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Abstract

One view of computational learning theory is that of a learner acquiring the knowledge of
a teacher� We introduce a formal model of learning capturing the idea that teachers may have
gaps in their knowledge� In particular� we consider learning from a teacher who labels examples
��� �a positive instance of the concept being learned�� ��� �a negative instance of the concept
being learned�� and ��� �an instance with unknown classi�cation�� in such a way that knowledge
of the concept class and all the positive and negative examples is not su	cient to determine the
labelling of any of the examples labelled with ���� The goal of the learner is not to compensate
for the ignorance of the teacher by attempting to infer ��� or ��� labels for the examples
labelled with ���� but is rather to learn �an approximation to� the ternary labelling presented
by the teacher� Thus� the goal of the learner is still to acquire the knowledge of the teacher� but
now the learner must also identify the gaps� This is the notion of learning from a consistently
ignorant teacher� We present general results describing when known learning algorithms can
be used to obtain algorithms that learn from a consistently ignorant teacher� We investigate
the learnability of a variety of concept classes in this model� including monomials� monotone
DNF formulas� Horn sentences� decision trees� DFAs� and axis
parallel boxes in Euclidean space�
among others� Both learnability and non
learnability results are presented�

�Consistency requires you to be as ignorant today as you were a year ago��

� Bernard Berenson ��
��
�����
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� Introduction

Building machines that learn from experience is an important research goal in arti�cial intelligence�

Considerable attention is devoted to the theoretical study of machine learning for the domain of

concept learning� The general concept learning problem is to learn to discriminate between objects

that satisfy some unknown rule� or �concept�� and those that do not� More formally� we assume a

space X of possible examples� and that some subset f � X cleaves X into positive examples x � f �

and negative examples x �� f � The unknown set f is referred to as the target concept� and is often

assumed to come from some known concept class C of possible target concepts� Equivalently� we

view f as a boolean�valued function on X � with f�x� 	 �
� �respectively� ���� indicating that x is

a positive �respectively� negative� example of f � Typically� a learning algorithm obtains examples

of f either randomly from nature� or from a teacher� and is told which examples are positive and

which are negative� Often the learning algorithm is also allowed to pose a membership query which

is an example x of its own choice� in response to which a teacher classi�es x as either a positive or

negative example� Such membership queries model not only the interaction with a human expert�

but perhaps also the careful crafting of experiments by a learning agent in order to observe the

response of the environment�

Variations of the basic theoretical models of concept learning allow for the possibility that the

information given to the learning algorithm does not come from an �omniscient� teacher� but in�

stead may be inaccurate� Nonetheless� in most of these variations� it is assumed that underlying the

inaccurate information is some �correct� classi�cation of examples as positive or negative examples

of the concept to be learned� Thus� it is assumed that there is a well�de�ned border separating

positive examples from negative ones� In practice� though� classi�cation is often unclear� For ex�

ample� an algorithm designed to read handwritten cheques will likely encounter many handwritten

characters that look somewhat like a ���� and somewhat like a ���� In such cases� where even an

expert does not have the knowledge to classify all objects� determining which objects are unclassi�

�able seems at least as important as determining the classi�cation of objects which are classi�able�

From the learner
s perspective� the regions of the example space that defy classi�cation create a

blurry border between the positive and negative examples that the learner must determine�

In this paper we introduce a formal learning model in which the teacher �or environment� with

which the learner interacts has incomplete information about the target concept due to intrinsic

uncertainty� or due to gaps in the teacher
s knowledge� A key requirement we place on the teacher

is that all examples labeled with ��� �indicating unknown classi�cation� are consistent with the

teacher
s background knowledge about the concept class C fromwhich the target concept is known to

belong� In particular� the classi�cation of any example labeled with ��� should not be determinable

from the positive and negative examples� and knowledge of the concept class C� �Thus the teacher
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is �consistently� ignorant�� The goal of the learner is similar to that for standard learning models�

construct a reasonably accurate approximation to the knowledge of the teacher� However� in this

case� the learner must construct a ternary classi�er �i�e� with values f
��� �g� that� with high

probability� classi�es most examples exactly as the teacher does� We call such a ternary classi�er

a blurry concept� to distinguish it from standard concepts� which are typically boolean�valued

classi�ers� By �learning a blurry concept� we mean the problem of learning a �standard� concept

from a consistently ignorant teacher�

We �rst review� in Section �� the standard �PAC� learning model and discuss related work�

In Section � we give precise de�nitions for the blurry concept class C� induced by a concept class

C containing nonblurry �boolean�valued� classi�ers� we consider basic structural properties of the

blurry concepts in C�� and show that each such concept f� � C� is naturally representable by

unions and intersections of boolean�valued concepts from C� This representation as unions and

intersections of boolean�valued concepts leads to an exact characterization of blurry concepts of

any class C� as an agreement of boolean�valued concepts from C� Intuitively� an agreement of a set

F � C of concepts is a ternary function� that on input x� if all f � F agree on the classi�cation

of x� outputs the label they agree on and outputs ��� otherwise� Hence� the problem of learning

concepts from C from a consistently ignorant teacher �or learning the ternary blurry concepts from

C�� is exactly the problem of learning agreements of �boolean�valued� concepts from C�

We show in Section � that for any concept class C for which e�cient PAC�learning algorithms

are known� these algorithms can be used to build an e�cient algorithm for learning the agreement

of nested concepts from C� For the problem of learning the agreement of concepts from C that are

not necessarily nested� we show that if the intersection and union of arbitrarily many concepts from

C are learnable� then C is learnable from a consistently ignorant teacher� As a corollary of these

general techniques� we show that blurry �propositional� Horn clauses and blurry Classic sentences

�a �rst�order language for representing knowledge� are learnable� We also show� for example� that�

with some restrictions� blurry monomials� blurry monotone DNF� blurry decision trees and blurry

DFAs are learnable�

While there are not many concept classes C for which e�cient algorithms are known for learning

unions and intersections of concepts from C� under certain conditions it is still possible to learn

the agreements of concepts from C� For example� consider a class C for which the intersection of

concepts from C is learnable� yet there is no known e�cient algorithm to learn the union of concepts

from C� In some cases it may still be possible to e�ciently learn C from a consistently ignorant

teacher by using information gained by learning the intersection of concepts in the agreement to aid

in learning the union of these concepts� The learner
s ability to use intersection �union� information

to obtain positive results for learning unions �intersections� of concepts from classes for which no

algorithms are currently known is intriguing� In Section ��� we give an algorithm to learn the
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agreement of s �boxes� in d�dimensional Euclidean space in time that depends polynomially in s

and �d� assuming that there is at least one point common to all of the boxes� To do so� we learn

both the intersection and union of such boxes� While there are e�cient algorithms for learning

the intersection of boxes� all known algorithms to learn the union of such boxes using random

examples and membership queries requires time at least sd or ds� and hence are polynomial�time

algorithms only for one of s� d constant� However� our algorithm for learning the agreement allows

d to be as large as log s� Our advantage comes from the ability to use information about the

nonempty intersection �in this case� a single point is su�cient� in learning the union� To illustrate

the limits of this approach� in Section � we show that learning blurry l�term DNF formulas� blurry

decision trees� and blurry Horn sentences� is as hard as learning DNF formulas in standard learning

models� The learnability of DNF formulas remains a centrally studied unsolved problem� thus�

while l�term DNF formulas� decision trees� and Horn sentences are learnable in standard models

�Ang��a� Bsh��� AFP���� learning these types of concepts from a consistently ignorant teacher

would appear to be much more di�cult� We also show in Section � that the problem of learning

blurry DFAs is intractable� given standard cryptographic assumptions� Once again� while DFAs

are learnable in standard models �Ang��b�� their blurry counterparts seem much harder to learn�

In Section � we consider the extension of the model of a consistently ignorant teacher to the

exact learning model using equivalence �and membership� queries� and demonstrate that analogous

results hold in this more demanding learning model�

We conclude with a summary and some open questions in Section ��

� Background and Related Work

Boolean formulas� Many of our results are in the boolean domain� Let V 	 fv�� � � � � vng

be a set of boolean variables� A literal is a boolean variable vi or its negation vi� Monomials

are propositional boolean formulas that can be expressed as a conjunction �AND� of �negated or

unnegated� literals� DNF formulas are disjunctions �ORs� of monomials �also called terms�� and

k�DNF formulas are DNF formulas where each term contains at most k literals� A Horn clause is a

��DNF formula containing at most one unnegated literal� A Horn sentence is a conjunction �AND�

of Horn clauses� CNF formulas are conjunctions �ANDs� of ��DNF formulas �also called clauses��

and k�CNF formulas are CNF formulas where each clause contains at most k literals� A DNF or

CNF formula is monotone if it contains only unnegated literals� A formula is unate if no variable

appears both negated and unnegated� A decision tree is a rooted binary tree with internal vertices

labeled with variables� and with leaves labeled �
� or ����

Boolean formulas over n variables as described above naturally represent boolean functions from

the example space Xn 	 f�� �gn to f���g in the usual way� For example� if m is a monomial� and
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x � Xn� then m�x� 	 � i� for each literal � � m� the ith bit xi of x is � if � 	 vi� and xi 	 � if

� 	 vi� Similarly� f�x� 	 � for f a DNF formula i� for at least one term t of f � t�x� 	 �� The value

of a decision tree on a boolean input vector x is the label of the leaf reached by following a branch

from the root� and branching left at a vertex with label vi if xi 	 �� or branching right if xi 	 ��

We assume basic familiarity with the de�nitions of deterministic �nite automata �DFAs� �HU����

The Classic description logic is a �rst�order logic used for representing objects and their relation�

ships� A description of Classic is beyond the scope of this paper� we note only that positive results

for the learnability of Classic sentences have recently been given �CH��c� CH��b� FP����

It is helpful to view the example space Xn as a lattice with componentwise �or� and �and� as

the lattice operators� The top element is the vector f�gn and the bottom element is the vector

f�gn� The elements are partially ordered by �� where x � y if and only if for all i� xi � yi� If

x � y� we say� x is below y or y is above x�

Standard learning models� In Valiant
s distribution�free� or probably approximately correct

�PAC� learning model �Val���� the learner
s goal is to infer how an unknown target function f �

chosen from some known concept class C� classi�es all examples from the domain X � Often C is

decomposed into subclasses Cn according to some natural dimension measure n� For example� in

the boolean domain� n is the number of variables� Let Xn denote the set of examples to be classi�ed

for each problem of size n� and let X 	
S
n�� Xn denote the example space� We say each x � X

is an example� For each n � �� we de�ne each Cn � �
Xn to be a family of concepts over Xn� and

C 	
S
n�� Cn to be a concept class over X � For f � Cn and x � Xn� f�x� denotes the classi�cation

of f on example x� That is� f�x� 	 �
� if and only if x � f � We say that x is a positive example

of f if f�x� 	 �
� and x is a negative example of f if f�x� 	 ���� We use the symbols �
� and

��� interchangeably �likewise for ��� and �����

Because learning algorithms need a means for representing the functions to be learned� typically

associated with each concept class C is a language R over a �nite alphabet� used for representing

concepts in C� Each r � R denotes some f � C� and every f � C has at least one representation

r � R� For example� arbitrary boolean functions may be represented in the language of DNF

formulas� in CNF formulas� or using the representation language of decision trees� Often� we relax

the distinction between the representations and the concepts that they induce� Thus� the class of

