
Shopping for Products You Don’t Know You Need

Srikanth Jagabathula∗

EECS, MIT
Cambridge, MA

jskanth@mit.edu

Nina Mishra
Microsoft Research
Mountain View, CA

ninam@microsoft.com

Sreenivas Gollapudi
Microsoft Research
Mountain View, CA

sreenig@microsoft.com

ABSTRACT
Recommendation engines today suggest one product to another, e.g.,
an accessory to a product. However, intent to buy often precedes
a user’s appearance in a commerce vertical: someone interested in
buying a skateboard may have earlier searched for {varial heelflip},
a trick performed on a skateboard. This paper considers how a
search engine can provide early warning of commercial intent. The
naive algorithm of counting how often an interest precedes acom-
mercial query is not sufficient due to the number of related ways
of expressing an interest. Thus, methods are needed for finding
sets of queries where all pairs are related, what we call aquery
community, and this is the technical contribution of the paper. We
describe a random model by which we obtain relationships between
search queries and then prove general conditions under which we
can reconstruct query communities. We propose two complemen-
tary approaches for inferring recommendations that utilize query
communities in order to magnify the recommendation signal be-
yond what an individual query can provide. An extensive series of
experiments on real search logs shows that the query communities
found by our algorithm are more interesting and unexpected than a
baseline of clustering the query-click graph. Also, whereas existing
query suggestion algorithms are not designed for making commer-
cial recommendations, we show that our algorithms do succeed in
forecasting commercial intent. Query communities increase both
the quantity and quality of recommendations.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Process

General Terms
Experimentation, Algorithms
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query communities, long-range recommendations

1. INTRODUCTION
Recommendation engines have been widely adopted in many

commerce verticals with great success. At first launch, Amazon’s
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recommendation engine resulted in a large increase in revenue [17].
Recommendations today typically take the form of complements
and substitutes. For instance, people who buy cameras tend to
also buy a case or battery (complement) and people who shop for
fuji cameras also shop for canon cameras (substitute). In a sense
these recommendations serve an immediate, subsequent commer-
cial need.

Looking over the recommendation engines available today, all
seem to provide suggestions within a particular commerce domain.
In contrast, our hypothesis is that the intent to buy precedes a user’s
appearance in a shopping vertical – that a user’s interests is a good
predictor of what products they will purchase. This paper inves-
tigates whether user interests, as captured in search data,can be
exploited to generate longer-range commercial recommendations.
Note that our objective is not to recommend/advertise a specific
brand and/or model number of a product, rather our goal is to help
a user find a class of products related to their interests. Thetask of
pinning down an exact product is left to a commerce vertical.

As a running example we refer to a sequence of search queries
inspired by a real user shown in Table 1. The user begins with a
sequence of queries related to cast iron cookware, then searches for
vacation ideas in Europe in the winter, looks at the weather in Eu-
rope in the winter, then seeks a vacation in a warmer destination in
the mayan riviera, hunts for tickets to fly there, and then searches
for products related to the trip, i.e., sunblock and an underwater
camera. The main recommendation to infer from such a user is that
people who vacation to the Mayan Riviera may need an underwa-
ter camera and sunblock. However, there are many inferenceswe
would not like to draw: (1) people who go the Mayan Riviera need
cast iron cookware (2) people flying to Europe need an underwa-
ter camera. The challenge is to find the correct recommendations
without introducing too many incorrect ones. To compound mat-
ters, user queries are a very noisy source of data, not all interests are
necessarily expressed in the search box, and intent rapidlychanges
during search.

Given a search query, the problem considered in this paper isto
find related commercial queries, assuming such relationships exist.
The problem seems simple enough: Why not just recommend the
product that most often follows an interest? One problem is that
there are many ways to pose the query Mayan Riviera, e.g., vaca-
tions in the Yucatan, coastal and reef destinations in the Caribbean.
Similarly, there are many queries that one could pose to buy an un-
derwater camera. Another problem is that large co-occurrence is
not necessarily an indication of relationship, the two queries could
just both be popular.

