, then C is learnable from a consistently ignorant teacher. As a corollary of these
general techniques, we show that blurry (propositional) Horn clauses and blurry CLASSIC sentences
(a first-order language for representing knowledge) are learnable. We also show, for example, that,
with some restrictions, blurry monomials, blurry monotone DNF, blurry decision trees and blurry
DFAs are learnable.

While there are not many concept classes C for which efficient algorithms are known for learning
unions and intersections of concepts from C, under certain conditions it is still possible to learn
the agreements of concepts from C. For example, consider a class C for which the intersection of
concepts from C is learnable, yet there is no known efficient algorithm to learn the union of concepts
from C. In some cases it may still be possible to efficiently learn C from a consistently ignorant
teacher by using information gained by learning the intersection of concepts in the agreement to aid
in learning the union of these concepts. The learner’s ability to use intersection (union) information
to obtain positive results for learning unions (intersections) of concepts from classes for which no

algorithms are currently known is intriguing. In Section 4.3 we give an algorithm to learn the



agreement of s “boxes” in d-dimensional Euclidean space in time that depends polynomially in s
and 2¢, assuming that there is at least one point common to all of the boxes. To do so, we learn
both the intersection and union of such boxes. While there are efficient algorithms for learning
the intersection of boxes, all known algorithms to learn the union of such boxes using random
examples and membership queries requires time at least s? or d®, and hence are polynomial-time
algorithms only for one of s, d constant. However, our algorithm for learning the agreement allows
d to be as large as logs. Our advantage comes from the ability to use information about the
nonempty intersection (in this case, a single point is sufficient) in learning the union. To illustrate
the limits of this approach, in Section 5 we show that learning blurry [-term DNF formulas, blurry
decision trees, and blurry Horn sentences, is as hard as learning DNF formulas in standard learning
models. The learnability of DNF formulas remains a centrally studied unsolved problem; thus,
while [-term DNF formulas, decision trees, and Horn sentences are learnable in standard models
[Ang87a, Bsh95, AFP92], learning these types of concepts from a consistently ignorant teacher
would appear to be much more difficult. We also show in Section 5 that the problem of learning
blurry DFAs is intractable, given standard cryptographic assumptions. Once again, while DFAs
are learnable in standard models [Ang87b], their blurry counterparts seem much harder to learn.

In Section 6 we consider the extension of the model of a consistently ignorant teacher to the
exact learning model using equivalence (and membership) queries, and demonstrate that analogous
results hold in this more demanding learning model.

We conclude with a summary and some open questions in Section 7.

2 Background and Related Work

Boolean formulas: Many of our results are in the boolean domain. Let V = {vy,...,v,}
be a set of boolean variables. A literal is a boolean variable v; or its negation w;. Monomials
are propositional boolean formulas that can be expressed as a conjunction (AND) of (negated or
unnegated) literals. DNF formulas are disjunctions (ORs) of monomials (also called terms), and
k-DNF formulas are DNF formulas where each term contains at most k literals. A Horn clause is a
1-DNF formula containing at most one unnegated literal. A Horn sentence is a conjunction (AND)
of Horn clauses. CNF formulas are conjunctions (ANDs) of 1-DNF formulas (also called clauses),
and k-CNF formulas are CNF formulas where each clause contains at most & literals. A DNF or
CNF formula is monotone if it contains only unnegated literals. A formula is unate if no variable
appears both negated and unnegated. A decision tree is a rooted binary tree with internal vertices
labeled with variables, and with leaves labeled “+” or “—7.

Boolean formulas over n variables as described above naturally represent boolean functions from

the example space X, = {0,1}" to {0,1} in the usual way. For example, if m is a monomial, and



x € X, then m(z) = 1 iff for each literal ¢ € m, the ith bit 2; of 2 is 1 if { = v;, and z; = 0 if
¢ =7;. Similarly, f(z) =1 for f a DNF formula iff for at least one term ¢ of f, t{(2) = 1. The value
of a decision tree on a boolean input vector x is the label of the leaf reached by following a branch
from the root, and branching left at a vertex with label v; if ; = 0, or branching right if z; = 1.

We assume basic familiarity with the definitions of deterministic finite automata (DFAs) [HUT79].
The Crassic description logic is a first-order logic used for representing objects and their relation-
ships. A description of CLASSIC is beyond the scope of this paper; we note only that positive results
for the learnability of CLAssIC sentences have recently been given [CH94c, CH94b, FP94].

It is helpful to view the example space X, as a lattice with componentwise “or” and “and” as
the lattice operators. The top element is the vector {1} and the bottom element is the vector
{0}". The elements are partially ordered by <, where 2 < y if and only if for all i, x; < y;. If

x <y, we say, x is below y or y is above .

Standard learning models: In Valiant’s distribution-free, or probably approximately correct
(PAC) learning model [Val84], the learner’s goal is to infer how an unknown target function f,
chosen from some known concept class C, classifies all examples from the domain A'. Often C is
decomposed into subclasses C,, according to some natural dimension measure n. For example, in
the boolean domain, n is the number of variables. Let A}, denote the set of examples to be classified
for each problem of size n, and let X' = UnZl X, denote the erxample space. We say each x € X
is an ezample. For each n > 1, we define each C,, C 2% to be a family of concepts over X,,, and
C = Un>1Cn to be a concept class over X'. Tor f € C,, and z € A, f(2) denotes the classification
of f on example x. That is, f(z) = “47 if and only if z € f. We say that z is a positive example
of fif f(z) = “4+” and z is a negative example of f if f(z) = “—". We use the symbols “+” and
“1” interchangeably (likewise for “—” and “07).

Because learning algorithms need a means for representing the functions to be learned, typically
associated with each concept class C is a language R over a finite alphabet, used for representing
concepts in C. Each r € R denotes some f € C, and every f € C has at least one representation
r € R. For example, arbitrary boolean functions may be represented in the language of DNF
formulas, in CNF formulas, or using the representation language of decision trees. Often, we relax
the distinction between the representations and the concepts that they induce. Thus, the class of
“monomials” is taken to mean both the boolean formulas that are conjunctions of literals, as well as
the boolean functions that they represent. Each concept f € C,, has a size denoted by | f|, which is
the representation length of the shortest » € R that denotes f. Thus, the choice of a representation
language R for a concept class C simultaneously gives a language for describing concepts, and a
measure of the complexity of a given concept f € €. An efficient learning algorithm is required to

learn in time polynomial in |f| (and other parameters).



To obtain information about an unknown target function f € C,,, the learner is provided access
to labeled (positive and negative) examples of f, drawn randomly according to some unknown

target distribution D over X),. The learner is also given!

as input 0 < €,6 < 1, and an upper bound
s on the size of f. The learner’s goal is to output, with probability at least 1 — é, the description
of a function h that has probability at most € of disagreeing with f on a randomly drawn example
from D (thus, h has error at most €). If such a learning algorithm A exists (that is, an algorithm A
meeting the goal for any n > 1, any target concept f € C,, any target distribution D, any ¢,6 > 0,
and any s > |f|), we say that C is PAC-learnable. We say that a PAC learning algorithm is a
polynomial-time (or efficient) algorithm if the number of examples drawn and computation time
are polynomial in n, s, 1/¢, and 1/6. For any particular instance of a learning problem, the number
of variables n is given. For simplicity, we henceforth drop the subscript “n”, and write C and X
instead of C,, and A};, noting that all algorithms run in time polynomial in n.

In the above definition, we have not specified what a “description of a function A” is. In the
literature, an algorithm is said to be a properlearning algorithm, if the hypothesis h is always chosen
from the description language R associated with the concept class. On the other hand, an improper
(or representation-independent) learning algorithm may output any polynomial-time algorithm as
a hypothesis. The less constrained model of improper learning is equivalent to polynomial “PAC-
predictability” [HLW94, HKLW91] Throughout this paper, we are concerned mostly with improper
learning, and the default interpretation of “learnable” should be that of improper learning.

A well-investigated alternative model of learning is that of ezact learning from equivalence
queries [Ang88]. In this model, the learner proposes as a hypothesis some h € C, and in response
is told “yes” if h = f, or otherwise is given a counterexample z such that h(z) # f(x). There is
no distribution on examples; the learner is required to exactly identify f (obtain a “yes” answer)
in time (and queries) polynomial in n (the length of the counterexamples) and s (the bound on
the size of the representation of the target f), regardless of the choice of target function and
sequence of (adversarially chosen) counterexamples. It is known that any class learnable exactly
from equivalence queries can be learned in the PAC setting, via a simple transformation turning an

algorithm in the former setting to one in the latter [Ang88]. The converse does not hold [Blu94].

Related work on learning with membership queries: The PAC and exact learning models
are passive in that the learner cannot directly affect the type of examples it receives as input
— in the PAC setting they are randomly generated, and in the exact setting they are chosen
by an adversary. Evidence suggests that only relatively simple types of concepts can be learned

passively in this way [Ang90, KV94, PW90]. Consequently, researchers have considered augmenting

Tf the demand of polynomial-time computation below is replaced with expected polynomial-time computation,
then the learning algorithm need not be given the parameter s, but could “guess” it instead [HKLW91].



this learning protocol by allowing the learner to perform experiments. In addition to drawing a
randomly labeled example (or posing a hypothesis, in the exact model), the learner can perform
membership queries, as defined previously, in which it supplies an example z € A and is told
the value f(z). We refer to these models as the PAC-memb and ezact-memb models. Much
work has been directed towards understanding what concept classes are efliciently learnable in
each of these membership query models. Classes known to be learnable under one or both of
these models include, for example, deterministic finite automata [Ang87b], read-once formulas
over various bases [AHK93, BHH95, BHH92|, and propositional boolean formulas representable
in the following forms: k-term DNF [Ang87a, BR92], read-twice DNF [AP91, Han91, PR95], and
Horn sentences [AFP92]. In contrast, Angluin and Kharitonov [AK95] have shown that, under
cryptographic assumptions, read-thrice formulas, nondeterministic finite automata, and context-
free grammars cannot be learned in the PAC-memb model, and that membership queries do not
help in learning the general class of DNF formulas. Recently, techniques have been developed

showing that some classes are not learnable in the exact-memb model [AHP92, PR94].

Related work on learning with incomplete information: Most of the work in both the
PAC and exact models, both with and without membership queries, assumes that examples are
labeled either positive or negative. In these situations the border between the positive and negative
examples is well defined. There has been work addressing the issue of mislabeled training exam-
ples [AL88, Lai88, Slo88, SV88, 5592, Kea93, K193, GS95, RR95]. In these situations, the border
between the positive and negative examples may appear blurry to the learner, but this is just the
result of the noise process that has been applied to the properly labeled example. There has also
been some work considering learning from noisy membership queries [GKS93, Sak91].