�monomials� is taken to mean both the boolean formulas that are conjunctions of literals� as well as

the boolean functions that they represent� Each concept f � Cn has a size denoted by jf j� which is

the representation length of the shortest r � R that denotes f � Thus� the choice of a representation

language R for a concept class C simultaneously gives a language for describing concepts� and a

measure of the complexity of a given concept f � C� An e�cient learning algorithm is required to

learn in time polynomial in jf j �and other parameters��
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To obtain information about an unknown target function f � Cn� the learner is provided access

to labeled �positive and negative� examples of f � drawn randomly according to some unknown

target distribution D over Xn� The learner is also given
� as input � � �� � � �� and an upper bound

s on the size of f � The learner
s goal is to output� with probability at least � � �� the description

of a function h that has probability at most � of disagreeing with f on a randomly drawn example

from D �thus� h has error at most ��� If such a learning algorithm A exists �that is� an algorithm A

meeting the goal for any n � �� any target concept f � Cn� any target distribution D� any �� � � ��

and any s � jf j�� we say that C is PAC�learnable� We say that a PAC learning algorithm is a

polynomial�time �or e�cient� algorithm if the number of examples drawn and computation time

are polynomial in n� s� ���� and ���� For any particular instance of a learning problem� the number

of variables n is given� For simplicity� we henceforth drop the subscript �n�� and write C and X

instead of Cn and Xn� noting that all algorithms run in time polynomial in n�

In the above de�nition� we have not speci�ed what a �description of a function h� is� In the

literature� an algorithm is said to be a proper learning algorithm� if the hypothesis h is always chosen

from the description language R associated with the concept class� On the other hand� an improper

�or representation�independent� learning algorithm may output any polynomial�time algorithm as

a hypothesis� The less constrained model of improper learning is equivalent to polynomial �PAC�

predictability� �HLW��� HKLW��� Throughout this paper� we are concerned mostly with improper

learning� and the default interpretation of �learnable� should be that of improper learning�

A well�investigated alternative model of learning is that of exact learning from equivalence

queries �Ang���� In this model� the learner proposes as a hypothesis some h � C� and in response

is told �yes� if h 	 f � or otherwise is given a counterexample x such that h�x� �	 f�x�� There is

no distribution on examples� the learner is required to exactly identify f �obtain a �yes� answer�

in time �and queries� polynomial in n �the length of the counterexamples� and s �the bound on

the size of the representation of the target f�� regardless of the choice of target function and

sequence of �adversarially chosen� counterexamples� It is known that any class learnable exactly

from equivalence queries can be learned in the PAC setting� via a simple transformation turning an

algorithm in the former setting to one in the latter �Ang���� The converse does not hold �Blu����

Related work on learning with membership queries� The PAC and exact learning models

are passive in that the learner cannot directly a�ect the type of examples it receives as input

� in the PAC setting they are randomly generated� and in the exact setting they are chosen

by an adversary� Evidence suggests that only relatively simple types of concepts can be learned

passively in this way �Ang��� KV��� PW���� Consequently� researchers have considered augmenting

�If the demand of polynomial�time computation below is replaced with expected polynomial�time computation�
then the learning algorithm need not be given the parameter s� but could �guess
 it instead �HKLW���	

�



this learning protocol by allowing the learner to perform experiments� In addition to drawing a

randomly labeled example �or posing a hypothesis� in the exact model�� the learner can perform

membership queries� as de�ned previously� in which it supplies an example x � X and is told

the value f�x�� We refer to these models as the PAC�memb and exact�memb models� Much

work has been directed towards understanding what concept classes are e�ciently learnable in

each of these membership query models� Classes known to be learnable under one or both of

these models include� for example� deterministic �nite automata �Ang��b�� read�once formulas

over various bases �AHK��� BHH��� BHH���� and propositional boolean formulas representable

in the following forms� k�term DNF �Ang��a� BR���� read�twice DNF �AP��� Han��� PR���� and

Horn sentences �AFP���� In contrast� Angluin and Kharitonov �AK��� have shown that� under

cryptographic assumptions� read�thrice formulas� nondeterministic �nite automata� and context�

free grammars cannot be learned in the PAC�memb model� and that membership queries do not

help in learning the general class of DNF formulas� Recently� techniques have been developed

showing that some classes are not learnable in the exact�memb model �AHP��� PR����

Related work on learning with incomplete information� Most of the work in both the

PAC and exact models� both with and without membership queries� assumes that examples are

labeled either positive or negative� In these situations the border between the positive and negative

examples is well de�ned� There has been work addressing the issue of mislabeled training exam�

ples �AL��� Lai��� Slo��� SV��� SS��� Kea��� KL��� GS��� RR���� In these situations� the border

between the positive and negative examples may appear blurry to the learner� but this is just the

result of the noise process that has been applied to the properly labeled example� There has also

been some work considering learning from noisy membership queries �GKS��� Sak����

Angluin and Slonim �AS��� introduced a model of incomplete membership queries in which

each membership query is answered �don
t know� with a given probability� Furthermore� this

information is persistent�repeatedly making a query that was answered �don
t know� always

results in a �don
t know� answer� As in their work� one of our goals is to model the situation in

which the teacher responding to the learner
s queries is not omniscient� In Angluin and Slonim
s

model� since the teacher is randomly fallible� there is no guarantee that all of the teacher
s knowledge

about the target concept is used in answering queries� To see this we brie�y describe some aspects

of their approach�

First notice that a monotone boolean formula has the property that in the boolean lattice

de�ned over variable assignments� no negative example can be above any positive example� Thus�

if we know that the target formula is a monotone DNF� and we know that a point y in the lattice

is a positive example �e�g�� y 	 h�����i�� then we can deduce that any point x �e�g�� h�����i� above

y in the lattice is also a positive example� The algorithm of Angluin and Slonim �call it AS� takes
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advantage of the fact that the learner can make such a deduction� while the teacher cannot�

While the details of algorithm AS are beyond the scope of this brief discussion� one key aspect

of the algorithm involves the simulation of an earlier algorithm of Angluin �Ang��� �call it A� that

learns monotone DNF using �complete� membership queries� Whenever a membership query on

some point x is made by A� if the randomly fallible teacher responds �don
t know� on membership

query x� then the algorithm AS searches below x in the lattice for some point y for which the

teacher replies �y is a positive example�� If such a y is found� then AS deduces that the true label

of x is �
�� and returns this to algorithm A� continuing the simulation�

Thus� AS can sometimes compensate for the teacher
s ignorance by deducing what the teacher

does not know� In learning a monotone function� any point above a positive example is also positive�

This capability is not available to a consistently ignorant teacher� In the context of monotone

DNF� the consistency requirement manifests itself as follows� The teacher should know that adding

positive attributes to an already positive example yields a positive example� �Dually for negative

examples�� In particular� a consistently ignorant teacher would have to label points in the boolean

lattice in such a way that any example labeled ��� must have only positive or ��� examples above

it� and only negative or ��� examples below it� This renders ine�ective any approach similar to

that of algorithm AS�

In our view� the notion of an incomplete membership oracle� as realized by a randomly fallible

teacher� seems to better model noise than it models incomplete knowledge� Indeed� Angluin and

Slonim note that their algorithm for learning monotone DNF with an incomplete membership oracle

can be used to learn monotone DNF with random �false negative� one�sided errors�

Sloan and Tur�an �ST��� consider a variant of �AS��� in which a limited membership oracle labels

a polynomial number of examples �don
t know�� The learner
s performance is measured only on the

examples for which the limited membership oracle knows the answer� Thus� unlike our approach�

the way that �don
t know� examples are classi�ed is unimportant�

Other investigations have considered learning concept classes when membership query responses

are incorrect �as opposed to �don
t know��� Angluin and Kri�kis �AK���� and Angluin �Ang���

consider learning with a bounded number of such erroneous responses� and Frazier and Pitt �FP���

consider learning when such incorrect responses occur randomly with probability at most �
� �

In other related work� Kearns and Schapire �KS��� generalized the PAC setting to non�binary

values using Haussler
s framework �Hau���� They de�ne a p�concept in which each example x � X

has some probability p�x� of being classi�ed as positive� In their model� the goal of the learner

is to make optimal predictions� or more commonly� to accurately predict p�x� for all x � X � One

way to compare our model to theirs is to consider blurry concepts as p�concepts� but in our case�

the learner
s goal is only that of determining whether p�x� 	 �� p�x� 	 �� or � � p�x� � �� �If

a written numeral is sometimes identi�ed as ��� and sometimes as ���� the learner just wants to
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know this�it does not need to determine what percentage of the population calls the numeral each

value��

Related work on learning boxes� Blumer et al� �BEHW��� present an algorithm to PAC�learn

an s�fold union of boxes in Ed by drawing a su�ciently large sample of sizem 	 poly
�
�
� � log

�
� � s� d

�
�

and then choosing a greedy covering from the boxes consistent with the sample� The number of

such boxes considered is shown to be at most
�
em
�d

��d� so� for d constant� this algorithm runs

in polynomial time� Long and Warmuth �LW��� present an algorithm to PAC�learn this same

class by again drawing a su�ciently large sample and constructing a hypothesis consistent with

the sample that consists of at most s��d�s boxes� Both the time and sample complexity of their

algorithm depend polynomially on ��d�s� �� � and log
�
� � Recently� Bshouty et al� �BGMST��� present

a noise�tolerant PAC�algorithm to learn any geometric concept de�ned by a boolean combination

of s halfspaces for d constant� and Kwek and Pitt �KP��� give a algorithm to learn in the PAC�

memb model the intersection of s halfspaces in d dimensions that has time and sample complexity

polynomial in both s and d given there is a lower bound on the minimum distance between any

positive and any negative point� �See also �BGM��� for earlier work��

There has also been a lot of work on exactly learning unions of s boxes in the discretized

space f�� � � � � ngd� Recently� there have been several independent results �using very di�erent tech�

niques� to exactly learn this class using only equivalence queries� with time and sample complexity

polynomial in d� s� and logn for either d constant �CH��a� BGGM��� BCH��� MW���� or s con�

stant �MW���� One noteworthy di�erence is that the algorithms of Maass and Warmuth �MW���

have a sample complexity that is polynomial in log n� s� and d� If the learning algorithm can also

use membership queries then there is single algorithm to exactly learn this class in polynomial time

when either s or d are constant �GGM��� BGGM���� �See also �CM��� Che��� GGM��� for earlier

work�� There has also been recent work that addresses learning more complex geometric concepts�

Bshouty et al� �BGGM��� BCH��� present an algorithm to exactly learn the class of geometric

concepts de�ned by s hyperplanes of known slopes for d constant� Auer et al� �AKMW��� present

an algorithm for learning the class of depth two linear threshold circuits with a polynomial number

of threshold gates and variables with the fan�in at the input gates bound by a constant�

Our algorithm to PAC�memb learn the agreement of s boxes in Ed runs in time polynomial in

s� �d� ���� and ���� Consequently� the algorithm runs in polynomial time without demanding that

one of s and d be constant� s can be arbitrary� and d can be as large as  �log s�� �There is an

additional assumption required to prove the result� that the set of positive examples is samplable��

�The hypotheses used by the equivalence queries in all of these algorithms do not come from the class being

learned	
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� The Model of a Consistently Ignorant Teacher

Recall our motivation in the case of learning a boolean formula that is known to be monotone

�i�e�� has no negations�� An �ignorant� representation of such a boolean formula f �call it �f���

could be obtained by simply changing the classi�cation of some examples to ���� But the resulting

ternary function is not consistent with the knowledge that the target formula is monotone if there

are examples x and y with x above y in the boolean lattice� and such that f�x� 	 ��� and

f�y� 	 �
�� or such that f�x� 	 ��� and f�y� 	 ���� For an arbitrary concept class C� what

must hold for a ternary function to be �consistent� with knowledge of C� Following the example

for monotone formulas� we require that the label of some point x whose classi�cation according to

f� is ��� should not be deducible from the positive and negative examples of f� and knowledge

that the target function originated from some �boolean�valued� base class C� In particular� if every

�boolean�valued� function f � C that agrees with f� on examples whose labels are known �i�e��

for which f��x� 	 ��� or �
��� happens to label x as� say� a positive example� then f��x� must

be 
� and not ���� �And similarly for negative examples�� This consideration is embodied in the

following de�nition of a blurry concept�

De�nition � Let f� � X � f��
� �g� and let

P 	 fx j f��x� 	 �
�g� N 	 fx j f��x� 	 ���g� and Q 	 fx j f��x� 	 ���g�

Then f� is a blurry concept for C i� for every q � Q� there exist functions f� and f� in C such

that�

�� for all x � P� f��x� 	 f��x� 	 �
��

�� for all x � N� f��x� 	 f��x� 	 ���� and

�� f��q� 	 ��� �	 �
� 	 f��q��

The blurry concept class C� is de�ned by C� 	 ff� j f� is a blurry concept for Cg�

The de�nition for PAC learning blurry concepts is analogous to the de�nition for PAC learning

nonblurry concepts�

De�nition � The blurry concept class C� is PAC learnable 	alternatively� C is PAC learnable from

a consistently ignorant teacher
 i� there exists an algorithm A� such that for all blurry concepts

f� � C�� for any �xed� unknown distribution D over X � and on input of �� � with � � �� � � �� and

upper bound s for jf�j� A� draws examples according to D which are labeled according to f� 	hence�

by a consistently ignorant teacher
 and A� outputs a hypothesis h� � X � f��
� �g such that with

probability at least �� �� D�fx � h��x� �	 f��x�g� � �� The blurry concept class C� is polynomially
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PAC learnable if the above holds� and in addition� A� is a polynomial�time algorithm� the number

of examples drawn and computation time are polynomial in s� n� �� � and
�
� �

We say that C� is PAC�memb learnable 	alternatively� C is PAC�memb learnable from a con�

sistently ignorant teacher
 i� some A� satis�es the above conditions� where A� may also pose

membership queries x� and is told the value of f��x��

Comment� Note that one way a hypothesis h can disagree with f is if f��x� 	 ��� and h�x� �	 ����

Thus� ��� does not mean �don
t care��

Except where otherwise noted� all of our results hold in a more demanding model of learning

from a consistently ignorant teacher in the exact setting from equivalence and membership queries�

We de�ne this model and discuss some of the changes necessary in Section ��

In the next several sections� we consider only the PAC�memb model for learning from a con�

sistently ignorant teacher� In what follows� when we say �learnable� we mean� unless otherwise

indicated� �polynomial time PAC�memb learnable�� It is easily shown that the problems we at�

tack are hard without membership queries� where �hard� means at least as hard as standard open

problems �e�g�� DNF� in learning theory�

It should also be observed that in the de�nition� both random examples and membership queries

may provide examples with ��� labels� This models a setting where examples are provided by nature

at random� but the learner must query a teacher for the correct classi�cation� In the literature on

incomplete membership queries� a useful trick of the learner is to use the correctly labeled random

examples to compensate for holes in the teacher
s knowledge� In our setting this is not possible�

On the other hand� we do not seek a boolean classi�er that approximates some underlying �true�

concept� but rather we seek to learn how to classify exactly as the teacher does�

Finally� in the de�nition above� we have neglected to describe how the �size� jf�j of a blurry

concept is measured� In the case of boolean�valued concepts� the class C is usually a class of

representations of functions� and thus the size of f � C is the fewest symbols needed to represent f �

In the case of blurry concepts� we have de�ned a set C� of ternary�valued functions� and it is not

clear how to de�ne a natural and appropriate means for representing the blurry concepts f� � C��

We now address this issue�

Agreements � An Alternate Formulation of Our Model� To understand the representa�

tional issues involved in learning from a consistently ignorant teacher� we consider as an example

the class C of pure conjunctive concepts �monomials��each concept is a simple conjunction of

boolean variables or their negations� How can we represent a blurry monomial� One way to rep�

resent a blurry monomial is to determine which examples are categorically positive and negative

�and� consequently� be able to infer that the remaining examples are ����� Let P�Q� and N be

��



the sets of examples labeled �
�� ���� and ���� respectively� for some blurry monomial� Also� for

each q in Q let mq
�� m

q
� be the �non�blurry� monomials guaranteed to exist by the de�nition of

a blurry concept �i�e�� for all q in Q�m
q
��q� 	 ��� �	 �
� 	 m

q
��q� and m

q
�� m

q
� are consistent

with P and N�� We can represent the examples that are categorically positive with a �non�blurry�

monomial� In particular� there exists a monomial that only labels examples in P positive �and�

hence� examples in Q�N negative�� The reason is that now the positive examples are those which

are in each of mq
�� for all q in Q� So� P is captured by the intersection of the monomials mq

� for

all q in Q� Since monomials are closed under intersection� there is a monomial that labels only the

examples in P positive� Furthermore� we can represent the examples that are categorically negative

with a �non�blurry� DNF formula� Namely� there exists a DNF formula that only labels examples

in N negative �and� hence� examples in P �Q positive�� This is because the positive examples are

those which are in any of mq
� for all q in Q� In particular� the DNF formula can be represented by

the disjunctionn of mq
� for all q in Q�

In fact� we can generalize the argument we have given for blurry monomials to any blurry

concept class� We use the following de�nition in proving the lemma�

De�nition � Let F be a set of boolean�valued functions� The function UnionF is a boolean�valued

function whose classi�cation of example x is given by

UnionF �x� 	

��
�

 if f�x� 	 �
� for some f � F

� otherwise

Likewise� the function IntersectF is a boolean�valued function whose classi�cation of example x is

given by

IntersectF �x� 	

��
�

 if f�x� 	 �
� for each f � F

� otherwise

Lemma � Let C be a class of boolean�valued concepts� For f� in C�� let P�Q�N be the positive�

���� and negative examples 	respectively
 of f�� Then there exists F�� F� � C such that the positive

examples of IntersectF� are exactly P and the negative examples of UnionF� are exactly N �

Proof� By the de�nition of a blurry concept� for each q in Q� there exists f q�� f
q
� in C such that

f q��q� 	 ��� �	 �
� 	 f q��q� and f
q
�� f

q
� are consistent with P and N � Let F� 	 ff q� j q � Qg and

F� 	 ff q� j q � Qg� Since for every q in Q� there is an element of F� that labels q negative �in

particular� f q��� IntersectF� labels all q in Q negative� Also� since for all q in Q� f q� is consistent

with P and N � the only positive examples of IntersectF� are P � A dual argument can be made for

UnionF� �

In the proof of Lemma �� had we considered IntersectF and UnionF where F 	 F� � F�� the

lemma would still hold� This is demonstrated by the following corollary�
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Corollary � Let C be a class of boolean�valued concepts� For f� in C�� let P�Q�N be the positive�

���� and negative examples 	respectively
 of f�� Then there exists F � C such that the positive

examples of IntersectF are exactly P and the negative examples of UnionF are exactly N �

Proof� Let F 	 �q�Qff
q
�� f

q
�g� where f

q
�� f

q
� are those functions guaranteed to exist from De�ni�

tion �� Observe that adding elements to F can only decrease the number of positive examples of

IntersectF � Since each f
q
� �for q in Q� is consistent with P � the positive examples of IntersectF are

exactly the positive examples of IntersectF� � �Dually for UnionF ��

Observe further that we can use IntersectF and UnionF to construct a function that predicts

the label of an example x as follows� If IntersectF and UnionF agree on the label of x� then output

the label they agree on� otherwise output ���� This kind of function turns out to be quite useful�

De�nition � Let F be a set of boolean�valued functions� The function AgreeF is a ternary function

whose classi�cation on example x � X is given by

AgreeF �x� 	

�����
����


 if f�x� 	 �
� for each f � F �

� if f�x� 	 ��� for each f � F �

� otherwise�

Using Corollary � and the de�nition of agreement� we can show that for f� in C�� there exists

F � C such that f� 	 AgreefIntersectF �UnionF g�

Corollary � Let C be a class of boolean�valued concepts� Then for any f� � C�� there exists F � C

such that f� 	 AgreefIntersectF �UnionF g�

Proof� By Corollary �� there exists F � C such that the positive examples of IntersectF are

exactly P �and thus the negative examples of IntersectF are Q�N�� Dually� the negative examples

of UnionF are N �and the positive examples of UnionF are P �Q�� Thus� AgreefIntersectF �UnionF g

labels an example x positive i� x is in P � Similarly� AgreefIntersectF �UnionF g labels an example x

negative i� x is in N � Since AgreefIntersectF �UnionF g labels an example x positive �respectively�

negative� i� f� labels x positive �respectively� negative�� AgreefIntersectF �UnionF g labels x ��� i�

f� labels x ����

Towards a representation for blurry concepts� we now show that for any blurry concept f� in

C�� there is a corresponding subset F of C whose agreement is equivalent to f�� �Thus� the problem

of learning agreements of concepts from C is equivalent to learning C from a consistently ignorant

teacher� or equivalently� learning the blurry class C���

Lemma � For a class C of boolean�valued concepts� the blurry class C� 	 fAgreeF j F � Cg�
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Proof� ��� Let f� � C�� By Corollary � there exists F � C such that f� 	 AgreefIntersectF �UnionF g�

Observe that AgreefIntersectF �UnionF g 	 AgreeF since for any example x� AgreefIntersectF �UnionF g

labels x positive if and only if IntersectF labels x positive �since IntersectF is more speci�c than

UnionF �x��� Thus� the function AgreefIntersectF �UnionF g labels x positive i� every f in F labels

x positive� But� by de�nition� this is when AgreeF labels x positive� An analogous argument

shows that the two functions are identical when x is a negative example� Finally� since AgreeF

labels x positive �respectively� negative� i� AgreefIntersectF �UnionF g labels x positive �respectively�

negative�� AgreeF labels x ��� i� AgreefIntersectF �UnionF g labels x ����

��� Let F � C� We show that AgreeF is a blurry concept for C� For every ��� example q

of AgreeF � there must exist f� f
� in F such that f�q� �	 f ��q� �otherwise q would not be a ���

example� and both f and f � are consistent with the positive and negative examples of AgreeF �by

De�nition ��� Thus� for all F � C� there exists f� � C� such that AgreeF 	 f��

Measuring the Size of a Blurry Concept� Now that we have a way to represent blurry

concepts� we can describe our complexity measure for the size of f�� Recall that for a concept

class C� typically the �representation� size of a concept f � C is taken to be the fewest number

of symbols needed to write f as a member of C� This de�nition extends naturally to give the

representation size of a �nite set of concepts F � de�ne the size of F to be
P

f�F jf j� where the

size jf j is given by the size measure for the base class C� Now de�ne the size jf�j for f� � C� to be

the minimum� over all F � C for which AgreeF 	 f�� of the representation size of F � Analogously�

the sizes of IntersectF and UnionF are each just the representation size of the subset F � Note that

jIntersectF j 	 jUnionF j 	 jAgreeF j� We only consider learning functions of the form AgreeF � where

F is �nite� If no such �nite F exists� then the representation size of f� is in�nite and� consequently�

the learning problem is ill�de�ned�

The notion of an agreement of base concepts has independent interest� as it models a type of

unanimous vote of independent agents�

Finally� there is an interesting relationship between Mitchell
s de�nition of version spaces �Mit���

and agreements� Given a concept class C of boolean�valued functions and a set of examples M � the

version space V is the set of concepts in C consistent with M � As the version space can be large� it

is often represented by the sets G and S where S is the subset of V that contains the most speci�c�

concepts and G is the subset of V that contains the most general concepts�� The G and S sets