Angluin and Slonim [AS94] introduced a model of incomplete membership queries in which
each membership query is answered “don’t know” with a given probability. Furthermore, this
information is persistent—repeatedly making a query that was answered “don’t know” always
results in a “don’t know” answer. As in their work, one of our goals is to model the situation in
which the teacher responding to the learner’s queries is not omniscient. In Angluin and Slonim’s
model, since the teacher is randomly fallible, there is no guarantee that all of the teacher’s knowledge
about the target concept is used in answering queries. To see this we briefly describe some aspects
of their approach.

First notice that a monotone boolean formula has the property that in the boolean lattice
defined over variable assignments, no negative example can be above any positive example. Thus,
if we know that the target formula is a monotone DNF, and we know that a point y in the lattice
is a positive example (e.g., y = (10100)), then we can deduce that any point z (e.g., (11101)) above
y in the lattice is also a positive example. The algorithm of Angluin and Slonim (call it AS) takes



advantage of the fact that the learner can make such a deduction, while the teacher cannot.

While the details of algorithm AS are beyond the scope of this brief discussion, one key aspect
of the algorithm involves the simulation of an earlier algorithm of Angluin [Ang88] (call it A) that
learns monotone DNF using (complete) membership queries. Whenever a membership query on
some point z is made by A, if the randomly fallible teacher responds “don’t know” on membership
query z, then the algorithm AS searches below z in the lattice for some point y for which the
teacher replies “y is a positive example”. If such a y is found, then AS deduces that the true label
of z is “47, and returns this to algorithm A, continuing the simulation.

Thus, AS can sometimes compensate for the teacher’s ignorance by deducing what the teacher
does not know: In learning a monotone function, any point above a positive example is also positive.
This capability is not available to a consistently ignorant teacher. In the context of monotone
DNF, the consistency requirement manifests itself as follows: The teacher should know that adding
positive attributes to an already positive example yields a positive example. (Dually for negative

examples.) In particular, a consistently ignorant teacher would have to label points in the boolean

“won “won

lattice in such a way that any example labeled must have only positive or examples above

“?” examples below it. This renders ineffective any approach similar to

it, and only negative or
that of algorithm AS.

In our view, the notion of an incomplete membership oracle, as realized by a randomly fallible
teacher, seems to better model noise than it models incomplete knowledge. Indeed, Angluin and
Slonim note that their algorithm for learning monotone DNF with an incomplete membership oracle
can be used to learn monotone DNF with random (false negative) one-sided errors.

Sloan and Turdn [ST94] consider a variant of [AS94] in which a limited membership oracle labels
a polynomial number of examples “don’t know”. The learner’s performance is measured only on the
examples for which the limited membership oracle knows the answer. Thus, unlike our approach,
the way that “don’t know” examples are classified is unimportant.

Other investigations have considered learning concept classes when membership query responses
are incorrect (as opposed to “don’t know”): Angluin and Krikis [AK94], and Angluin [Ang94]
consider learning with a bounded number of such erroneous responses, and Frazier and Pitt [FFP94]
consider learning when such incorrect responses occur randomly with probability at most %

In other related work, Kearns and Schapire [KS94] generalized the PAC setting to non-binary
values using Haussler’s framework [Hau89]. They define a p-concept in which each example 2 € X’
has some probability p(z) of being classified as positive. In their model, the goal of the learner
is to make optimal predictions, or more commonly, to accurately predict p(z) for all z € X'. One
way to compare our model to theirs is to consider blurry concepts as p-concepts, but in our case,
the learner’s goal is only that of determining whether p(z) = 0, p(z) = 1, or 0 < p(z) < 1. (If

a written numeral is sometimes identified as “4” and sometimes as “9”, the learner just wants to



know this—it does not need to determine what percentage of the population calls the numeral each

value.)

Related work on learning boxes: Blumer et al. [ BEHWS89] present an algorithm to PAC-learn
an s-fold union of boxes in E? by drawing a sufficiently large sample of size m = poly (%, log %, s, d),
and then choosing a greedy covering from the boxes consistent with the sample. The number of

. . 2d
such boxes considered is shown to be at most (%)

, s0, for d constant, this algorithm runs
in polynomial time. Long and Warmuth [LW94] present an algorithm to PAC-learn this same
class by again drawing a sufficiently large sample and constructing a hypothesis consistent with
the sample that consists of at most s(2d)® boxes. Both the time and sample complexity of their
algorithm depend polynomially on (2d)*, %, and log %. Recently, Bshouty et al. [BGMST95] present
a noise-tolerant PAC-algorithm to learn any geometric concept defined by a boolean combination
of s halfspaces for d constant, and Kwek and Pitt [KP95] give a algorithm to learn in the PAC-
memb model the intersection of s halfspaces in d dimensions that has time and sample complexity
polynomial in both s and d given there is a lower bound on the minimum distance between any
positive and any negative point. (See also [BGM95] for earlier work.)

There has also been a lot of work on exactly learning unions of s boxes in the discretized
space {1,...,n}%. Recently, there have been several independent results (using very different tech-
niques) to exactly learn this class using only equivalence queries? with time and sample complexity
polynomial in d, s, and logn for either d constant [CH94a, BGGM94, BCH94, MW95]. or s con-
stant [MWO95]. One noteworthy difference is that the algorithms of Maass and Warmuth [MW95]
have a sample complexity that is polynomial in logn, s, and d. If the learning algorithm can also
use membership queries then there is single algorithm to exactly learn this class in polynomial time
when either s or d are constant [GGM94, BGGM94]. (See also [CM92, Che93, GGM94] for earlier
work.) There has also been recent work that addresses learning more complex geometric concepts.
Bshouty et al. [BGGM94, BCH94] present an algorithm to exactly learn the class of geometric
concepts defined by s hyperplanes of known slopes for d constant. Auer et al. [AKMW95] present
an algorithm for learning the class of depth two linear threshold circuits with a polynomial number
of threshold gates and variables with the fan-in at the input gates bound by a constant.

Our algorithm to PAC-memb learn the agreement of s boxes in E? runs in time polynomial in
5,2%,1/e, and 1/6. Consequently, the algorithm runs in polynomial time without demanding that
one of s and d be constant: s can be arbitrary, and d can be as large as ©(logs). (There is an

additional assumption required to prove the result: that the set of positive examples is samplable.)

2The hypotheses used by the equivalence queries in all of these algorithms do not come from the class being

learned.



3 The Model of a Consistently Ignorant Teacher

Recall our motivation in the case of learning a boolean formula that is known to be monotone
(i.e., has no negations). An “ignorant” representation of such a boolean formula f (call it “f>”)

“won

could be obtained by simply changing the classification of some examples to . But the resulting

ternary function is not consistent with the knowledge that the target formula is monotone if there

“?77 and

are examples z and y with z above y in the boolean lattice, and such that f(z) =
fly) = “47, or such that f(z) = “=” and f(y) = “?”. For an arbitrary concept class C, what
must hold for a ternary function to be “consistent” with knowledge of C? Following the example
for monotone formulas, we require that the label of some point 2 whose classification according to
f2 is “?”7 should not be deducible from the positive and negative examples of f> and knowledge
that the target function originated from some (boolean-valued) base class C. In particular, if every
(boolean-valued) function f € C that agrees with f> on examples whose labels are known (i.e.,
for which fr(2) = “=" or “+7), happens to label z as, say, a positive example, then fo(2) must

be +, and not “?”. (And similarly for negative examples.) This consideration is embodied in the

following definition of a blurry concept.
Definition 1 Let fr : X — {—, 4,7}, and let

P=Aa| fx) =47}, N=Aa]fr(e)="="}, and Q =A{z | folx) = 7"}

Then fr is a blurry concept for C iff for every q € ), there exist functions f_ and fy in C such
that:

1. forallz € P, f_(z)= fy(z) =47,
2 forallz € N, f_(z)= fr(z)=“=", and

3. f_(q) — “_» # “_I_” — f+(q).

The blurry concept class Cr is defined by C» = {f7 | f7 is a blurry concept for C}.

The definition for PAC learning blurry concepts is analogous to the definition for PAC learning

nonblurry concepts:

Definition 2 The blurry concept class C+ is PAC learnable (alternatively, C is PAC learnable from
a consistently ignorant teacher) iff there exists an algorithm A: such that for all blurry concepts
f2 € Cq, for any fived, unknown distribution D over X', and on input of €,6 with 0 < ¢,6 < 1, and
upper bound s for | f2|, A2 draws examples according to D which are labeled according to fr (hence,
by a consistently ignorant teacher) and A» outputs a hypothesis he : X — {—, 4,7} such that with
probability at least 1 — 8, D({z : ho(x) # f2(2)}) < €. The blurry concept class C» is polynomially

10



PAC learnable if the above holds, and in addition, As is a polynomial-time algorithm: the number
of examples drawn and computation time are polynomial in s, n, %, and %.

We say that C» is PAC-memb learnable (alternatively, C is PAC-memb learnable from a con-
sistently ignorant teacher) iff some A. satisfies the above conditions, where A» may also pose

membership queries x, and is told the value of fr(z).

Comment: Note that one way a hypothesis h can disagree with fisif f>(z) = “?” and h(x) # “77.
Thus, “?” does not mean “don’t care”.

Except where otherwise noted, all of our results hold in a more demanding model of learning
from a consistently ignorant teacher in the exact setting from equivalence and membership queries.
We define this model and discuss some of the changes necessary in Section 6.

In the next several sections, we consider only the PAC-memb model for learning from a con-
sistently ignorant teacher. In what follows, when we say “learnable” we mean, unless otherwise
indicated, “polynomial time PAC-memb learnable”. It is easily shown that the problems we at-
tack are hard without membership queries, where “hard” means at least as hard as standard open
problems (e.g., DNF') in learning theory.

It should also be observed that in the definition, both random examples and membership queries
may provide examples with “?” labels. This models a setting where examples are provided by nature
at random, but the learner must query a teacher for the correct classification. In the literature on
incomplete membership queries, a useful trick of the learner is to use the correctly labeled random
examples to compensate for holes in the teacher’s knowledge. In our setting this is not possible.
On the other hand, we do not seek a boolean classifier that approximates some underlying “true”
concept, but rather we seek to learn how to classify exactly as the teacher does.

Finally, in the definition above, we have neglected to describe how the “size” |f7| of a blurry
concept is measured. In the case of boolean-valued concepts, the class C is usually a class of
representations of functions, and thus the size of f € C is the fewest symbols needed to represent f.
In the case of blurry concepts, we have defined a set Cy of ternary-valued functions, and it is not
clear how to define a natural and appropriate means for representing the blurry concepts f; € Co.

We now address this issue.