�We say that f� � C is more speci�c �respectively� more general� than f� � C if f� � f� �respectively� f� � f��	
�In particular� S � fs � V � there is no s� in V that is strictly more speci�c than sg and G � fg � V � there is

no g� in V that is strictly more general than gg	 Note also that not every version space can be represented by the
boundary sets S and G �GNPS��� Hir��� Mit���	
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induce a ternary function� which we call VS�S�G� de�ned as follows�

VS�S�G��x� 	

�����
����


 if s�x� 	 �
� for all s � S�

� if g�x� 	 ��� for all g � G�

� otherwise�

For a concept class C� it can be shown that the agreement of a �nite subset F of C is equivalent to

VS�S�G�� for suitably de�ned S and G� Also� given sets S and G� it can be shown that the ternary

function induced by S and G can be represented as an agreement� In particular� VS�S�G��x� 	

AgreeS�G�x� for all x� However� there are cases where exponentially smaller subsets S
� of S and G�

of G are su�cient for prediction� i�e�� for all x� VS�S�G��x� 	 AgreeS��G��x� for S� 	 S and G� 	 G

and jGj
 jSj 	 exp�jG�j
 jS�j�� Since our goal is only to predict well� maintaining the set of most

general and most speci�c consistent concepts may create much unneeded� time�consuming work�

� Positive Results for Learning Agreements

We show that e�cient PAC and PAC�memb learning algorithms can be designed to learn from

consistently ignorant teachers� We �rst consider the problem of learning the agreement of a pair

of nested concepts� We show that if both concepts are chosen from classes for which e�cient

learning algorithms exist� then we can use these algorithms to obtain an e�cient algorithm for

learning the agreement of the functions� We then present a general result addressing how known

algorithms for learning from omniscient teachers can be applied to learn from consistently ignorant

teachers even when the base functions are not nested� In particular� we show that when unions

and intersections of concepts from C are learnable� the blurry class C� is learnable �equivalently� C

is learnable from a consistently ignorant teacher�� These techniques are applied to show that Horn

clauses� ��DNF ���CNF� formulas containing O�logn� literals� Classic sentences� and monomials

���DNF formulas� with at least one positive �respectively� negative� example� are learnable from

a consistently ignorant teacher� Simple extensions show that those blurry concepts representable

as an agreement of a constant number of monotone DNF �CNF� formulas� k�term DNF �k�clause

CNF� formulas� decision trees� and DFAs� are learnable�

��� Learning Agreements of Nested Concepts

Recall that a concept f � C is simply the subset of instances from X that f classi�es as positive�

Thus for two concepts f� and f�� we write f� � f� if the set of positive examples of f� is a subset

of the positive examples of f�� Given a set of concepts F 	 ff�� � � � � fkg we say that these concepts

are nested if f� � f� � 
 
 
 � fk � Observe that Agreeff������fkg 	 Agreeff��fkg and thus� without

loss of generality� we consider learning the agreement� Agreeffs�fgg� of two nested functions fs and
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fg �s and g for �speci�c� and �general��� Suppose these are chosen� respectively� from known

polynomial�time learnable concept classes CS and CG� Then the learning algorithms for CS and CG

can be used to learn the following class �

Nested�hCS � CGi 	 fAgreeffs�fgg j fs � CS � fg � CG� and fs � fgg�

�See Figure � for the algorithm��

Theorem � If CS and CG are polynomially PAC�memb 	respectively PAC
 learnable concept classes�

then the class Nested�hCS � CGi is polynomially PAC�memb 	respectively PAC
 learnable�

Proof� If the target is Agreeffs�fgg for fs in CS and fg in CG� note that a positive �respectively�

negative� example of Agreeffs�fgg is classi�ed as positive �respectively� negative� by both fs and

fg and a ��� example is classi�ed as negative by fs and positive by fg � Thus� algorithm Learn�

Agreement�Nested�Concepts in Figure � learns Agreeffs�fgg by running the learning algorithm for

CS treating ��� as ��� to obtain hS � and running the algorithm for CG treating ��� as �
� to

obtain hG� and outputs h 	 AgreefhS�hGg as the �nal hypothesis�

Since hS and hG both have error at most ��� with probability at least ������ it follows that h has

error at most � with probability at least �� �� Finally� since AS and AG run in polynomial time�

Learn�Agreement�Nested�Concepts runs in polynomial time� Also note that Learn�Agreement�

Nested�Concepts only makes a membership query when either AS or AG does�

In the special case where CS 	 CG 	 C is learnable� Theorem � shows that nested concepts from

C are learnable�

��� A General Technique for Learning Agreements

We use the characterization in Lemma � to obtain an e�cient algorithm for learning a blurry concept

class C� �equivalently� learning a class C from a consistently ignorant teacher� when intersections

and unions from C are known to be learnable� To aid the exposition� we de�ne the following sets�

C� 	 fIntersectF � F � Cg� C� 	 fUnionF � F � Cg�

Theorem � Let C be a boolean�valued concept class for which C� and C� are PAC�memb 	respec�

tively PAC
 learnable in polynomial time� Then C� is PAC�memb 	respectively PAC
 learnable in

polynomial time�

Proof� Let f� be any element of C�� represented by AgreeF for some �nite F � C �see Lemma ���

By Corollary �� AgreefIntersectF �UnionF g 	 AgreeF �	 f��� Since AgreefIntersectF �UnionF g and

AgreeF represent the same ternary functions� an algorithm that learns the agreement of IntersectF
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Learn�Agreement�Nested�Concepts�AS�Ag� �� ��

!" AS and AG are the PAC�memb learning algorithms for CS and CG� respectively� "!

�� Simulate AS �with parameters ��� and ���� as follows�

�a� If AS requests an example� then draw a random labeled example �x� f�x�� from

D�

�b� If AS performs a membership query on x� then perform a membership query on

x to obtain f�x��

�c� If f�x� 	 �
� then give �x�
� to AS � otherwise give �x��� to AS �

�� Let hS be the hypothesis output by AS �

�� Simulate AG �with parameters ��� and ���� as follows�

�a� If AG requests an example� then draw a random labeled example �x� f�x�� from

D�

�b� If AG performs a membership query on x� then perform a membership query on

x to obtain f�x��

�c� If f�x� 	 ��� then give �x��� to AG� otherwise give �x�
� to AG�

�� Let hG be the hypothesis output by AG�

�� Return the hypothesis AgreefhS�hGg�

Figure �� A method for learning the agreement of nested concepts
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and UnionF can be used to learn AgreeF � It is important to note that jAgreefIntersectF �UnionF gj �

� 
 jAgreeF j� since jIntersectF j 	 jUnionF j 	 jAgreeF j� Thus� the running time of the learning algo�

rithm when learning f� 	 AgreeF 	 AgreefIntersectF �UnionF g is polynomial in jAgreefIntersectF �UnionF gj�

which is polynomial in jAgreeF j� To see that there is an algorithm to learn any such AgreeF � note

that IntersectF � UnionF � and thus AgreefIntersectF �UnionF g � Nested�hC�� C�i� By assumption�

C� and C� are e�ciently learnable and so� by Theorem �� Nested�hC�� C�i is e�ciently learnable�

Thus� AgreefIntersectF �UnionF g 	 f� can be learned�

As discussed in Section �� Theorems � and � can be strengthened to hold in a suitably modi�ed

exact learning model �with membership queries��

We give some direct implications of Theorem ��

Corollary 	 For C � fHorn clauses� ��DNFs containing at most O�logn� literals� Classic sentencesg�

C� is polynomially PAC�memb learnable�

Proof� For C the class of Horn clauses� C� is the class of Horn sentences which is known to be PAC�

memb learnable �AFP���� For C the class of ��DNF formulas containing at most O�logn� literals�

C� is the class of O�logn��CNF expressions� which is known to be PAC�memb learnable �Bsh����

In both cases� C� is the class of ��DNF expressions� which is known to be PAC learnable �Val����

Hence� for C the class of Horn clauses and ��DNF formulas with at most O�logn� literals� by

Theorem �� C� is PAC�memb learnable�

The class of Classic sentences is known to be polynomially PAC�memb learnable �FP����

Further� since the syntax of Classic admits an �AND� construct� the intersection of any two

Classic sentences is itself a Classic sentence of size that is the sum of the sizes of the sentences

being intersected� It follows that intersections of Classic sentences are polynomially PAC�memb

learnable� There are di�erent possible semantics for the �union� of Classic sentences� in a recent

extension of �FP���� it is shown that a �weak union� of Classic sentences are PAC�memb learnable�

and that this is su�cient to show that agreements of Classic sentences are learnable� hence

Classic is learnable from a consistently ignorant teacher��

The corollary above also applies to the corresponding dual class� i�e�� when C is the class of

��CNF formulas containing at most O�logn� literals�

For a moment we return to the example of learning the agreement of monomials� We argue that

unless we make some restrictions on the target concept� the problem of learning the agreement of

monomials is as hard as learning �boolean�valued� DNF formulas� Consider the task of learning the

DNF formula f 	 t� � 
 
 
� tk � We can reduce the problem of learning f to the problem of learning

the blurry concept f� 	 Agreeft��t������tk�falseg� Note that f� evaluates to ��� on x i� f�x� 	 �� and

�The result that a weak union of Classic sentences is learnable� and that Classic is learnable from a consistently

ignorant teacher� appear as Theorem �� and Corollary ��� respectively� in the full version of �FP���	
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evaluates to � on x i� f�x� 	 �� Thus� any algorithm that learns the agreement of monomials can

be used to learn �boolean�valued� DNF by simply interpreting all positive examples of the DNF

algorithm as ��� examples of the agreement of monomials algorithm� Hence� we have the following�

Observation 
 Learning blurry monomials is as hard as learning 	boolean�valued
 DNF formulas�

In the above example� since the false function is included in the agreement� the set of positive

examples becomes empty� precluding the possibility of using information about positive examples

to aid in learning to distinguish between negative and ��� examples� However� if we require that

there be at least one positive example to a blurry monomial� then Corollary �� demonstrates that

such concepts are e�ciently learnable� Not surprisingly� the requirement that there is at least one

positive example appears necessary to obtain positive results for other classes� Thus� we introduce

the following de�nitions�

C�� 	 fIntersectF� � F� � C� �x � X � f�x� 	 �
� for all f � F�g

C�� 	 fUnionF� � F� � C� �x � X � f�x� 	 �
� for all f � F�g

C�� 	 ff� � f� has at least one positive exampleg

A simple modi�cation of the proof of Lemma � shows that C�� 	 fAgreeF� � F� � Cg� imme�

diately yielding the following analog of Theorem ��

Corollary � Let C be a boolean�valued concept class for which C�� and C�� are PAC�memb 	respec�

tively PAC
 learnable in polynomial time� Then C�� is PAC�memb 	respectively PAC
 learnable in

polynomial time�

As a corollary to the above observations� we show that the class of blurry monomials with at

least one positive example is learnable�

Corollary �� For C the class of monomials� C�� is polynomially PAC�memb learnable�

Proof� We show C�� and C
�
� are learnable when C is the class of monomials� and the result follows

by Corollary �� The class C�� is learnable since the intersection of an arbitrary number of monomials

can be represented as a monomial of length at most n �where n is the number of variables� and

the class of monomials is known to be PAC learnable �Val���� We show C�� is the class of unate

DNF formulas and hence PAC�memb learnable by �AHK���� To see that C�� is the class of unate