Agreements — An Alternate Formulation of Our Model: To understand the representa-
tional issues involved in learning from a consistently ignorant teacher, we consider as an example
the class C of pure conjunctive concepts (monomials)—each concept is a simple conjunction of
boolean variables or their negations. How can we represent a blurry monomial? One way to rep-
resent a blurry monomial is to determine which examples are categorically positive and negative

(and, consequently, be able to infer that the remaining examples are “?”). Let P, @), and N be
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the sets of examples labeled “+7, “?7”, and “—”, respectively, for some blurry monomial. Also, for
each ¢ in @ let m%,m% be the (non-blurry) monomials guaranteed to exist by the definition of
a blurry concept (i.e., for all ¢ in @, m%(q) = “=7 # “4+7 = mi(q) and m?,m{ are consistent
with P and N). We can represent the examples that are categorically positive with a (non-blurry)
monomial. In particular, there exists a monomial that only labels examples in P positive (and,
hence, examples in @ U N negative). The reason is that now the positive examples are those which
are in each of m?, for all ¢ in Q. So, P is captured by the intersection of the monomials m? for
all ¢ in Q). Since monomials are closed under intersection, there is a monomial that labels only the
examples in P positive. Furthermore, we can represent the examples that are categorically negative
with a (non-blurry) DNF formula. Namely, there exists a DNF formula that only labels examples
in N negative (and, hence, examples in P U@ positive). This is because the positive examples are
those which are in any of mi for all ¢ in ). In particular, the DNF formula can be represented by
the disjunctionn of m% for all ¢ in Q.

In fact, we can generalize the argument we have given for blurry monomials to any blurry

concept class. We use the following definition in proving the lemma.

Definition 3 Let F' be a set of boolean-valued functions. The function Uniong is a boolean-valued

function whose classification of example x is given by

+ if f(z)= 4" for some f € F

—  otherwise

Uniong(z) = {

Likewise, the function Intersecty is a boolean-valued function whose classification of example x is
given by
+ if f(z)=“+" for each f € F

—  otherwise

Intersectp(x) = {

Lemma 1 Let C be a class of boolean-valued concepts. For fr in Co, let P,Q), N be the positive,
won

, and negative examples (respectively) of f». Then there exists F_, Iy C C such that the positive

examples of Intersecty_ are exactly P and the negative examples of Uniong, are exactly N.

Proof: By the definition of a blurry concept, for each ¢ in @, there exists fZ, f1 in C such that
filqg)=“="#“4+"7 = fl(q) and fI, f are consistent with P and N. Let F_ = {f% | ¢ € Q} and
Fy = {f{ | ¢ € Q}. Since for every ¢ in @, there is an element of F_ that labels ¢ negative (in
particular, f7), Intersecty_ labels all ¢ in @ negative. Also, since for all ¢ in @, fZ is consistent
with P and N, the only positive examples of Intersecty_ are P. A dual argument can be made for
Uniong, . [l

In the proof of Lemma 1, had we considered Intersecty and Uniong where F = F_ U Fy, the

lemma would still hold. This is demonstrated by the following corollary.
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Corollary 2 Let C be a class of boolean-valued concepts. For fr in Co, let P,Q), N be the positive,
“?". and negative examples (respectively) of fo. Then there exists I' C C such that the positive

examples of Intersecty are exactly P and the negative examples of Unionp are exactly N.

Proof: Let F = quQ{fE,fj_}, where fﬁ,fi are those functions guaranteed to exist from Defini-
tion 1. Observe that adding elements to F can only decrease the number of positive examples of
Intersecty. Since each f{ (for ¢ in @) is consistent with P, the positive examples of Intersecty are
exactly the positive examples of Intersecty . (Dually for Uniong.) O

Observe further that we can use Intersecty and Uniong to construct a function that predicts
the label of an example z as follows. If Intersecty and Unionyp agree on the label of z, then output

“won

the label they agree on; otherwise output . This kind of function turns out to be quite useful:

Definition 4 Let F' be a set of boolean-valued functions. The function Agreer is a ternary function

whose classification on example v € X' is given by

+ if f(z)=“4+" for each f € F,
Agreep(z) = ¢ — if f(z) = “=" for each f € F,

?  otherwise.

Using Corollary 2 and the definition of agreement, we can show that for f; in Co, there exists

F C C such that fr = Agree{lntersectF,UnionF}:

Corollary 3 Let C be a class of boolean-valued concepts. Then for any fr € C2, there exists FF C C

such that fr = Agree; poiersecty, Uniong)-

Proof: By Corollary 2, there exists F© C C such that the positive examples of Intersecty are
exactly P (and thus the negative examples of Intersecty are U N). Dually, the negative examples

of Uniong are N (and the positive examples of Uniong are PUQ). Thus, Agree{lntersectp Union »}

labels an example z positive iff z is in P. Similarly, Agree labels an example z

{Intersect »,Unionp}
labels an example z positive (respectively,

{Intersecty,Unionp} labels & 77 iff

fo labels x “77. O

negative iff  is in N. Since Agree{lntersectp Union p}

negative) iff f- labels z positive (respectively, negative), Agree

Towards a representation for blurry concepts, we now show that for any blurry concept f7 in
C», there is a corresponding subset F' of C whose agreement is equivalent to f-. (Thus, the problem
of learning agreements of concepts from C is equivalent to learning C from a consistently ignorant

teacher, or equivalently, learning the blurry class C-.)

Lemma 4 For a class C of boolean-valued concepts, the blurry class C» = {Agreep | F' C C}.

13



Proof: (C) Let f» € C». By Corollary 3 there exists }' C C such that f» = Agree
Observe that Agree

{Intersecty,Unionz}-

= Agreer since for any example x, Agree

{Intersect »,Unionp} {Intersect»,Uniony}

labels x positive if and only if Intersecty labels @ positive (since Intersecty is more specific than

Uniong(a)). Thus, the function Agree labels z positive iff every f in I labels

{Intersect »,Unionp}
x positive. But, by definition, this is when Agreer labels z positive. An analogous argument
shows that the two functions are identical when z is a negative example. Finally, since Agrees

labels @ positive (respectively, negative) iff Agree labels & positive (respectively,

{Intersect»,Uniony}

negative), Agreep labels z “?77 iff Agree labels & “77.

{Intersect»,Uniony}

(2) Let F' C C. We show that Agreer is a blurry concept for C. For every “?” example ¢
of Agreer, there must exist f, f' in F' such that f(q¢) # f'(q) (otherwise ¢ would not be a “?”
example) and both f and f’ are consistent with the positive and negative examples of Agreey (by

Definition 4). Thus, for all F' C C, there exists f» € C» such that Agreep = fo. O

Measuring the Size of a Blurry Concept: Now that we have a way to represent blurry
concepts, we can describe our complexity measure for the size of f;. Recall that for a concept
class C, typically the (representation) size of a concept f € C is taken to be the fewest number
of symbols needed to write f as a member of C. This definition extends naturally to give the
representation size of a finite set of concepts F' — define the size of F' to be ) ,cp | f|, where the
size | f| is given by the size measure for the base class C. Now define the size |f-| for f» € C2 to be
the minimum, over all F' C C for which Agree; = fo, of the representation size of F. Analogously,
the sizes of Intersect 7 and Unionp are each just the representation size of the subset F'. Note that
|Intersect | = |Uniong| = |Agreer|. We only consider learning functions of the form Agreer, where
Fis finite. If no such finite F' exists, then the representation size of f- is infinite and, consequently,
the learning problem is ill-defined.

The notion of an agreement of base concepts has independent interest, as it models a type of
unanimous vote of independent agents.

Finally, there is an interesting relationship between Mitchell’s definition of version spaces [Mit82]
and agreements. Given a concept class C of boolean-valued functions and a set of examples M, the
version space V is the set of concepts in C consistent with M. As the version space can be large, it
is often represented by the sets G and § where § is the subset of V that contains the most specific?

concepts and G is the subset of V that contains the most general concepts.? The ¢ and S sets

*We say that fi € C is more specific (respectively, more general) than fo € Cif fi C fo (respectively, f1 D fo).
*In particular, S = {s € V : there is no s’ in V that is strictly more specific than s} and G = {g € V : there is
no g’ in V that is strictly more general than g}. Note also that not every version space can be represented by the

boundary sets S and G [GNPS91, Hir91, Mit78].
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induce a ternary function, which we call VSig ) defined as follows:

+ ifs(z)=“+"forall s €S,
VSisa(z) =1 — ifg(a)=“="forall g € G,

?  otherwise.

For a concept class C, it can be shown that the agreement of a finite subset I’ of C is equivalent to
VS(s ], for suitably defined S and . Also, given sets S and (, it can be shown that the ternary
function induced by S and G can be represented as an agreement. In particular, VSig g (z) =
Agreeg (z) for all . However, there are cases where exponentially smaller subsets 5" of S and G’
of G are sufficient for prediction, i.e., for all z, VSig4(2) = Agreeg (@) for §' C S and G' C &
and |G|+ |9] = exp(|G’| + |9]). Since our goal is only to predict well, maintaining the set of most

general and most specific consistent concepts may create much unneeded, time-consuming work.

4 Positive Results for Learning Agreements

We show that efficient PAC and PAC-memb learning algorithms can be designed to learn from
consistently ignorant teachers. We first consider the problem of learning the agreement of a pair
of nested concepts. We show that if both concepts are chosen from classes for which efficient
learning algorithms exist, then we can use these algorithms to obtain an efficient algorithm for
learning the agreement of the functions. We then present a general result addressing how known
algorithms for learning from omniscient teachers can be applied to learn from consistently ignorant
teachers even when the base functions are not nested. In particular, we show that when unions
and intersections of concepts from C are learnable, the blurry class C- is learnable (equivalently, C
is learnable from a consistently ignorant teacher). These techniques are applied to show that Horn
clauses, 1-DNF (1-CNF) formulas containing O(logn) literals, CLASSIC sentences, and monomials
(1-DNF formulas) with at least one positive (respectively, negative) example, are learnable from
a consistently ignorant teacher. Simple extensions show that those blurry concepts representable
as an agreement of a constant number of monotone DNF (CNF) formulas, k-term DNF (k-clause

CNVF') formulas, decision trees, and DFAs, are learnable.

4.1 Learning Agreements of Nested Concepts

Recall that a concept f € C is simply the subset of instances from X that f classifies as positive.
Thus for two concepts fi and fo, we write f; C fo if the set of positive examples of f; is a subset
of the positive examples of f;. Given a set of concepts F' = {f1,..., fr} we say that these concepts
are nested if fi C fo C --- C fr. Observe that Agree{f““’fk} = Agree{fhfk} and thus, without

loss of generality, we consider learning the agreement, Agree{f&fg}, of two nested functions f; and
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fy (s and g for “specific” and “general”). Suppose these are chosen, respectively, from known
polynomial-time learnable concept classes Cg and Cg. Then the learning algorithms for Cg and Cg

can be used to learn the following class :

Nested:(Cs,Cq) = {Agreegs 1 | fs € Cs, fy € Ca,and f; C [y}

(See Figure 1 for the algorithm.)