DNF formulas� note that for F� � C� since there is an example x that IntersectF� labels positive

�by the de�nition of C�� �� x satis�es every monomial in F
�� It follows that no variable can appear

both negated and unnegated in F��
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Had we not restricted the class C in the above corollary to only those blurry monomials with

at least one positive example� the proof would fail � UnionF would not necessarily be unate�

and could be instead an arbitrary DNF formula� The learnability of general DNF formulas in the

PAC�memb model remains a challenging open question�	 Corollary �� also applies to the dual of

monomials �i�e�� ��DNF� by considering the analogous class C�� �

Unfortunately� a priori knowledge that a blurry concept has at least one positive example does

not always turn out to be useful� In particular� for each of the problems of learning blurry monotone

DNF formulas� blurry decision trees� and blurry DFAs� the existence of at least one positive example

does not make the problem any easier� In order to demonstrate this� we need the notion of a

prediction preserving reduction with membership queries �AK��� �see also �PW����� While the

de�nition of a prediction�preserving reduction is somewhat involved� it in essence captures the idea

that one can sometimes use an e�cient learning algorithm for one concept class to construct an

e�cient learning algorithm for a di�erent concept class� For a class C let L�C� denote the learning

problem for C� For concept classes C� and C�� we use the notation L�C�� �L�C�� to mean that

PAC�memb learning C� reduces to PAC�memb learning C�� in the sense of �AK���� We will present

such reductions informally � namely by showing how an an e�cient algorithm for PAC�memb

learning C� can be used to e�ciently PAC�memb learn C��

Theorem �� For C � fmonotone DNF formulas� decision trees� DFAsg� L�C�� �L�C
�
� ��

Proof� For C the class of monotone DNF formulas� we show that L�C�� �L�C
�
� � by constructing

an algorithm A to learn C� given that there exists an algorithm A� to learn C�� � If f� labels the

example h� 
 
 
�i positive �which A can check using a membership query� then A runs A� and

outputs whatever it does� In this case� the output of A� is correct because f� is in C
�
� � Suppose

that f� labels h� 
 
 
�i negative� Then the formula False must be in the agreement as it is the

only monotone DNF formula that labels the example h� 
 
 
�i negative� Hence� there is only one

boundary to learn � the �lower boundary� or the one separating ��� examples from ��� examples�

Suppose that f� is represented as an agreement of the set of concepts F � C� Observe that the

�lower� boundary is expressed by the function UnionF � which is representable as a monotone DNF

formula of size
P

f�F jf j� Thus� A runs the monotone DNF learning algorithm �Ang��� treating

all ��� examples as �
� examples� and obtains some hypothesis h that �with probability at least

�� �� correctly �within �� classi�es examples as does UnionF � To classify an example x� A outputs

��� if h�x� 	 �
�� otherwise A outputs ���� The time taken by A is polynomial in jf�j� since the

time taken by the monotone DNF learning algorithm is polynomial in
P

f�F jf j�

Next we show that for C the class of decision trees� L�C�� �L�C
�
� �� In particular� we construct

an algorithm A to learn C� given an algorithm A� that learns C�� � Suppose that f� is represented

�However� DNF formulas are PAC�memb learnable with respect to the uniform distribution �Jac���	

��



as an agreement of concepts f�� � � � � ft in C over variables v�� � � � � vn� In order to learn f�� A� will

be run on examples of the function f�� � the agreement of f
�
�� � � � � f

�
t� where f

�
i 	 v
 � fi �for v
 a

new variable�� Such examples are easily constructed from examples of f� without knowledge of

f�� � � � � ft� because for all i� f
�
i labels as positive any �n
���bit example � 
x �i�e�� the example with

� in the position v
 and x in positions v�� � � � � vn�� and labels the example � 
x the way that fi labels

x� With this observation� the algorithm A to learn C� can use the algorithm A� for C�� �with the

unknown target f�� 	 Agreefv��f������v��ftg� in the following way� If A
� requests a random example

of f�� � then A draws a random example y of f� de�ned over the original variables v�� � � � � vn� and

returns the example � 
 y� If A� poses a membership query on example y of f�� � then A returns the

label �
� if the �rst bit position v
 of y is �� because such an example satis�es each v
 � fi� If the

�rst bit position v
 of y is �� then A poses a membership query �to the oracle for f�� on the example

y with bit position v
 deleted and returns to A� the label that this membership query returns�

This transformation works because the formula f�� with v
 set to � is equivalent to f�� Once A
�

terminates� A can use the hypothesis h output by A� to determine the label of an example y by

evaluating h�� 
 y�� Observe that the time taken by A in learning f� is bounded by a polynomial in

the time taken by A� in learning f�� � But this is a polynomial in jf�j� since A
� runs in polynomial

time� and the size of the decision tree that represents f �i is O�jfij� � the root node of the new

decision tree can now be v
 with the right � branch terminating in a True leaf� and with the left �

branch leading to the original decision tree fi�

For C the class of DFAs� we again show that L�C�� �L�C
�
� �� Suppose that f� is represented

as an agreement of DFAs M�� � � � �Mt in C� As before� we show the existence of M
�
�� � � � �M

�
t that

each label at least one example positive� and jM �
i j 	 O�jMij�� To achieve this goal� we associate

a modi�ed DFA� M �
i � for each DFA Mi that has a new start state with a transition to an accept

state if the �rst bit of the input string is �� and a transition to the old DFA Mi if the �rst bit of

the input string is �� Note that if r is the regular expression that corresponds to the DFAMi� then

�� 
 � 
 r is the regular expression that captures M �
i � The argument proceeds analogously to the

decision tree argument above constructing� an algorithm A to learn C� by running the algorithm

A� given for C�� �with the target f
�
� 	 AgreefM �

������M
�
tg
��

So� while the restriction that a blurry concept class has one positive example was useful in the

case of monomials �and� as we will see� is also useful when learning the agreement of boxes�� this

theorem demonstrates that it does not always alter the complexity of learning the arbitrary blurry

concept class� In fact� in Section �� we show that learning C� for the classes considered in the above

theorem is an apparently hard problem� Since having one positive example does not always a�ect

the di�culty of a learning problem� we consider learning a di�erent subset of blurry concept classes

� those that can be represented as an agreement of a constant number of concepts� With this

restriction� the blurry classes C� we showed to be as hard as learning C
�
� are in fact learnable� We

��



use the following notation�

Ck� 	 fIntersectF k � F k � C� cardinality of F k is kg�

Ck� 	 fUnionF k � F k � C� cardinality of F k is kg�

Ck� 	 fAgreeF k � F k � C� cardinality of F k is kg�

For F k � C� AgreeF k 	 AgreefIntersect
Fk

�Union
Fk

g� by a simple instantiation of Lemma ��

Furthermore� jAgreefIntersect
Fk

�Union
Fk

gj � � 
 jAgreeF k j� By �yet another� simple modi�cation

of Theorem �� the learnability of Ck� follows from the learnability of intersections and unions of a

constant k number of concepts from C�

Corollary �� Let C be a boolean�valued concept class for which Ck� and Ck� are PAC�memb 	respec�

tively PAC
 learnable in polynomial time� Then Ck� is PAC�memb 	respectively PAC
 learnable in

polynomial time�

Corollary �� is applied to show that the agreement of a constant number of monotone DNF

formulas� ��term DNF formulas �for � constant�� decision trees� and DFAs� is learnable�

Corollary �� For C � fmonotone DNF formulas� ��term DNF formulas� decision trees� DFAsg�

Ck� is learnable� for each constant k�

Proof� The proof for each C in the corollary has the following structure� We show �rst that for

any F k � C of cardinality k constant� IntersectF k can be represented as an element of C with size

at most polynomial in jAgreeF k j 	
P

f�F k jf j �and similarly for UnionF k �� Noting that since C is

PAC�memb learnable in time polynomial in the size of its target� and since polynomials are closed

under composition� C is learnable in time polynomial in jAgreeF k j� Hence Ck� and C
k
� are e�ciently

learnable and� by Corollary ��� Ck� is e�ciently learnable� We �ll in some of the details for each C

mentioned in the corollary�

For C the class of monotone DNF formulas� let F k � C with the cardinality of F k equal to k� A

monotone DNF representation for IntersectF k can be obtained by �multiplying out� the monotone

DNF formulas in F k � The size of IntersectF k is at most #f�F k jf j � �maxf�F k jf j�k� So� for k

constant� the size of IntersectF k is polynomial in jAgreeF k j� A monotone DNF representation for

UnionF k can be obtained by disjoining the monotone DNF formulas in F k � The size of this repre�

sentation is at most
P

f�F k jf j� Thus� since each function in Ck� and C
k
� is e�ciently representable

as a monotone DNF� and the class C of monotone DNF formulas is PAC�memb learnable �Val����

Ck� and C
k
� are PAC�memb learnable�

For C the class of ��term DNF formulas� � constant� let F k � C be such that the cardinality of

F k is k� IntersectF k can be represented as an �k�term DNF formula �again� by �multiplying out�

��



the ��term DNF formulas in F k� and UnionF k can be represented as an ��k��term DNF formula�

Since both � and k are constant� each function in Ck� and C
k
� is e�ciently representable as an ���

term DNF formula� for �� constant� Moreover� since for each constant ��� ���term DNF formulas are

PAC�memb learnable �Ang��b� BR���� Ck� and C
k
� are e�ciently learnable�

For C the class of decision trees� consider as an example the case when k 	 �� We wish to

show that for decision trees d� and d�� there exists a small representation for d� 
 d� and d� � d�

as decision trees� To obtain a representation for d� 
 d� �respectively� d� � d��� replace all �
�

leaves �respectively� ��� leaves� in d� with the decision tree d�� Now observe that an example x

is labeled positive by this decision tree i� x is labeled positive by both �respectively� at least one

of� d� and d�� The size of such a decision tree is at most the number of leaves in d� multiplied

by the size of d�� Analogously� for k constant� for F k � C with the cardinality of F k equal to k�

jIntersectF k j � �maxf�F k jf j�k� and similarly for jUnionF k j� Since each function in Ck� and C
k
� is

e�ciently representable as a decision tree� and the class of decision trees is e�ciently PAC�memb

learnable �Bsh���� Ck� and C
k
� are also e�ciently learnable�

Finally� for C the class of DFAs� standard arguments �HU��� show that the intersection and

union of a constant k number of DFAs is representable as a DFA of size the product of the sizes

of the DFAs in the intersection or union �but exponential in k�� Since each function in Ck� and C
k
�

is e�ciently representable as a DFA� and DFAs are e�ciently PAC�memb learnable �Ang��b�� Ck�

and Ck� are also e�ciently learnable�

The corollary above also applies to the corresponding dual classes� i�e�� when C is the class of

monotone CNF formulas and ��clause CNF formulas� Ck� is e�ciently PAC�memb learnable�

��� Learning Agreements of Boxes in Euclidean Space

In this section we show that axis�parallel boxes �henceforth referred to as boxes� can be learned

from a consistently ignorant teacher� We �rst apply Corollary �� to show that the agreement of a

constant number of boxes is learnable� Next we give a PAC�memb algorithm to learn the agreement

of s boxes in d dimensional Euclidean space �Ed� when the set of boxes has a samplable� intersection�

It is easy to show that this class is a generalization of unate DNF formulas� and a specialization of

the class of unions of boxes in Ed�

Corollary �� For C the class of axis�parallel boxes in Ed� Ck� is PAC learnable

Proof� For any F k � C of cardinality k constant� IntersectF k can be represented as an element of

C since the intersection of axis�parallel boxes is a �possibly empty� single axis�parallel box� Hence�

jIntersectF k j 	 O�d� and is e�ciently learnable by results of �BEHW���� Further� UnionF k can be

�A set of examples is samplable if the probability p� of drawing an example from that set is �
q	s�d
 where q is some

polynomial	

��



represented as the union of a constant number of boxes� where jUnionF k j 	
P

f�F k jf j� Observe that

by results of �LW���� Ck� is PAC learnable in time polynomial in d�
�
� � and

�
� � Since jIntersectF k j �

jUnionF k j � jAgreeF k j� we have that both Ck� and C
k
� are learnable in time polynomial in jAgreeF k j�

and� hence� by Corollary ��� Ck� is e�ciently PAC learnable�

Now we present an algorithm to PAC�memb learn the agreement of s boxes in Ed that runs

in time polynomial in ���� ���� s� and �d� So� the algorithm runs in polynomial time without

demanding that one of s and d be constant �d can be  �log s��� Before describing the details of

our algorithm� we �rst provide a high�level overview� To aid in learning the agreement of boxes� we

�rst learn the intersection region �which is itself a box�� We can approximate the intersection box

by treating all ��� examples in the sample as negative examples and running a known algorithm

to learn one d�dimensional box �BEHW���� Learning the intersection box allows us to distinguish

between positive and non�positive examples� To successfully learn the ternary function� however�

we must be able to distinguish between ��� and negative examples as well �and since neither the

��� or negative region is a box� we must take a di�erent approach than the one used to learn the

positive region�� To accomplish this task� we choose a random positive exampleto p� Now we have

�d versions of the same problem� In particular� we have a union of a set of boxes that all lie in

the same quadrant of Ed �where the origin is now p� and which all contain the origin as a corner

point� We call such a box an origin�incident box� Treating all ��� examples as positive� we give a

PAC�memb algorithm to learn the union of s origin�incident boxes within a single quadrant that

runs in time polynomial in both s and d� Each quadrant can be learned by the algorithm for

learning the union of origin�incident boxes �where the origin is now p�� In the worst case� some

piece of each of the s boxes will lie in each of the �d quadrants of the sub�divided problem forcing

us to learn O�s�d� boxes� At this stage� we have a hypothesis that predicts properly� Speci�cally�

if a point x lies in the intersection box� it is labeled positive� otherwise� if x lies in the union of

the O�s�d� boxes learned for each quadrant� x is labeled ���� and otherwise it is labeled negative�

While such a hypothesis is su�cient for prediction� it does not form an agreement� We can obtain

a hypothesis of the appropriate form by outputting the agreement of the intersection box and the

boxes in the union extended to include the intersection box�

�
�
� Approximately Learning the Union of Origin�incident Boxes

We present a PAC�memb algorithm to learn the union of s origin�incident �nonblurry� boxes in

Ed where all of the boxes are in the same quadrant �for simplicity we only present the algorithm�

Figure �� for the positive quadrant�� We refer to the class of origin�incident boxes in the positive

quadrant as BPQ�

We denote the origin in BPQ by the zero vector ��� In general� we represent a box by any

two opposing corners x and y using the ordered pair notation �x� y�� An origin�incident box is
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LearnBPQ�s� d� �� ��

�� Draw a sample S of size mBPQ�s� d� �� �� �� maxf�
�
log �

�
�
��dslog��s�

�
log ��

�
g examples�

�� h �� � �� The set of boxes in the hypothesis� represented as pairs ���� c� ��

�� where �� and c are opposing corners ��

�� P �� fx � x is a positive example in Sg

�� while there exists an example x � P

�a� P �� P � fxg

�b� for each y � P if member�MaxCorner�x� y�� � �yes� then

i� x �� MaxCorner�x� y�

ii� P �� P � fyg

�c� add the box ���� x� to h

�� return h �� Output the union of boxes in h��

Figure �� Algorithm to learn a union of origin�incident boxes�

represented by the ordered pair �o� c� where o is the origin and c is the corner opposing the origin�

Finally� we de�ne MaxCorner to be a function that takes two points �x� y� in the positive quadrant

of Ed and returns the point z which� for � � i � d� has ith coordinate zi 	 maxfxi� yig�

Theorem �� Let BPQ��s� be the union of at most s origin incident boxes in the positive quadrant�

The class BPQ��s� is PAC�memb learnable with time and sample complexity polynomial in s� d�

���� ����

Proof� To prove the theorem� we show that

�� Algorithm LearnBPQ �Figure ��� constructs a sample S� runs in time polynomial in jSj� and

outputs a union of at most s origin�incident boxes �that is� an element of BPQ��s�� that is

consistent with the sample�

�� The VC�dimension� of BPQ��s� grows polynomially with s and d �namely� it is at most

�ds log �s��

It then follows from Theorem ��� of Blumer et al� �BEHW��� that if LearnBPQ chooses at least

mBPQ 	 max
n
�
� log

�
� �

�	ds log
�s�
� log ��

�

o
random examples� then with probability at least �� �� it

will output a hypothesis h with error at most ��

�The VC�dimension is a combinatorial parameter of a concept class that directly relates to the number of examples
necessary �and su�cient� for su�cient generalization �BEHW���	
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Proof of Part �� We �rst show that LearnBPQ produces a hypothesis that is consistent

with the sample S� The hypothesis produced is consistent with the positive examples of S since

the algorithm does not terminate until all positive examples of S have been removed from P

�Step �� and no point is removed unless the box about to be placed in h contains it �Step ��b�ii��

Furthermore� if the box ���� x� was placed in h� then x was a positive example �either it was in P

�Step �a� or veri�ed to be positive �Step �b� with the membership query member�x��� Since x

is a positive example� the box ���� x� is contained within some box of the target� Thus no negative

examples �even those not in S� can be contained in any of the boxes placed in h�

We prove the hypothesis h output by LearnBPQ contains at most s boxes� Let ���� bn� be the

box added at the nth execution of Step �� Suppose h contained more than s boxes� Then since

each box placed in h must be contained within a target box� it follows that for some i � j� boxes

���� bi� and ���� bj� are both contained in some target box ���� b��� Let pj be the initial value of x at

the jth execution of Step �� Looking back at the ith execution of Step �� note that pj remained in

P throughout the entire ith execution� since it is the initial value in the jth execution of Step ��

Thus� at some iteration of step �b during the ith execution of Step �� the point y 	 pj is chosen�

and the querymember�MaxCorner�$x� pj�� is made� where $x is the value of x at this moment� Note

that member�MaxCorner�$x� pj�� must have returned the answer �no�� otherwise pj would have

been removed from P contradicting that pj is in P at the beginning of the jth execution of Step ��

Observe that $x is in the box ���� bi�� pj is in the box ���� bj� and the box ���� b
�� contains both of

these boxes� But MaxCorner�$x� pj� is a negative example �since MaxCorner�$x� pj� returned �no���

and is in any box that contains both boxes ���� bi� and ���� bj�� Hence� the box ���� b
�� contains this

negative example� a contradiction� Thus h contains at most s boxes�

LearnBPQ runs in polynomial time� since there are at most s iterations of the while loop� each

taking O�d 
mBPQ��� �� s� d�� time� This completes the proof of Part ��

Proof of Part �� Note that the VC�dimension of BPQ is at most d �this is easily shown�� and

by Lemma ����� of Blumer et al� �BEHW���� the VC�dimension of BPQ��s� is at most �ds log��s��

This completes the proof of Part � and hence of the theorem�

LearnBPQ is easily modi�ed to obtain an algorithm to learn the union of s origin�incident boxes

in Ed when all of the boxes are in any single quadrant and when the origin is shifted to any point

o� We call this new algorithm LearnBAQ�S� o� �Learn Boxes Any Quadrant� which takes a sample

S and a point o and learns the union of axis�parallel boxes assuming o is the origin and all the

examples in S fall in some single quadrant induced by the origin o� We call the corresponding class

of concepts BAQo� Observe that LearnBAQ�S� o� is di�erent from LearnBPQ in that it does not

draw any examples� Instead the sample S is provided as input to the algorithm� The algorithm

presented in the next section calls LearnBAQ with a sample S that is large enough to ensure that

with high probability� LearnBAQ�S� o� outputs a su�ciently accurate hypothesis�
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�
�
� Approximately Learning the Agreement of Boxes with Samplable Intersection

We give an algorithm to learn the agreement of s boxes in Ed �hence� an algorithm to learn boxes

from a consistently ignorant teacher� when the intersection region is samplable� Our algorithm�

Figure �� has polynomial time and sample complexity in both d and s when d 	 O�log s��

As we mentioned earlier� our algorithm draws a sample of positive� negative� and ��� examples

and learns the intersection box� treating all ��� examples as negative examples� Then� a random

positive example p is chosen from the sample and the algorithm runs �d versions of LearnBAQp

�with p as the origin� treating all ��� examples as positive examples� While such a hypothesis

is su�cient for prediction� it does not form an agreement� We can obtain a hypothesis of the

appropriate form by outputting the agreement of the intersection box and the boxes in the union

extended to include the intersection box�

Let OneBox�S� be a procedure that takes a sample S and returns the smallest box consistent

with the examples in S� We state the main result of this section�

Theorem �� Let p� be the probability of receiving a positive example from the example oracle�

LearnBoxesAgreement is a PAC�memb algorithm for learning the agreement of s axis�parallel boxes

in Ed that has sample complexity m 	 O
�
�d

�� log
�d

� 

�d

�� ds log s log
�d

� 

�
p� log

�
�

�
� and time com�

plexity O�sd�dm��

Before proving the theorem� we introduce some de�nitions and prove a technical lemma� De�

�ne a quadrant Q to be signi�cant if Pr�a random example is in Q� � �
�d�� � We show that when

LearnBAQ is applied to a signi�cant quadrant it produces a hypothesis with error at most �
���d

�with high probability�� Thus since there are �d quadrants� the overall error caused by the calls to

LearnBAQ is at most ��� �with high probability�� Let p� be the probability of receiving a positive

example� Let mBPQ��� �� be the value given in Step � of Figure � and let mLBA� �respectively�

mLBA�� be the value given in Step � �respectively� Step �� of Figure �� �So as to simplify notation�

we have omitted some parameters in mBPQ�mLBA� andmLBA� �� Intuitively� the lemma states that

by drawing su�ciently large samples� it is possible to ensure that the probability that a positive

example is not drawn is small� the probability that the intersection box has large error is small� and

the probability that there are not enough examples for LearnBAQ to output a �good� hypothesis

is small� More formally�

Lemma �	 Let S� be a random sample of size mLBA�� and S� be a di�erent random sample of

size mLBA�� Then there are enough examples in S� and S� to ensure that�

�� Pr 	A positive example in S� is not drawn
 � �
� �

�� Pr 	The procedure OneBox	T 
 produces a hypothesis with error more than �
� 
 � �

� �

��



LearnBoxesAgreement�s� d� �� �� p��

�� Draw a sample S� of size mLBA���� p
�� �	 �

p� ln
�
�

�� If there are no positive examples in S� halt and report failure� Else� let p be an arbitrarily

selected positive example from S��

�� Draw a sample S� of size mLBA��s� d� �� �� �	

max
n
�
� log

	
� �

�	d
� log

�	
� �

��d��

��
log ���d��

� � sd��
�d��

��
log��s� log ����d��

�

o

�� Let T be the set of examples obtained by relabeling all ��� examples of S� as negative�

�� �i�� i�� �	 OneBox�T �

�� H �	 f�i�� i��g !" Initialize the hypothesis H to be the intersection box� "!