Theorem 5 IfCs andCq are polynomially PAC-memb (respectively PAC) learnable concept classes,
then the class Nested+(Cs,Cq) is polynomially PAC-memb (respectively PAC) learnable.

Proof: If the target is Agree{f&fg} for fs in Cs and f, in Cg, note that a positive (respectively,
negative) example of Agree{f&fg} is classified as positive (respectively, negative) by both f, and
fy and a “7” example is classified as negative by f; and positive by f,. Thus, algorithm Learn-
Agreement-Nested-Concepts in Figure 1 learns Agree r . by running the learning algorithm for

“77 as “=” to obtain hg, and running the algorithm for Cg treating “?7”7 as “+7 to

Cs treating
obtain hg, and outputs h = Agreey, ; 1 as the final hypothesis.

Since hg and h¢ both have error at most €/2 with probability at least 1—6/2, it follows that h has
error at most ¢ with probability at least 1 — §. Finally, since Ag and Ag run in polynomial time,
Learn-Agreement-Nested-Concepts runs in polynomial time. Also note that Learn-Agreement-
Nested-Concepts only makes a membership query when either Ag or Ag does. O

In the special case where Cg = Cg = C is learnable, Theorem 5 shows that nested concepts from

C are learnable.

4.2 A General Technique for Learning Agreements

We use the characterization in Lemma 4 to obtain an efficient algorithm for learning a blurry concept
class C7 (equivalently, learning a class C from a consistently ignorant teacher) when intersections

and unions from C are known to be learnable. To aid the exposition, we define the following sets:
Cn = {Intersecty : F CC}, Cy = {Uniong: FF CC}.

Theorem 6 Let C be a boolean-valued concept class for which Cn and Cy are PAC-memb (respec-
tively PAC) learnable in polynomial time. Then C» is PAC-memb (respectively PAC) learnable in

polynomial time.

Proof: Let f» be any element of C+, represented by Agreep for some finite /' C C (see Lemma 4).

By Corollary 3, Agree = Agreep (= f7). Since Agree and

{Intersect »,Uniony} {Intersect »,Uniony}

Agreer represent the same ternary functions, an algorithm that learns the agreement of Intersect
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Learn-Agreement-Nested-Concepts(.Ag, A,, €,8)
/* As and Ag are the PAC-memb learning algorithms for Cg and Cg, respectively. */

1. Simulate Ag (with parameters ¢/2 and §/2) as follows:

(a) If Ag requests an example, then draw a random labeled example (z, f(2)) from

D.

(b) If Ag performs a membership query on z, then perform a membership query on

z to obtain f(z).

(c) If f(z) = “+” then give (z,+) to Ag, otherwise give (z,—) to Asg.
2. Let hg be the hypothesis output by Ag.
3. Simulate Ag (with parameters ¢/2 and 6/2) as follows:

(a) If Ag requests an example, then draw a random labeled example (z, f(2)) from

D.

(b) If Ag performs a membership query on z, then perform a membership query on

z to obtain f(z).

(c) If f(z) = “=" then give (z,—) to Ag, otherwise give (z,+) to Ag.
4. Let hg be the hypothesis output by Ag.

5. Return the hypothesis Agreeg, . 4.

Figure 1: A method for learning the agreement of nested concepts
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and Uniong can be used to learn Agreep. It is important to note that |Agree{lntersectF,UnionF}| <
2-|Agreey|, since |Intersectp| = [Uniong| = |Agreep|. Thus, the running time of the learning algo-

rithm when learning f» = Agreep = Agree is polynomial in |[Agree

{Intersect »,Unionp} {Intersectp,UnionF}|7

which is polynomial in |Agreey|. To see that there is an algorithm to learn any such Agree;, note

that Intersecty C Uniong, and thus Agree € Nested?(Cn,Cy). By assumption,

{Intersect»,Uniony}
Cn and Cy are efficiently learnable and so, by Theorem 5, Nested+(Cn,Cy) is efficiently learnable.

Thus, Agree = f7 can be learned. U

{Intersect »,Unionp}
As discussed in Section 6, Theorems 5 and 6 can be strengthened to hold in a suitably modified
exact learning model (with membership queries).

We give some direct implications of Theorem 6.

Corollary 7 ForC € {Horn clauses, 1-DNFs containing at most O(logn) literals, CLASSIC sentences},

Cr 1s polynomially PAC-memb learnable.

Proof: For C the class of Horn clauses, C is the class of Horn sentences which is known to be PAC-
memb learnable [AFP92]. For C the class of 1-DNF formulas containing at most O(logn) literals,
Cr is the class of O(logn)-CNF expressions, which is known to be PAC-memb learnable [Bsh95].
In both cases, Cy is the class of 1-DNF expressions, which is known to be PAC learnable [Val84].
Hence, for C the class of Horn clauses and 1-DNF formulas with at most O(logn) literals, by
Theorem 6, C2 is PAC-memb learnable.

The class of CrassIiC sentences is known to be polynomially PAC-memb learnable [FP94].
Further, since the syntax of Crassic admits an “AND” construct, the intersection of any two
Crassic sentences is itself a CLASSIC sentence of size that is the sum of the sizes of the sentences
being intersected. It follows that intersections of CLASSIC sentences are polynomially PAC-memb
learnable. There are different possible semantics for the “union” of CLASSIC sentences; in a recent
extension of [FP94], it is shown that a “weak union” of CLAsSIC sentences are PAC-memb learnable,
and that this is sufficient to show that agreements of CLASSIC sentences are learnable, hence
CrAssIC is learnable from a consistently ignorant teacher.? Ul

The corollary above also applies to the corresponding dual class, i.e., when C is the class of
1-CNF formulas containing at most O(logn) literals.

For a moment we return to the example of learning the agreement of monomials. We argue that
unless we make some restrictions on the target concept, the problem of learning the agreement of
monomials is as hard as learning (boolean-valued) DNF formulas. Consider the task of learning the
DNF formula f =t V.- Vi,. We can reduce the problem of learning f to the problem of learning
the blurry concept f» = Agreeg, y- Note that fr evaluates to “7” on z iff f(z)=1, and

t2,...,tg,false

®The result that a weak union of CLASSIC sentences is learnable, and that CLASSIC is learnable from a consistently

ignorant teacher, appear as Theorem 17 and Corollary 18, respectively, in the full version of [FP94].
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evaluates to 0 on z iff f(2) = 0. Thus, any algorithm that learns the agreement of monomials can
be used to learn (boolean-valued) DNF' by simply interpreting all positive examples of the DNF

“won

algorithm as examples of the agreement of monomials algorithm. Hence, we have the following;:

Observation 8 Learning blurry monomials is as hard as learning (boolean-valued) DNF' formulas.

In the above example, since the false function is included in the agreement, the set of positive
examples becomes empty, precluding the possibility of using information about positive examples

to aid in learning to distinguish between negative and “?”

examples. However, if we require that
there be at least one positive example to a blurry monomial, then Corollary 10 demonstrates that
such concepts are efficiently learnable. Not surprisingly, the requirement that there is at least one
positive example appears necessary to obtain positive results for other classes. Thus, we introduce

the following definitions.

Ct = {Intersectpy : F* CC, 3z € X, f(z) = “+" forall fc F*}

CH = {Uniongy : FT CC,3x € X, f(a) = “+" for all f € Ft}
CF = {f7: f- has at least one positive example}

A simple modification of the proof of Lemma 4 shows that C = {Agreept : FT™ C C}, imme-
diately yielding the following analog of Theorem 6.

Corollary 9 Let C be a boolean-valued concept class for which C3 and CI are PAC-memb (respec-
tively PAC) learnable in polynomial time. Then C;" is PAC-memb (respectively PAC) learnable in

polynomial time.

As a corollary to the above observations, we show that the class of blurry monomials with at

least one positive example is learnable.
Corollary 10 For C the class of monomials, C;" s polynomially PAC-memb learnable.

Proof: We show CF and C are learnable when C is the class of monomials, and the result follows
by Corollary 9. The class C7 is learnable since the intersection of an arbitrary number of monomials
can be represented as a monomial of length at most n (where n is the number of variables) and
the class of monomials is known to be PAC learnable [Val84]. We show CY is the class of unate
DNF formulas and hence PAC-memb learnable by [AHK93]. To see that C is the class of unate
DNF formulas, note that for 't C C, since there is an example 2 that Intersectz+ labels positive
(by the definition of C;"), x satisfies every monomial in F't. It follows that no variable can appear

both negated and unnegated in FT. Ul
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Had we not restricted the class C in the above corollary to only those blurry monomials with
at least one positive example, the proof would fail — Uniony would not necessarily be unate,
and could be instead an arbitrary DNF formula. The learnability of general DNF formulas in the
PAC-memb model remains a challenging open question.® Corollary 10 also applies to the dual of
monomials (i.e., 1-DNF) by considering the analogous class C; .

Unfortunately, a priori knowledge that a blurry concept has at least one positive example does
not always turn out to be useful. In particular, for each of the problems of learning blurry monotone
DNF formulas, blurry decision trees, and blurry DFAs, the existence of at least one positive example
does not make the problem any easier. In order to demonstrate this, we need the notion of a
prediction preserving reduction with membership queries [AK95] (see also [PW90]). While the
definition of a prediction-preserving reduction is somewhat involved, it in essence captures the idea
that one can sometimes use an efficient learning algorithm for one concept class to construct an
efficient learning algorithm for a different concept class. For a class C let £(C) denote the learning
problem for C. For concept classes C; and Cy, we use the notation £(C1) <L(C3) to mean that
PAC-memb learning C; reduces to PAC-memb learning Cq, in the sense of [AK95]. We will present
such reductions informally — namely by showing how an an efficient algorithm for PAC-memb

learning Cy can be used to efficiently PAC-memb learn C;.
Theorem 11 For C € {monotone DNF formulas, decision trees, DFAs}, L£(C7) JL(CF).

Proof: For C the class of monotone DNF formulas, we show that £(C») <J£(CS) by constructing
an algorithm A to learn C; given that there exists an algorithm AT to learn C;", If f» labels the
example (1---1) positive (which A can check using a membership query) then A runs A" and
outputs whatever it does. In this case, the output of AT is correct because f7 is in C;". Suppose
that f> labels (1---1) negative. Then the formula False must be in the agreement as it is the
only monotone DNF formula that labels the example (1---1) negative. Hence, there is only one

“?” examples from “—” examples.

boundary to learn — the “lower boundary” or the one separating
Suppose that fr is represented as an agreement of the set of concepts F* C C. Observe that the
“lower” boundary is expressed by the function Uniong, which is representable as a monotone DNF
formula of size 3~ ;e |f|. Thus, A runs the monotone DNF learning algorithm [Ang88] treating
all “?” examples as “4” examples, and obtains some hypothesis h that (with probability at least
1—6) correctly (within €) classifies examples as does Uniong. To classify an example z, A outputs
“?7if h(z) = “47, otherwise A outputs “—”. The time taken by A is polynomial in |f>|, since the
time taken by the monotone DNF learning algorithm is polynomial in };cp |f].

Next we show that for C the class of decision trees, £(C7) JL(CJ). In particular, we construct

an algorithm A to learn C; given an algorithm AT that learns C;", Suppose that fr is represented

®However, DNT formulas are PAC-memb learnable with respect to the uniform distribution [Jac94].
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as an agreement of concepts fi,..., f; in C over variables vy,...,v,. In order to learn f;, AT will
be run on examples of the function f;7, the agreement of fi,..., f/, where f/ = vy V f; (for vg a
new variable). Such examples are easily constructed from examples of f» without knowledge of
fi,..., ft, because for all 7, f/ labels as positive any (n+ 1)-bit example 1.2 (i.e., the example with
1 in the position vg and x in positions vy, ...,v,), and labels the example 0-z the way that f; labels
x. With this observation, the algorithm A to learn C; can use the algorithm A™ for C;" (with the
unknown target f; = Agreeg, v wovs,}) in the following way. If AT requests a random example
of f;", then A draws a random example y of f; defined over the original variables »y,..., v,, and
returns the example 0-y. If AT poses a membership query on example y of f;", then A returns the
label “47 if the first bit position vy of y is 1, because such an example satisfies each vy Vv f;. If the
first bit position vg of y is 0, then A poses a membership query (to the oracle for f-) on the example
y with bit position vy deleted and returns to AT the label that this membership query returns.
This transformation works because the formula f;" with vg set to 0 is equivalent to f. Once AT
terminates, A can use the hypothesis A output by A" to determine the label of an example y by
evaluating h(0-y). Observe that the time taken by A in learning f» is bounded by a polynomial in
the time taken by AT in learning f. But this is a polynomial in | fs|, since A% runs in polynomial
time, and the size of the decision tree that represents f/ is O(|f;]) — the root node of the new
decision tree can now be vy with the right 1 branch terminating in a True leaf, and with the left 0
branch leading to the original decision tree f;.

For C the class of DFAs, we again show that £(C7) <JL(CF). Suppose that fo is represented
as an agreement of DFAs My,..., M, in C. As before, we show the existence of M{,..., M/ that
each label at least one example positive, and |M/| = O(|M;]). To achieve this goal, we associate
a modified DFA, M/, for each DFA M, that has a new start state with a transition to an accept
state if the first bit of the input string is 1, and a transition to the old DFA M; if the first bit of
the input string is 0. Note that if r is the regular expression that corresponds to the DFA M;, then
1* 4+ 0 - r is the regular expression that captures M/. The argument proceeds analogously to the
decision tree argument above constructing, an algorithm A to learn C» by running the algorithm
AT given for Cf (with the target f;f = Agree{M{W’Mt/}). O

So, while the restriction that a blurry concept class has one positive example was useful in the
case of monomials (and, as we will see, is also useful when learning the agreement of boxes), this
theorem demonstrates that it does not always alter the complexity of learning the arbitrary blurry
concept class. In fact, in Section 5, we show that learning C» for the classes considered in the above
theorem is an apparently hard problem. Since having one positive example does not always affect
the difficulty of a learning problem, we consider learning a different subset of blurry concept classes
— those that can be represented as an agreement of a constant number of concepts. With this

restriction, the blurry classes C» we showed to be as hard as learning C;" are in fact learnable. We
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use the following notation:
CE = {Intersectpx : F* C C, cardinality of F* is k},

CE = {Uniongx : F* C C, cardinality of F* is k},
C% = {Agreep, : F* C C, cardinality of F* is k}.

For F* C C, Agreepr = Agree by a simple instantiation of Lemma 4.

{Intersect ,,Union .}

Furthermore, |Agree | < 2-|Agreepx|. By (yet another) simple modification

{Intersect ., Union .}

Pk
of Theorem 6, the learnability of Ci’f follows from the learnability of intersections and unions of a

constant k& number of concepts from C.

Corollary 12 Let C be a boolean-valued concept class for which CE and CF are PAC-memb (respec-
tively PAC) learnable in polynomial time. Then Ci’f is PAC-memb (respectively PAC) learnable in

polynomial time.

Corollary 12 is applied to show that the agreement of a constant number of monotone DNF

formulas, (-term DNF formulas (for ¢ constant), decision trees, and DFAs, is learnable.

Corollary 13 For C € {monotone DNF formulas, (-term DNF formulas, decision trees, DFAs},

Ci’f s learnable, for each constant k.

Proof: The proof for each C in the corollary has the following structure. We show first that for
any F'* C C of cardinality k constant, Intersect zx can be represented as an element of C with size
at most polynomial in [Agreeps| = 3 ¢cpx | f| (and similarly for Uniongx ). Noting that since C is
PAC-memb learnable in time polynomial in the size of its target, and since polynomials are closed
under composition, C is learnable in time polynomial in |Agreezx|. Hence CE and C are efficiently
learnable and, by Corollary 12, Ci’f is efficiently learnable. We fill in some of the details for each C
mentioned in the corollary.

For C the class of monotone DNF formulas, let F* C C with the cardinality of F* equal to k. A
monotone DNF representation for Intersect+ can be obtained by “multiplying out” the monotone
DNF formulas in F*. The size of Intersectpx is at most Il;cpe] f| < (max;cpn | f|)F. So, for k
constant, the size of Intersectyx is polynomial in |Agreepx|. A monotone DNF representation for
Union g can be obtained by disjoining the monotone DNF formulas in F*. The size of this repre-
sentation is at most > ;x| f|. Thus, since each function in CE and C% is efficiently representable
as a monotone DNF, and the class C of monotone DNF formulas is PAC-memb learnable [Val84],
CE and CF are PAC-memb learnable.

For C the class of (-term DNF formulas, £ constant, let F* C C be such that the cardinality of

F* is k. Intersectz« can be represented as an (*-term DNF formula (again, by “multiplying out”
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the (-term DNF formulas in F*) and Unionzx can be represented as an ((k)-term DNF formula.
Since both ¢ and k are constant, each function in C£ and C! is efficiently representable as an (/-
term DNF formula, for ¢/ constant. Moreover, since for each constant ¢/, (’-term DNF formulas are
PAC-memb learnable [Ang87b, BR92], CX and Cf are efficiently learnable.

For C the class of decision trees, consider as an example the case when k = 2. We wish to
show that for decision trees dy and ds, there exists a small representation for dy Ndy and dy U dy
as decision trees. To obtain a representation for dy N dy (respectively, dy U d3), replace all “4”

‘—7 leaves) in d; with the decision tree dy. Now observe that an example

leaves (respectively, *
is labeled positive by this decision tree iff z is labeled positive by both (respectively, at least one
of) dy and dy. The size of such a decision tree is at most the number of leaves in dy multiplied
by the size of dy. Analogously, for k constant, for F* C C with the cardinality of F* equal to k,
|Intersect x| < (max;cpx | f])*, and similarly for |Unionyx|. Since each function in Cf and CE is
efficiently representable as a decision tree, and the class of decision trees is efficiently PAC-memb
learnable [Bsh95], C£ and CF are also efficiently learnable.

Finally, for C the class of DFAs, standard arguments [HU79] show that the intersection and
union of a constant k& number of DFAs is representable as a DFA of size the product of the sizes
of the DFAs in the intersection or union (but exponential in k). Since each function in CX and C¥
is efficiently representable as a DFA, and DFAs are efficiently PAC-memb learnable [Ang87b], Ck
and Ck are also efficiently learnable. U

The corollary above also applies to the corresponding dual classes, i.e., when C is the class of

monotone CNF formulas and f-clause CNTF formulas, Ci’f is efficiently PAC-memb learnable.

4.3 Learning Agreements of Boxes in Euclidean Space

In this section we show that axis-parallel boxes (henceforth referred to as boxes) can be learned
from a consistently ignorant teacher. We first apply Corollary 12 to show that the agreement of a
constant number of boxes is learnable. Next we give a PAC-memb algorithm to learn the agreement
of s boxes in d dimensional Euclidean space ( E?) when the set of boxes has a samplable” intersection.
It is easy to show that this class is a generalization of unate DNF formulas, and a specialization of

the class of unions of boxes in E.
Corollary 14 For C the class of axis-parallel boxes in E?, Ci’f 1s PAC learnable

Proof: For any F* C C of cardinality k constant, Intersectzx can be represented as an element of
C since the intersection of axis-parallel boxes is a (possibly empty) single axis-parallel box. Hence,

|Intersect px| = O(d) and is efficiently learnable by results of [BEHWS89]. Further, Unionzx can be

TA set of examples is samplableif the probability pt of drawing an example from that set is ﬁ where ¢ 1s some

polynomial.

23



represented as the union of a constant number of boxes, where [Unionpx| = 3~ px | f|. Observe that
by results of [LW94], C% is PAC learnable in time polynomial in d, %, and %. Since |Intersect pu| <
|Union g« | < |Agreepx|, we have that both C% and Cf are learnable in time polynomial in |Agreezx |,
and, hence, by Corollary 12, Ci’f is efficiently PAC learnable. O

Now we present an algorithm to PAC-memb learn the agreement of s boxes in E? that runs
in time polynomial in 1/¢, 1/4, s, and 2¢. So, the algorithm runs in polynomial time without
demanding that one of s and d be constant (d can be O(logs)). Before describing the details of
our algorithm, we first provide a high-level overview. To aid in learning the agreement of boxes, we
first learn the intersection region (which is itself a box). We can approximate the intersection box

“won

by treating all examples in the sample as negative examples and running a known algorithm
to learn one d-dimensional box [BEHW&89]. Learning the intersection box allows us to distinguish
between positive and non-positive examples. To successfully learn the ternary function, however,

“won

we must be able to distinguish between and negative examples as well (and since neither the

“?” or negative region is a box, we must take a different approach than the one used to learn the
positive region). To accomplish this task, we choose a random positive exampleto p. Now we have
2¢ versions of the same problem. In particular, we have a union of a set of boxes that all lie in
the same quadrant of E? (where the origin is now p) and which all contain the origin as a corner

point. We call such a box an origin-incident box. Treating all “?”

examples as positive, we give a
PAC-memb algorithm to learn the union of s origin-incident boxes within a single quadrant that
runs in time polynomial in both s and d. Fach quadrant can be learned by the algorithm for
learning the union of origin-incident boxes (where the origin is now p). In the worst case, some
piece of each of the s boxes will lie in each of the 2¢ quadrants of the sub-divided problem forcing
us to learn O(st) boxes. At this stage, we have a hypothesis that predicts properly. Specifically,
if a point z lies in the intersection box, it is labeled positive, otherwise, if z lies in the union of

“won

the O(s27) boxes learned for each quadrant, = is labeled , and otherwise it is labeled negative.
While such a hypothesis is sufficient for prediction, it does not form an agreement. We can obtain
a hypothesis of the appropriate form by outputting the agreement of the intersection box and the

boxes in the union extended to include the intersection box.