�� Partition Ed into �d quadrants using the example p selected in Step �� Let Q be the set

of �d quadrants induced by considering p as the origin�

�� For each quadrant q in Q

�a� Let Sq be the examples from S that fall in quadrant q relabeled so that all ���

examples are positive�

�b� B �	 LearnBAQ�Sq �p�

�c� B �	 Boxes in B extended so that they include the intersection box �i�� i���

�d� H �	 H � B

�� Output AgreeH

Figure �� The algorithm LearnBoxesAgreement for learning the agreement of a set of axis�parallel

boxes with samplable intersection region�
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�� For a particular signi�cant quadrant Q�

Pr 	S� contains fewer than mBPQ�
�

�d�� �
�

���d
� examples in Q
 � �

���d
�

Proof of Part �� Since p� is the probability of drawing a positive example� the probability

of not drawing a positive example in a sample of size m is at most �� � p��m� Then using the

inequality ��� x�
�
x � e��� we have�

Pr

�
no positive example in a sample of size

�

p�
ln
�

�

	
� ��� p��

�
p�

ln �
� �

�

�

Since mLBA� 	 ��p
� ln ���� Part � follows�

Proof of Part �� Observe that the intersection region is a d�dimensional axis�parallel box

and the VC�dimension of a d�dimensional axis�parallel box is �d� Hence� by a direct application

of Theorem ��� in Blumer et al� �BEHW���� the probability that the procedure OneBox�T � �in

step �� produces a hypothesis that has error more than �
� is at most

�
� � provided that jT j �

max
n
�
� log

	
� �

�	d
� log

�	
�

o
� But jT j 	 jS�j 	 mLBA� � which was speci�cally chosen so that jT j satis�es

this inequality� and Part � follows�

Proof of Part �� Let LE�p�m� x� denote the probability of at most x successes in m

independent trials of a Bernoulli random variable with probability of success p� The probability in

the statement of Part � is bounded above by�

LE

�
�

�d��
� mLBA�� mBPQ

�
�

�d��
�

�

� 
 �d

		
���

since each example is independently drawn and falls in Q with probability p � �
�d�� �because Q is

signi�cant�� By applying a version of Cherno� bounds presented in �AV���� we know�

LE�p�m� pm���� e�mp�� ���

It is easily veri�ed thatmBPQ�
�

�d�� �
�

���d
� � p
mLBA���� Thus by substituting p 	

�
�d�� �m 	 mLBA�

into Equation ��� and using this observation� we can apply it to Equation ��� to obtain that for a

particular signi�cant quadrant Q�

Pr

�
S� has � mBPQ

�
�

�d��
�

�

� 
 �d

	
examples in Q

	
� LE

�
�

�d��
� mLBA�� mBPQ

�
�

�d��
�

�

� 
 �d

		

� LE

�
�

�d��
� mLBA��

�

�d��

mLBA�

�

	

� e�mLBA�����
d����

which is bounded by �
���d

since mLBA� �
�d��

� ln ���d

� �

Proof of Theorem ��� Since we draw mLBA� examples in Step � of the algorithm given in

Figure �� by Part � of Lemma ��� the probability that the algorithm fails in Step � �equivalently�
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the probability no positive examples are drawn� is at most �
� � Also� since we drawmLBA� examples�

the probability that the intersection box found in Step � of the algorithm has error more than �
�

is at most �
� by Lemma ��� Part �� Observe that any insigni�cant quadrant contributes error at

most �
�d�� and the probability that any signi�cant quadrant contributes error more than

�
�d�� is at

most �
���d
� by Theorem ��� Since there are �d quadrants total� when LearnBAQ is run on all of

the �d quadrants in Step �� the probability that it outputs a hypothesis with error greater than

�d 
 �
�d�� 	

�
� is at most �

d 
 �
���d

	 �
� by Part � of Lemma ���

Suppose we only learn the intersection box �i�� i�� with the procedure OneBox and the union

of boxes U in each of the �d quadrants with LearnBAQ� Further� suppose we use the following

algorithm as our hypothesis� If an example x lies in the intersection box �i�� i��� label x positive�

otherwise� if x lies in one of the boxes in the union U � label x ���� otherwise label x negative�

We compute the error of the above hypothesis on the distribution over examples labeled positive�

negative� and ���� Since the procedure OneBox returns the tightest box around the positive

examples� its only error is in misclassifying positive examples of the target� By Lemma ��� Part ��

the probability that �i�� i�� di�ers from the target intersection box by more than �
� is at most

�
� �

Also� since for each quadrant q� procedure LearnBAQ outputs a union of boxes in q that is contained

in the target union of boxes in q� its only error is in misclassifying ��� examples of the target� By

Lemma ��� Part �� the probability that the union of boxes in all �d quadrants di�ers from the target

union of boxes by more than �
� is at most

�
� � Note that no error is made misclassifying negative

examples of the target� Finally� since we must have a positive example to run the algorithm� using

Lemma ��� Part �� the probability that the �nal hypothesis has error more than � 
 �� 	 � is at most

� 
 �� 	 ��

But� our algorithm does not output a ternary classi�er as described above �since our goal is

to output an agreement�� We argue that the agreement that is instead output in Step �� AgreeH �

classi�es all examples as this ternary classi�er thus satisfying the PAC criterion� First note that

by extending the boxes to include the intersection box� we ensure that all points in the intersection

box �i�� i�� are classi�ed as positive by AgreeH � Hence� AgreeH classi�es the positive examples as

in the above ternary hypothesis� Since the union of origin�incident boxes in a particular quadrant

generated by LearnBAQ is a subset of the target union of boxes for that quadrant� extending

the boxes to include the intersection box will not cause any box in the �nal agreement output to

contain a negative example� Thus� the ��� examples of AgreeH are exactly those examples in a box

of the union U that are not in the intersection box �i�� i��� and consequently� the ��� and negative

examples of AgreeH are exactly as in the ternary classi�er� We conclude that the probability that

the �nal agreement output by the algorithm on Step � has error more than � is at most ��

To compute the time complexity� observe that lines � and � require O�mLBA� 
mLBA�� time�

and line � requires O�dmLBA�� time� Step � and � require O��� time� For the �
d iterations of the

��



while loop in line �� line �a requires O�mLBA�� time� line �b requires O�sdmLBA�� time and lines �c

and �d require O�mLBA�� time� Thus the total running time is O�mLBA� 
 sd�dmLBA���

� Negative Results

In this section we explore the non�learnability of some unrestricted blurry concept classes� We

demonstrate that not every class known to be learnable from an omniscient teacher is necessarily

learnable from a consistently ignorant teacher� �In other words� the learnability of C may not imply

the learnability of C��� In particular� while the classes of ��term DNF formulas� decision trees� and

Horn sentences are known to be PAC�memb learnable �Ang��a� Bsh��� AFP���� we show here that

learning their blurry counterparts is as hard as learning �non�blurry� DNF� Since the learnability

of DNF is a widely attacked open problem in computational learning theory� we have evidence

that learning blurry unrestricted versions of these classes may be hard� And� while DFAs are

learnable from omniscient teachers �Ang��b�� we show that blurry DFAs are not learnable under

widely accepted cryptographic assumptions� Recall that Theorem �� showed that for decision trees

and DFAs� the learning problem is no easier even when the set of positive examples is guaranteed

to be nonempty� Thus for these classes� the negative results presented here hold even under those

circumstances� We leave open the question of whether knowledge of a single positive example can

facilitate learning the class of blurry ��term DNF expressions�

Observation �
 For C � f��term DNF formulas� decision treesg� L�DNF � �L�C���

Proof� We show how an algorithm for learning blurry ��term DNF formulas or blurry decision

trees can be used to learn blurry monomials� Since any algorithm for learning blurry monomials

can be used to learn non�blurry DNF formulas �Observation ��� the result follows�

A monomial is a ��term DNF formula� so an algorithm for learning blurry ��term DNF formulas

is in fact a blurry monomial learning algorithm�

Every monomial has a small representation as a decision tree �with a single �
� leaf� reached by

a single long branch in the tree that corresponds to the literals in the monomial�� Consequently� an

algorithm for learning blurry decision trees also immediately gives an algorithm for learning blurry

monomials�

Observation �� Blurry DFAs are not learnable under standard cryptographic assumptions��

Proof� For C the class of DFAs� we show how an algorithm A for C� can be used to learn the union

of DFAs� Since learning the union of DFAs is not possible under cryptographic assumptions �AK����

the result follows�
�For example� assuming the intractability of inverting RSA encryption� factoring Blum integers� or determining

quadratic residuosity	

��



To learn the union of DFAs� M�� � � � �Mt� we run the algorithm A for C� on the target f� 	

AgreefM������Mt�M�g
where M	 is the DFA that rejects every string� Observe that since M	 does not

accept any strings� f� is a two�valued function % in particular� f� labels a string x ��� if and only

if the union ofM�� � � � �Mt labels x �
�� Thus� any algorithm that learns blurry DFAs can be used

to learn the union of DFAs by simply treating all �
� examples as ��� examples�

Next we show that learning blurry Horn sentences is as hard as learning DNF formulas� Since

every monomial is in fact a Horn sentence �with clauses of size one�� this follows immediately from

Observation �� which shows that learning blurry monomials �hence Horn sentences�� without the

restriction that there be a positive example� is as hard as learning �boolean valued� DNF formulas�

However� as we have seen with monomials and boxes� if there are positive examples in the

agreement� then this information can be valuable in distinguishing between the negative and ���

examples� We show that for Horn sentences� even when the set of positive examples of the agreement

is nonempty and samplable� learning remains as hard as learning the class of �boolean�valued� DNF

formulas� Thus� we obtain the following stronger �negative� result than the one that follows from

Obervation ��

Theorem �� PAC�memb learning the agreement of Horn sentences for which the set of positive

examples is samplable is as hard as PAC�memb learning the class of DNF formulas�

Proof� In proving the theorem� we de�ne the following classes of concepts�

DHFn Disjunctive Horn Form �disjunctions of Horn sentences over n variables�

�e�g�� f 	 ��v� � v� � v�� � �v� � v��� � ��v� � v�� � �v	����

DHF��posn�p DHFn formulas with exactly one positive example p satisfying every disjunct

�p is known to the learner��

agree�Horn��posn�p Agreement of Horn sentences over n variables with exactly one positive example p

�p is known to the learner��

agree�Horn�pos�sampn Agreement of Horn sentences over n variables

�with a samplable set of positive examples��

We prove the theorem through a sequence of prediction preserving reductions� showing that

PAC�memb learning DNF formulas reduces to PAC�memb learning DHF formulas �i�e�� the �rst

problem on the list� and also that PAC�memb learning each problem on the list reduces to PAC�

memb learning the next problem on the list�
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�i� L�DNF� � L�DHF�

Every DNF formula f is in fact a DHF formula� f is a disjunction of terms� and each term

can be viewed as a Horn sentence � a conjunction of clauses� each containing a single literal

�hence� at most one unnegated literal�� Thus� f is a disjunction of Horn sentences� So� if we

had a learning algorithm for DHF formulas� we could use it to learn any DNF formula� f � by

simply running the DHF learning algorithm on the same formula f �

�ii� L�DHF� � L�DHF��pos�

We construct an algorithm A to learn a formula f in DHFn using the algorithm A� that

learns a formula f� in DHF��posn���p� In order to learn an unknown formula f in DHFn� A

will run A� on examples of the formula f� in DHF��posn���p� in which the zero vector �� is

the single known positive example� The de�nition of f� ensures that such examples are easily

constructed from examples of f � without knowledge of f � The target f� of DHF��posn���p

is of the form 	 � 
� where 	 is f with the extra literal v
 disjoined to every clause of every