4.3.1 Approximately Learning the Union of Origin-incident Boxes

We present a PAC-memb algorithm to learn the union of s origin-incident (nonblurry) boxes in
E? where all of the boxes are in the same quadrant (for simplicity we only present the algorithm,
Figure 2, for the positive quadrant). We refer to the class of origin-incident boxes in the positive
quadrant as BPQ.

We denote the origin in BPQ by the zero vector 0. In general, we represent a box by any

two opposing corners z and y using the ordered pair notation (z,y). An origin-incident box is
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LearnBPQ(s, d, €, 6)

2 16dslog(3s)
————log

1. Draw a sample S of size mBPQ(s, dye, §):= max{% log £, 15_3} examples.

2. h:= 0 /* The set of boxes in the hypothesis; represented as pairs (6, c) */

/* where 0 and ¢ are opposing corners */
3. P:={x:x is a positive example in S}
4. while there exists an example z € P
(a) Pim P — {2}
(b) for each y € P if member(MaxCorner(x,y)) = “yes” then
i. @ := MaxCorner(z, y)
ii. P:=P—{y}
(¢) add the box (0, ) to h

5. return A /* Output the union of boxes in h*/

Figure 2: Algorithm to learn a union of origin-incident boxes.

represented by the ordered pair (o, c) where o is the origin and ¢ is the corner opposing the origin.
Finally, we define MazCorner to be a function that takes two points (x,y) in the positive quadrant

of E? and returns the point » which, for 1 < i < d, has ith coordinate z = max{x;,y;}.

Theorem 15 Let BPQ(s) be the union of at most s origin incident boxes in the positive quadrant.

The class BPQ(s) is PAC-memb learnable with time and sample complexity polynomial in s, d,
1/e, 1/6.

Proof: To prove the theorem, we show that

1. Algorithm LearnBPQ (Figure 2), constructs a sample S, runs in time polynomial in |S|, and
outputs a union of at most s origin-incident boxes (that is, an element of BPQ(s)) that is

consistent with the sample.

2. The VC-dimension® of BPQ(s) grows polynomially with s and d (namely, it is at most
2dslog3s).

It then follows from Theorem 2.1 of Blumer et al. [BEHWS89] that if LearnBPQ chooses at least
(3s)

mppg = max{%log 2, % log L2} random examples, then with probability at least 1 — §, it

will output a hypothesis h with error at most .

#The VC-dimension is a combinatorial parameter of a concept class that directly relates to the number of examples
necessary (and sufficient) for sufficient generalization [BEHW89].
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Proof of Part 1: We first show that LearnBP(Q produces a hypothesis that is consistent
with the sample 5. The hypothesis produced is consistent with the positive examples of 5 since
the algorithm does not terminate until all positive examples of § have been removed from P
(Step 4) and no point is removed unless the box about to be placed in h contains it (Step 4(b)ii).
Furthermore, if the box (6, x) was placed in h, then z was a positive example (either it was in P
(Step 4a) or verified to be positive (Step 4b) with the membership query member(z)). Since
is a positive example, the box (6, ) is contained within some box of the target. Thus no negative
examples (even those not in 5) can be contained in any of the boxes placed in h.

We prove the hypothesis h output by LearnBPQ contains at most s boxes. Let (6, b,) be the
box added at the nth execution of Step 4. Suppose h contained more than s boxes. Then since
each box placed in h must be contained within a target box, it follows that for some ¢ < 7, boxes
(0,0;) and (0,b;) are both contained in some target box (0,0*). Let p; be the initial value of z at
the jth execution of Step 4. Looking back at the ith execution of Step 4, note that p; remained in
P throughout the entire ith execution, since it is the initial value in the jth execution of Step 4.
Thus, at some iteration of step 4b during the ith execution of Step 4, the point y = p; is chosen,
and the query member(MaxCorner(Z, p;)) is made, where Z is the value of 2 at this moment. Note
that member(MaxCorner(Z, p;)) must have returned the answer “no”, otherwise p; would have
been removed from P contradicting that p; is in P at the beginning of the jth execution of Step 4.
Observe that & is in the box (0,b;), p; is in the box (0,b;) and the box (0,b*) contains both of
these boxes. But MaxCorner(Z, p;) is a negative example (since MaxCorner(z, p;) returned “no”),
and is in any box that contains both boxes (0,b;) and (0,b;). Hence, the box (0,b*) contains this
negative example, a contradiction. Thus h contains at most s boxes.

LearnBPQ runs in polynomial time, since there are at most s iterations of the while loop, each
taking O(d - mppg(¢, 6, s,d)) time. This completes the proof of Part 1.

Proof of Part 2: Note that the VC-dimension of BPQ is at most d (this is easily shown), and
by Lemma 3.2.3 of Blumer et al. [BEHWS89], the VC-dimension of BPQ(ss) is at most 2dslog(3s).
This completes the proof of Part 2 and hence of the theorem. O

LearnBPQ is easily modified to obtain an algorithm to learn the union of s origin-incident boxes
in £ when all of the boxes are in any single quadrant and when the origin is shifted to any point
o. We call this new algorithm LearnBAQ(5,0) (Learn Boxes Any Quadrant) which takes a sample
S and a point o and learns the union of axis-parallel boxes assuming o is the origin and all the
examples in § fall in some single quadrant induced by the origin 0. We call the corresponding class
of concepts BAQ,. Observe that LearnBAQ(S, 0) is different from LearnBP(Q in that it does not
draw any examples. Instead the sample 5 is provided as input to the algorithm. The algorithm
presented in the next section calls LearnBAQ with a sample S that is large enough to ensure that

with high probability, LearnBAQ(S5, 0) outputs a sufficiently accurate hypothesis.
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4.3.2 Approximately Learning the Agreement of Boxes with Samplable Intersection

We give an algorithm to learn the agreement of s boxes in £¢ (hence, an algorithm to learn boxes
from a consistently ignorant teacher) when the intersection region is samplable. Our algorithm,
Figure 3, has polynomial time and sample complexity in both d and s when d = O(logs).

“won

As we mentioned earlier, our algorithm draws a sample of positive, negative, and examples

and learns the intersection box, treating all “?”

examples as negative examples. Then, a random
positive example p is chosen from the sample and the algorithm runs 2¢ versions of LearnBAQ,
(with p as the origin) treating all “?” examples as positive examples. While such a hypothesis
is sufficient for prediction, it does not form an agreement. We can obtain a hypothesis of the
appropriate form by outputting the agreement of the intersection box and the boxes in the union
extended to include the intersection box.

Let OneBox(5) be a procedure that takes a sample S and returns the smallest box consistent

with the examples in 5. We state the main result of this section.

Theorem 16 Let pt be the probability of receiving a positive example from the example oracle.
LearnBozesAgreement is a PAC-memb algorithm for learning the agreement of s axis-parallel bozes
in B¢ that has sample complexity m = O (‘:—jlog % + ‘:—jds log slog i—d + p%rlog %), and time com-
plexity O(sd2%m).

Before proving the theorem, we introduce some definitions and prove a technical lemma. De-

fine a quadrant ¢ to be significant if Pr(a random example is in Q) > 7257 We show that when

€
2.2d

LearnBAQ is applied to a significant quadrant it produces a hypothesis with error at most
(with high probability). Thus since there are 2¢ quadrants, the overall error caused by the calls to
LearnBAQ is at most €¢/2 (with high probability). Let p* be the probability of receiving a positive
example. Let mppg(e,¢) be the value given in Step 1 of Figure 2 and let mpp4, (respectively,
MLBA,) be the value given in Step 1 (respectively, Step 3) of Figure 3. (So as to simplify notation,
we have omitted some parameters in mppg, mrp4, and mrpa,.) Intuitively, the lemma states that
by drawing sufficiently large samples, it is possible to ensure that the probability that a positive
example is not drawn is small, the probability that the intersection box has large error is small, and
the probability that there are not enough examples for LearnBAQ to output a “good” hypothesis

is small. More formally,

Lemma 17 Let Sy be a random sample of size mrpa,, and Sy be a different random sample of

size mrBA,. 1hen there are enough examples in 51 and Sy to ensure that:

1. Pr (A positive example in Sy is not drawn) < £.

wion

2. Pr (The procedure OneBox(T ) produces a hypothesis with error more than 5 ) <
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LearnBoxesAgreement(s,d, ¢, §,pT)

1. Draw a sample 57 of size mypa,(6,pT) := Z}—Jrln%

2. If there are no positive examples in 57 halt and report failure. Else, let p be an arbitrarily

selected positive example from .57.

3. Draw a sample S5 of size mrpa,(s,d,€,6):=

8 6 16d 26 22d+5 32441 5g.92d47 13.24+1
max{;logE,Tlog?, = log =5—, 255 log(3s) log =t

4. Let T be the set of examples obtained by relabeling all “?” examples of 55 as negative.
5. (41,42) 1= OneBox(T)
6. H := {(d1,42)} /* Initialize the hypothesis H to be the intersection box. */

7. Partition E? into 2¢ quadrants using the example p selected in Step 2. Let Q be the set

of 2¢ quadrants induced by considering p as the origin.
8. For each quadrant ¢ in )

(a) Let S, be the examples from S that fall in quadrant ¢ relabeled so that all “?”

examples are positive.
(b) B := LearnBAQ(S,.p)
(¢) B := Boxes in B extended so that they include the intersection box (i1, 12).

(d) H:=HUB

9. Output Agreey

Figure 3: The algorithm LearnBoxesAgreement for learning the agreement of a set of axis-parallel

boxes with samplable intersection region.
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3. For a particular significant quadrant @),

5 . 5
SaFT > ﬁ) examples in Q) < 52d-

Pr (Sy contains fewer than mppg(

Proof of Part 1: Since p* is the probability of drawing a positive example, the probability
of not drawing a positive example in a sample of size m is at most (1 — pT)™. Then using the

inequality (1 — x)% < e7!, we have:

In

|

<

ol >

1 3 1
Pr (no positive example in a sample of size — In 5) < (1—ph)»t
p

Since mppa, = 1/ptIn3/é, Part 1 follows.

Proof of Part 2: Observe that the intersection region is a d-dimensional axis-parallel box
and the VC-dimension of a d-dimensional axis-parallel box is 2d. Hence, by a direct application
of Theorem 2.1 in Blumer et al. [BEHWS89], the probability that the procedure OneBox(7") (in

step 5) produces a hypothesis that has error more than § is at most ¢ provided that |T| >

2 3>
max{%log s, % log %} .But |T'| = | 52| = mrBa,, which was specifically chosen so that |T'| satisfies
this inequality, and Part 2 follows.

Proof of Part 3: Let LFE(p,m,z) denote the probability of at most z successes in m
independent trials of a Bernoulli random variable with probability of success p. The probability in

the statement of Part 3 is bounded above by:

€ € 0
LE (WamLBAQ,mBPQ (W?W)) (1)

since each example is independently drawn and falls in ¢) with probability p > 57 (because @) is

significant). By applying a version of Chernoff bounds presented in [AV79], we know:

LE(p,m. pm/2) < c="7/8 (2)

)

It is easily verified that mppq( 5T, 357

) < prmrBa,/2. Thus by substituting p = SaFT> M = MLBA,
into Equation (2) and using this observation, we can apply it to Equation (1) to obtain that for a

particular significant quadrant :

€ ) . € € )
Pr (SQ has < mppQ (W, W) examples m Q) S LFE (W, MLBAy, MBPQ (W, ﬁ))
€ € MLBA
< LE (vaLBAdeT 5 2)

< @ MLBA; (e/2944) .

2d+4 32d
— In =%, U

which is bounded by ﬁ since mrpa, >

Proof of Theorem 16: Since we draw mppa4, examples in Step 1 of the algorithm given in

Figure 3, by Part 1 of Lemma 17, the probability that the algorithm fails in Step 2 (equivalently,
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the probability no positive examples are drawn) is at most %. Also, since we draw mpp 4, examples,

the probability that the intersection box found in Step 5 of the algorithm has error more than £
is at most % by Lemma 17, Part 2. Observe that any insignificant quadrant contributes error at

most ozgr and the probability that any significant quadrant contributes error more than o7z is at

)

most 3.9d>

by Theorem 15. Since there are 2¢ quadrants total, when LearnBAQ is run on all of
the 2¢ quadrants in Step 8, the probability that it outputs a hypothesis with error greater than
AR 7357 = 5 15 at most 24 . ﬁ = % by Part 3 of Lemma 17.

Suppose we only learn the intersection box (¢1,3) with the procedure OneBox and the union
of boxes U in each of the 2¢ quadrants with LearnBAQ. Further, suppose we use the following
algorithm as our hypothesis: If an example x lies in the intersection box (i1, 3), label & positive,

otherwise, if 2 lies in one of the boxes in the union U, label & “7”

, otherwise label z negative.
We compute the error of the above hypothesis on the distribution over examples labeled positive,
negative, and “?”. Since the procedure OneBox returns the tightest box around the positive
examples, its only error is in misclassifying positive examples of the target. By Lemma 17, Part 2,
the probability that (iy,s) differs from the target intersection box by more than § is at most %.
Also, since for each quadrant ¢, procedure LearnBAQ outputs a union of boxes in ¢ that is contained

“won

in the target union of boxes in ¢, its only error is in misclassifying examples of the target. By

Lemma 17, Part 3, the probability that the union of boxes in all 2¢ quadrants differs from the target
union of boxes by more than £ is at most %. Note that no error is made misclassifying negative
examples of the target. Finally, since we must have a positive example to run the algorithm, using
Lemma 17, Part 1, the probability that the final hypothesis has error more than 2- 5 = ¢ is at most
3-L=6

But, our algorithm does not output a ternary classifier as described above (since our goal is
to output an agreement). We argue that the agreement that is instead output in Step 9, Agreey,
classifies all examples as this ternary classifier thus satisfying the PAC criterion. First note that
by extending the boxes to include the intersection box, we ensure that all points in the intersection
box (i1,12) are classified as positive by Agreey. Hence, Agreey; classifies the positive examples as
in the above ternary hypothesis. Since the union of origin-incident boxes in a particular quadrant
generated by LearnBAQ is a subset of the target union of boxes for that quadrant, extending
the boxes to include the intersection box will not cause any box in the final agreement output to
contain a negative example. Thus, the “?” examples of Agreey; are exactly those examples in a box
of the union U that are not in the intersection box (i1, 2), and consequently, the “?” and negative
examples of Agreey; are exactly as in the ternary classifier. We conclude that the probability that
the final agreement output by the algorithm on Step 9 has error more than € is at most 6.

To compute the time complexity, observe that lines 2 and 4 require O(mppa, + mrBa,) time,

and line 5 requires O(dmyp4,) time. Step 6 and 7 require O(1) time. For the 2¢ iterations of the
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while loop in line 8, line 8a requires O(mrpa4,) time, line 8b requires O(sdmyp4,) time and lines 8c

and 8d require O(mppa,) time. Thus the total running time is O(mppa, + sd2%mrpa,)- O

5 Negative Results

In this section we explore the non-learnability of some unrestricted blurry concept classes. We
demonstrate that not every class known to be learnable from an omniscient teacher is necessarily
learnable from a consistently ignorant teacher. (In other words, the learnability of C may not imply
the learnability of C7.) In particular, while the classes of {-term DNF formulas, decision trees, and
Horn sentences are known to be PAC-memb learnable [Ang8&7a, Bsh95, AFP92], we show here that
learning their blurry counterparts is as hard as learning (non-blurry) DNF. Since the learnability
of DNT is a widely attacked open problem in computational learning theory, we have evidence
that learning blurry unrestricted versions of these classes may be hard. And, while DFAs are
learnable from omniscient teachers [Ang87b], we show that blurry DFAs are not learnable under
widely accepted cryptographic assumptions. Recall that Theorem 11 showed that for decision trees
and DFAs, the learning problem is no easier even when the set of positive examples is guaranteed
to be nonempty. Thus for these classes, the negative results presented here hold even under those
circumstances. We leave open the question of whether knowledge of a single positive example can

facilitate learning the class of blurry {-term DNF expressions.
Observation 18 For C € {(-term DNF formulas, decision trees}, LIDNF') QL(C-).

Proof: We show how an algorithm for learning blurry {-term DNF formulas or blurry decision
trees can be used to learn blurry monomials. Since any algorithm for learning blurry monomials
can be used to learn non-blurry DNF formulas (Observation 8), the result follows.

A monomial is a 1-term DNF formula, so an algorithm for learning blurry {-term DNF formulas
is in fact a blurry monomial learning algorithm.

Every monomial has a small representation as a decision tree (with a single “+” leaf, reached by
a single long branch in the tree that corresponds to the literals in the monomial). Consequently, an
algorithm for learning blurry decision trees also immediately gives an algorithm for learning blurry

monomials. [l

Observation 19 Blurry DFAs are not learnable under standard cryptographic assumptions.”

Proof: For C the class of DFAs, we show how an algorithm A for C» can be used to learn the union
of DFAs. Since learning the union of DFAs is not possible under cryptographic assumptions [AK95],

the result follows.

°For example, assuming the intractability of inverting RSA encryption, factoring Blum integers, or determining
quadratic residuosity.
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To learn the union of DFAs, My,..., My, we run the algorithm A for C; on the target fr =
Agreegpy, M,y Where My is the DFA that rejects every string. Observe that since My does not

“won

accept any strings, fr is a two-valued function — in particular, f; labels a string « if and only

if the union of My, ..., My labels z “4+”. Thus, any algorithm that learns blurry DFAs can be used

“7” examples. O

to learn the union of DFAs by simply treating all “+” examples as

Next we show that learning blurry Horn sentences is as hard as learning DNF formulas. Since
every monomial is in fact a Horn sentence (with clauses of size one), this follows immediately from
Observation 8, which shows that learning blurry monomials (hence Horn sentences), without the
restriction that there be a positive example, is as hard as learning (boolean valued) DNF formulas.

However, as we have seen with monomials and boxes, if there are positive examples in the
agreement, then this information can be valuable in distinguishing between the negative and “7”
examples. We show that for Horn sentences, even when the set of positive examples of the agreement
is nonempty and samplable, learning remains as hard as learning the class of (boolean-valued) DNF
formulas. Thus, we obtain the following stronger “negative” result than the one that follows from

Obervation 8.

Theorem 20 PAC-memb learning the agreement of Horn sentences for which the set of positive

examples is samplable is as hard as PAC-memb learning the class of DNF formulas.

Proof: In proving the theorem, we define the following classes of concepts:

DHF, Disjunctive Horn Form —disjunctions of Horn sentences over n variables.
(0.8 £ = [TV TV 05) A (75 V o) V [(T7V 75) A (v6)]).
DHF-1pos,, , DHF,, formulas with exactly one positive example p satisfying every disjunct

(p is known to the learner).

agree-Horn-1pos,, , Agreement of Horn sentences over n variables with exactly one positive example p
(p is known to the learner).

agree-Horn-pos-samp, Agreement of Horn sentences over n variables

(with a samplable set of positive examples).

We prove the theorem through a sequence of prediction preserving reductions, showing that
PAC-memb learning DNF formulas reduces to PAC-memb learning DHF formulas (i.e., the first
problem on the list) and also that PAC-memb learning each problem on the list reduces to PAC-

memb learning the next problem on the list.
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(i)

(iii)

L(DNF) < L(DHF)

Every DNF formula f is in fact a DHF formula: f is a disjunction of terms, and each term
can be viewed as a Horn sentence — a conjunction of clauses, each containing a single literal
(hence, at most one unnegated literal). Thus, f is a disjunction of Horn sentences. So, if we
had a learning algorithm for DHF formulas, we could use it to learn any DNF formula, f, by

simply running the DHF learning algorithm on the same formula f. Ul

L(DHF) < £L(DHF-1pos)

We construct an algorithm A to learn a formula f in DHF, using the algorithm AT that
learns a formula f* in DHF-1pos,,41,,. In order to learn an unknown formula f in DHF,, A
will run A on examples of the formula f* in DHF-1pos, 1y ,, in which the zero vector 0 is
the single known positive example. The definition of f* ensures that such examples are easily
constructed from examples of f, without knowledge of f. The target f* of DHF-1pos, 11,
is of the form a Vv 3, where a is f with the extra literal 7y disjoined to every clause of every
Horn sentence of the disjunction of f, and 3 is the Horn sentence g A 77 A - -+ A T,,. For the
example DHF formula f given in the definition of DHF formulas, f* = [(vgV 77 V73V v5) A
(ToV o7V ug)] V(T VTTVT3) A (T V ug)] V (To A - - - A Ts).

Clearly, the only example that can satisfy every disjunct of f* is 0, since this is the only one
that satisfies 3. Further, 0 satisfies every Horn sentence in a because Ty appears in every

clause of every Horn sentence in a.

Observe that z is a positive example of f if and only if 1 -2 is a positive example of fT.
To see this, note that f¥((1,z1,...,2,)) = 1 iff @ evaluates to 1, and f is exactly the
formula obtained by reducing a after setting vy to 1. Consequently, when A* (the algorithm
for DHF-1pos) requests a random example, A (the algorithm for DHF) obtains a random
example (z1,...,2,) with classification label ¢, and returns the example (1, z1,...,2,) with

classification label .