Horn sentence of the disjunction of f � and 
 is the Horn sentence v
 � v� � 
 
 
 � vn� For the

example DHF formula f given in the de�nition of DHF formulas� f� 	 ��v
 � v� � v� � v�� �

�v
 � v� � v���� ��v
 � v� � v�� � �v
 � v	��� �v
 � 
 
 
 � v���

Clearly� the only example that can satisfy every disjunct of f� is ��� since this is the only one

that satis�es 
� Further� �� satis�es every Horn sentence in 	 because v
 appears in every

clause of every Horn sentence in 	�

Observe that x is a positive example of f if and only if � 
 x is a positive example of f��

To see this� note that f��h�� x�� � � � � xni� 	 � i� 	 evaluates to �� and f is exactly the

formula obtained by reducing 	 after setting v
 to �� Consequently� when A� �the algorithm

for DHF��pos� requests a random example� A �the algorithm for DHF� obtains a random

example hx�� � � � � xni with classi�cation label �� and returns the example h�� x�� � � � � xni with

classi�cation label ��

If A� makes a membership query on an example hx
� x�� � � � � xni� A checks the value of x
�

If x
 	 � then A returns the label �
� because every clause in every Horn sentence of 	

is satis�ed� If x
 	 � then A returns the result of a membership query on the example

hx�� � � � � xni�

Once A� terminates with the hypothesis h�� A can predict the label of any �n�bit� example

x by setting the extra variable v
 	 � and evaluating h� on the example � 
 x� Note that

setting v
 to � falsi�es 
 and �forces� 	 to be f �

�iii� L�DHF��pos� � L�agree�Horn��pos�

It is here that we switch from learning a standard boolean�valued concept to learning an

��



agreement �i�e�� a blurry concept�� We construct an algorithm A� to learn any function f�

in DHF��posn�p given an algorithm A�
� to learn any f

�
� in agree�Horn��posn�p� Suppose f� is

the target function� We use A�
� to learn a related ternary function f

�
� in agree�Horn��posn�p�

de�ned as follows� f�� labels p positive� the remaining positive examples of f� ���� and all

other examples negative� When A�
� requests a random example� A

� draws a random example

x and returns x with a label determined as follows� If x 	 p then A� returns positive� If

x �	 p and x is a positive example then A� returns ���� Otherwise A� returns negative�

When A�
� makes a membership query on example x� A

� returns positive if x 	 p� If x �	 p

then if a membership query on x returns the label positive then A� returns the label ����

Otherwise A� returns the label negative� Once A�
� terminates with hypothesis h

�
� � A

� can

predict the label of any example x by outputting positive when h�� labels x positive or ����

and outputting negative otherwise�

Observe that the error of the hypothesis h� output by A� on any distribution D on Xn with

examples labeled by f� is precisely the error that the hypothesis h�� of A�
� has on D with

examples labeled according to f�� �

�iv� L�agree�Horn��pos� � L�agree�Horn�pos�samp�

We construct an algorithm A�
� that learns any f

�
� in agree�Horn��posn�p using algorithm A�

that learns f� in agree�Horn�pos�sampn� The target of both algorithms is f
�
� �an agreement of

Horn sentences with exactly one positive example p�� When A� requests a random example�

A�
� �ips a fair coin and with probability

�
� returns p as a positive example �and so the set of

positive examples� which in this case has one element� is samplable�� Otherwise� A�
� draws

a random example and returns it to A�� When A� makes a membership query on example

x� A�
� returns the label of a membership query on x� Clearly� agree�Horn�pos�samp is a

generalization of agree�Horn��pos� and thus at least as hard�

It follows from this sequence of reductions that PAC�memb learning the agreement of Horn

sentences when the set of positive examples is samplable is as hard as PAC�memb learning the

class of DNF formulas�

Finally� we strengthen this result by using the hardness result of Angluin and Kharitonov �AK���

which shows� under the assumption that one�way functions exist� that membership queries do not

help in learning DNF formulas�

Corollary �� PAC�memb learning the agreement of Horn sentences for which the intersection

region is samplable is as hard as PAC learning the class of DNF formulas 	assuming that one�way

functions exist
�

��



� Learning Blurry Concepts in the Exact Learning Model

We demonstrate that many of the results we have presented in the PAC model also hold in the

exact model� Recall that an equivalence query on a hypothesis h returns �yes� if h is equivalent

to the target and otherwise returns an example on which the hypothesis and target disagree� Note

that a counterexample �from a consistently ignorant teacher� to a hypothesis h may be one that

the target labels ��� and the hypothesis does not� We begin by de�ning exact learning from a

consistently ignorant teacher�

De�nition � C� is exact learnable 	alternatively� Cn is exact learnable from a consistently ignorant

teacher
 if there exists an algorithm A� such that for all blurry concepts f� in C�� A� outputs a

hypothesis h� 	 f� making at most polynomial in jf�j and n equivalence queries� If A� also makes

	polynomially many
 membership queries� we say C� is exact�memb learnable�

We show how Nested�hCS � CGi is learnable in the exact model assuming the classes CS and CG

are exactly learnable� Let AS and AG be the learning algorithms for CS and CG� respectively� Our

algorithm to learn Nested�hCS � CGi �rst runs the algorithm AS until it poses an equivalence query on

hS and then runs AG until it poses an equivalence query on hG� Then the Nested�hCS � CGi algorithm

poses the equivalence query AgreefhS �hGg� If there is a positive or negative counterexample to this

equivalence query then it is passed to AS and AG� If there is a counterexample for which the

proper label is ��� then it is passed to AS �respectively� AG� as a negative �respectively� positive�

example� Each of these algorithms can then check if that example is a counterexample to its

hypothesis and if so continue running the algorithm until the next equivalence query is posed� If it

is not a counterexample� the same hypothesis is used for subsequent equivalence queries� Note that

the counterexample received from the equivalence query must be a counterexample to at least one of

hS or hG� Thus� if CS and CG are exact �respectively� exact�memb� learnable then Nested�hCS � CGi

is exact �respectively� exact�memb� learnable�

As an immediate consequence we have the analog of Theorem � �and Corollaries � and ��� for the

exact model� That is� if C is a concept class for which C� and C� are exact�memb �respectively exact�

learnable in polynomial time� then C� is exact�memb �respectively exact� learnable in polynomial

time� Also� all of the positive learning results cited either are given in the exact setting� or have

exact learning analogs� Consequently� exact�memb variants of Corollaries �� ��� and �� all hold�

We demonstrate that the results of Theorem �� can also be obtained in the exact�memb learning

model in the discretized space� Namely� there is an e�cient algorithm that uses equivalence and

membership queries to exactly learn the union of s boxes in one quadrant in the discretized space

f�� � � � � ngd� The algorithm maintains a hypothesis that is a subset of the true union of boxes

in the discretized plane� For every positive counterexample obtained by an equivalence query�
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the algorithm performs a binary search away from the origin in each dimension so as to �nd the

�border� �i�e�� the point x which is a positive example such that every point away from the origin

one unit in each dimension is negative�� More speci�cally� if the positive counterexample p has ith

coordinate equal to � �i�e�� pi 	 �� then the learner locates the �border� by performing a binary

search in the following way� the learner poses a membership query on the point with ith�coordinate

�� 	 d�n 
 ����e and with all other coordinates values unchanged� If this point is positive then

the binary search continues between �� and n� And if this point is negative then the binary search

continues between � and �� � �� Once the �border� point x is found in this way� the box ���� x�

is then added to the hypothesis� It is easily seen that using O�d logn� membership queries a

previously undiscovered corner of one of the boxes de�ning the target concept is found from each

counterexample� Thus the time complexity and number of membership queries made is O�sd logn�

and the number of equivalence queries made is O�s��

We describe how to extend the result of Theorem �� to exactly learn the agreement of boxes in

the discretized domain� As we did when PAC�memb learning the agreement of boxes� we assume

that the intersection is non�empty and furthermore� that the learner is provided a positive example

with which it divides f�� � � � � ngd into �d quadrants� The basic idea of the algorithm to exactly learn

the agreement of boxes is to apply Theorem � �as modi�ed for the exact model� in each quadrant

where CS is the intersection and CG is the union of the portion of the target concept that falls in

the given quadrant� As we saw in the analysis of LearnBoxesAgreement� in each quadrant we have

at most s origin�incident boxes� We can use the algorithm of Chen and Maass �CM��� to learn CS

and the algorithm described above to learn CG� We need just one additional modi�cation to this

procedure � when receiving a positive counterexample x� the boxes in the hypotheses for each of

the �d � � quadrants that do not contain x must be extended so that they contain x�

� Conclusions

We have introduced a model in which a learning algorithm for a concept class C interacts with a

teacher who labels some examples �don
t know� �i�e�� the teacher is ignorant�� but does so in a

manner that ensures the learner cannot infer the label of �don
t know� examples from other positive

and negative examples and knowledge of C �i�e�� the teacher is consistent with C�� We presented

a result that allows us to �plug in� results involving learning from an omniscient teacher in order

to learn from a consistently ignorant teacher� An essential result showed that if intersections and

unions of concepts from C are learnable from an omniscient teacher� then C is learnable from

a consistently ignorant teacher� In the process of proving the above result� we introduced the

notion of agreements� and showed that learning from a consistently ignorant teacher is equivalent

to learning agreements of sets of concepts from C� We summarize our results in Table ��
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C L�Ck� � L�C�� � L�C��

Horn clauses yes yes yesa

Classic yes yes yesa

��term DNF ���clause CNF� yesb open �DNFc

monomials yesb yesd �DNFe

monotone DNF �CNF� yesb equiv to �f open

decision trees yesb equiv to �f �DNFc

DFAs yesb equiv to �f no� cryptog

boxes in Ed yesh poly�s� �d� �� �
�
� �

i open

Horn Sentences open �DNFj �DNF

Table �� For each class C� the table shows the status of the PAC�memb learnability of Ck� � C
�
� �

and C�� The entries ��DNF� denote the problem is as hard as learning DNF formulas �without

membership queries� if one�way functions exist�� The entries �equiv to �� under L�C�� � indicate

that the problem is equivalent to L�C��� The entry �no� crypto� indicates the class is not learnable

under standard cryptographic assumptions� The superscripts indicate where in the paper the result

is given� according to the following key� �a� Corollary �� �b� Corollary ��� �c� Observation ��� �d�

Corollary ��� �e� Observation �� �f� Theorem ��� �g� Observation ��� �h� Corollary �� �PAC�

learnable without membership queries�� �i� Theorem ��� assuming that the positive examples are

samplable� �j� Theorem ��� even when the positive examples are samplable�
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In addition to the open problems listed in the table� we list some other interesting unanswered

problems�

� We have only investigated blurriness in the classi�cation of examples and not blurriness in the

examples themselves� In particular� we have generally considered functions that map f�� �gn

onto f
��� �g and it may be interesting to consider functions that map blurry examples

f�� �� �gn onto clear labels f
��g or onto blurry labels f
��� �g�

� We have not investigated learning blurry concepts with read restrictions� For example� are

blurry read�once formulas or blurry read�k sat�j DNF formulas�
 learnable�

� Our algorithm to learn the agreement of boxes �LearnBoxesAgreement� only uses membership

queries when learning the union of origin�incident boxes in a single quadrant �BAQ�� Since

LearnBoxesAgreement requires time polynomial in s and �d� BAQ can run in time polynomial

in s and �d without a�ecting the asymptotic running time of LearnBoxesAgreement� We

leave open the question of whether BAQ is learnable without membership queries in time

polynomial in s and �d �in the continuous or discretized domain��
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