If AT makes a membership query on an example (zg,z1,...,2,), A checks the value of z.
If 29 = 0 then A returns the label “+” because every clause in every Horn sentence of «
is satisfied. If g = 1 then A returns the result of a membership query on the example
(T1,... %)

Once AT terminates with the hypothesis h*, A can predict the label of any (n-bit) example
z by setting the extra variable vg = 1 and evaluating AT on the example 1-z. Note that

setting vg to 1 falsifies 8 and “forces” a to be f.

L(DHF-1pos) < L(agree-Horn-1pos)

It is here that we switch from learning a standard boolean-valued concept to learning an
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agreement (i.e., a blurry concept). We construct an algorithm A* to learn any function f+
in DHF-1pos,, , given an algorithm A;’ to learn any f;" in agree-Horn-1pos,, ,. Suppose fT is
the target function. We use A;’ to learn a related ternary function f;" in agree-Horn-1pos, ,,
defined as follows: f;" labels p positive, the remaining positive examples of fT “?”, and all
other examples negative. When A;’ requests a random example, AT draws a random example
2 and returns z with a label determined as follows. If 2 = p then AT returns positive. If

“?7. Otherwise AT returns negative.

¥ # p and x is a positive example then AT returns
When A;’ makes a membership query on example z, AT returns positive if # = p. If @ # p
then if a membership query on z returns the label positive then AT returns the label “?7.
Otherwise AT returns the label negative. Once A;’ terminates with hypothesis h?’, AT can
predict the label of any example & by outputting positive when h;’ labels x positive or “77,

and outputting negative otherwise.

Observe that the error of the hypothesis AT output by A1 on any distribution D on X, with
examples labeled by f% is precisely the error that the hypothesis h;’ of A;’ has on D with

examples labeled according to f;" .

(iv) L(agree-Horn-1pos) < L(agree-Horn-pos-samp)
We construct an algorithm A;’ that learns any f;" in agree-Horn-1pos,, , using algorithm .A-
that learns fo in agree-Horn-pos-samp,,. The target of both algorithms is f;" (an agreement of
Horn sentences with exactly one positive example p). When A, requests a random example,
A;’ flips a fair coin and with probability % returns p as a positive example (and so the set of
positive examples, which in this case has one element, is samplable). Otherwise, A;’ draws
a random example and returns it to A;. When 47 makes a membership query on example
x, A;’ returns the label of a membership query on z. Clearly, agree-Horn-pos-samp is a

generalization of agree-Horn-1pos, and thus at least as hard.

It follows from this sequence of reductions that PAC-memb learning the agreement of Horn
sentences when the set of positive examples is samplable is as hard as PAC-memb learning the
class of DNF formulas. [l

Finally, we strengthen this result by using the hardness result of Angluin and Kharitonov [AK95]
which shows, under the assumption that one-way functions exist, that membership queries do not

help in learning DNF formulas.

Corollary 21 PAC-memb learning the agreement of Horn sentences for which the intersection
region is samplable is as hard as PAC learning the class of DNF' formulas (assuming that one-way

functions exist).
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6 Learning Blurry Concepts in the Exact Learning Model

We demonstrate that many of the results we have presented in the PAC model also hold in the
exact model. Recall that an equivalence query on a hypothesis h returns “yes” if h is equivalent
to the target and otherwise returns an example on which the hypothesis and target disagree. Note
that a counterexample (from a consistently ignorant teacher) to a hypothesis A may be one that
the target labels “7” and the hypothesis does not. We begin by defining exact learning from a

consistently ignorant teacher.

Definition 5 C- is exact learnable (alternatively, C, is exact learnable from a consistently ignorant
teacher) if there exists an algorithm A» such that for all blurry concepts fr in C», A2 outputs a
hypothesis ha = f» making at most polynomial in |f7| and n equivalence queries. If A7 also makes

(polynomially many) membership queries, we say C is exact-memb learnable.

We show how Nested+(Cgs,C¢) is learnable in the exact model assuming the classes Cg and Cg
are exactly learnable. Let Ag and Ag be the learning algorithms for Cs and Cg, respectively. Our
algorithm to learn Nested»(Cg,Cq) first runs the algorithm Ag until it poses an equivalence query on
hs and then runs A¢ until it poses an equivalence query on hg. Then the Nested»(Cg,Cq) algorithm
poses the equivalence query Agreeg, , 1. If there is a positive or negative counterexample to this
equivalence query then it is passed to Ag and Ag. If there is a counterexample for which the

“won

proper label is then it is passed to Ag (respectively, A¢g) as a negative (respectively, positive)
example. FEach of these algorithms can then check if that example is a counterexample to its
hypothesis and if so continue running the algorithm until the next equivalence query is posed. If it
is not a counterexample, the same hypothesis is used for subsequent equivalence queries. Note that
the counterexample received from the equivalence query must be a counterexample to at least one of
hs or hg. Thus, if Cs and Cgq are exact (respectively, exact-memb) learnable then Nested»(Cgs,Cq)
is exact (respectively, exact-memb) learnable.

As an immediate consequence we have the analog of Theorem 6 (and Corollaries 9 and 12) for the
exact model. That is, if C is a concept class for which Cn and Cy are exact-memb (respectively exact)
learnable in polynomial time, then C; is exact-memb (respectively exact) learnable in polynomial
time. Also, all of the positive learning results cited either are given in the exact setting, or have
exact learning analogs. Consequently, exact-memb variants of Corollaries 7, 10, and 13 all hold.

We demonstrate that the results of Theorem 15 can also be obtained in the exact-memb learning
model in the discretized space. Namely, there is an eflicient algorithm that uses equivalence and
membership queries to exactly learn the union of s boxes in one quadrant in the discretized space
{1,...,n}%. The algorithm maintains a hypothesis that is a subset of the true union of boxes

in the discretized plane. For every positive counterexample obtained by an equivalence query,
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the algorithm performs a binary search away from the origin in each dimension so as to find the
“border” (i.e., the point # which is a positive example such that every point away from the origin
one unit in each dimension is negative). More specifically, if the positive counterexample p has i¢th
coordinate equal to ¢ (i.e., p; = () then the learner locates the “border” by performing a binary
search in the following way: the learner poses a membership query on the point with ith-coordinate
" = [(n+ €)/2] and with all other coordinates values unchanged. If this point is positive then
the binary search continues between ¢/ and n. And if this point is negative then the binary search
continues between ¢ and ¢/ — 1. Once the “border” point z is found in this way, the box (6,96)
is then added to the hypothesis. It is easily seen that using O(dlogn) membership queries a
previously undiscovered corner of one of the boxes defining the target concept is found from each
counterexample. Thus the time complexity and number of membership queries made is O(sdlogn)
and the number of equivalence queries made is O(s).

We describe how to extend the result of Theorem 16 to exactly learn the agreement of boxes in
the discretized domain. As we did when PAC-memb learning the agreement of boxes, we assume
that the intersection is non-empty and furthermore, that the learner is provided a positive example
with which it divides {1,...,n}¢ into 2¢ quadrants. The basic idea of the algorithm to exactly learn
the agreement of boxes is to apply Theorem 5 (as modified for the exact model) in each quadrant
where Cg is the intersection and Cg is the union of the portion of the target concept that falls in
the given quadrant. As we saw in the analysis of LearnBoxesAgreement, in each quadrant we have
at most s origin-incident boxes. We can use the algorithm of Chen and Maass [CM92] to learn Cg
and the algorithm described above to learn Cs. We need just one additional modification to this
procedure — when receiving a positive counterexample z, the boxes in the hypotheses for each of

the 2% — 1 quadrants that do not contain 2 must be extended so that they contain z.

7 Conclusions

We have introduced a model in which a learning algorithm for a concept class C interacts with a
teacher who labels some examples “don’t know” (i.e., the teacher is ignorant), but does so in a
manner that ensures the learner cannot infer the label of “don’t know” examples from other positive
and negative examples and knowledge of C (i.e., the teacher is consistent with C). We presented
a result that allows us to “plug in” results involving learning from an omniscient teacher in order
to learn from a consistently ignorant teacher. An essential result showed that if intersections and
unions of concepts from C are learnable from an omniscient teacher, then C is learnable from
a consistently ignorant teacher. In the process of proving the above result, we introduced the
notion of agreements, and showed that learning from a consistently ignorant teacher is equivalent

to learning agreements of sets of concepts from C. We summarize our results in Table 1.
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c L(cy) | £(cy) L(C2)
Horn clauses yes yes yes®
CrLAssIC ves ves yes®
(-term DNF ({-clause CNF) | yes® | open >DNF®
monomials yes® yes? >DNF*®
monotone DNF (CNF) yes® equiv to —7f open
decision trees yes? equiv to —7 >DNF*¢
DFAs yes? equiv to —7 no, crypto?
boxes in E? yes" | poly(s,29, %, %)Z open

Horn Sentences open >DNFJ >DNF

Table 1: For each class C, the table shows the status of the PAC-memb learnability of Ci’f, C;",
and C». The entries “I>DNF” denote the problem is as hard as learning DNF formulas (without
membership queries, if one-way functions exist). The entries “equiv to —” under ﬁ(C;") indicate
that the problem is equivalent to £(C). The entry “no, crypto” indicates the class is not learnable
under standard cryptographic assumptions. The superscripts indicate where in the paper the result
is given, according to the following key: (a) Corollary 7; (b) Corollary 13; (¢) Observation 18; (d)
Corollary 10; (e) Observation 8; (f) Theorem 11; (g) Observation 19; (h) Corollary 14 (PAC-

learnable without membership queries); (i) Theorem 16, assuming that the positive examples are

samplable; (j) Theorem 20, even when the positive examples are samplable.
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In addition to the open problems listed in the table, we list some other interesting unanswered

problems:

o We have only investigated blurriness in the classification of examples and not blurriness in the
examples themselves. In particular, we have generally considered functions that map {0, 1}"
onto {+,—,7} and it may be interesting to consider functions that map blurry examples

{0,1,7}" onto clear labels {4, —} or onto blurry labels {+,—,7}.

o We have not investigated learning blurry concepts with read restrictions. For example, are

blurry read-once formulas or blurry read-% sat-;7 DNF formulas'® learnable?

e Our algorithm to learn the agreement of boxes (LearnBoxesAgreement) only uses membership
queries when learning the union of origin-incident boxes in a single quadrant (BAQ). Since
LearnBoxesAgreement requires time polynomial in s and 2¢, BAQ can run in time polynomial
in s and 2¢ without affecting the asymptotic running time of LearnBoxesAgreement. We
leave open the question of whether BAQ is learnable without membership queries in time

polynomial in s and 2¢ (in the continuous or discretized domain).
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