To overcome the first difficulty that a user has multiple ways to
express the same intent, we define a new problem, finding query
communities. Aquery communityis a subset of queries where all



le creuset cookware Dec 12 10:00am
cast iron reviews Dec 12 10:01am
cast iron cookbook Dec 12 10:02am
winter vacations Dec 13 07:00pm
european vacation ideas in winter Dec 13 07:01pm
weather map of europe in winter Dec 13 07:02pm
mayan riviera trip advisor Dec 13 07:30pm
best excursions in mayan riviera Dec 13 07:33pm
best resort to stay in mayan riviera Dec 13 07:45pm
mexicana airlines flights Dec 14 07:00pm
buy water resistant sunblock Dec 20 08:05pm
where to buy an underwater cameraDec 21 08:15pm

Table 1: Search queries posed by a hypothetical user

pairs of queries are related. Note the key difference between a query
community and a query suggestion, where in the latter the goal is
to find a set of suggestions that are all related to a single query, but
where there is no requirement that the suggestions themselves be
related. Note also the distinction with synonymous queries, where
the goal is to find queries where each is a substitute of the other.
While synonymous queries form a subset of a community, they may
not be rich enough to form a complete community. For example,
{enchilada} and {enchiladas} are synonyms, but a communityof
Mexican food should ideally also include {burrito}, {tostada}, etc.

To overcome the second problem, that large co-occurrence does
not necessarily imply that queries are related, we propose two meth-
ods for finding recommendations, which turn out to be complemen-
tary. One is still based on co-occurrence, but uses time to select
co-occurrences – concretely, a recommendationq → r is good if it
has strong support, many users poseq beforer, and if q precedes
r more often thanr precedesq. The second method views a user’s
queries as a possible explanation for a commercial query. Aggregat-
ing over all users who pose a commercial query, the method seeks
a succinct justification for why the commercial query was posed –
modeled as a classic hitting set problem.

Contributions: The technical contribution of this paper is a
method for identifying query communities in search data. Werep-
resent queries and relationships through a graph where the vertices
are queries and there is an edge between queries if they are related.
If the graph contained all possible relationships, then a query com-
munity is a clique in this graph. However, it turns out that any graph
created from available data sources is woefully incomplete. Thus,
we propose a simple random model from which our observed graph
is derived from an ideal graph containing all possible relationships.
The random process uniformly keeps each edge with probability p.
We then propose a method that involves densifying the graph by
adding edges between vertices with probability proportional to the
number of neighbors they share. The resulting densified graph is
then clustered using a known algorithm.

Our analysis of the method suggests: (1) as the probabilityp
that an edge is kept increases, the more likely our method will suc-
ceed in reconstructing query communities and (2) as clusteroverlap
decreases, the more likely we can reconstruct communities.Specif-
ically, as cluster overlap decreases, the more likely our method is to
introduce a right edge over a wrong edge. We prove conditionsun-
der which we can reconstruct the community: the more the clusters
overlap, the largerp has to be to ensure recovery. Ifp is too small,
the cluster cannot be recovered at all.

To recommend products, we identify queries with commercial
intent using [9] and then propose two methods for making a connec-

tion between search queries and commercial queries, one is based
on co-occurrences and the other on hitting set, as mentionedabove.

To validate our methods for finding query communities and rec-
ommendations, we conduct an extensive series of experiments on
real search logs. For query communities, our experiments show
that many of the communities we find are of high quality – only
2.6% are bad. Also, our densification procedure enables us to find
four times as many clusters as without densification. Whereas a
baseline of clustering the query-click graph produces communities
where 75% are minor misspelling/word additions, our techniques
find communities where 69% are interesting and unexpected. Next,
we evaluate recommendations. We show that existing query sug-
gestion algorithms are not designed for the problem of recommend-
ing commercial queries. We show that the two recommendations
methods are complementary in the sense that each can find rec-
ommendations that the other cannot. Our most striking finding is
that query-communities increase not only the number, but also the
quality of recommendations.

2. RELATED WORK
We discuss work related to finding query communities as well as

work on recommendations. While there is rich literature in these
areas, our problem formulation differs and hence these methods do
not directly apply to our problem.

Query Communities: The problem of finding “concepts” or
“query clusters” has received attention in the literature [30, 5]. Some
approaches involve clustering the query-click graph. In our experi-
ence with such techniques (Section 6.1), each cluster foundusually
contains very tightly related queries. The queries in a cluster tend to
contain minor word additions/misspellings of each other – it is rare
to find a surprising cluster. Note that if two queries are related, but
they do not share a URL in the top 10, a user cannot demonstrate
that they are connected with a click. Thus the performance ofan al-
gorithm that clusters the query-click graph is upper bounded by the
relevance of a search engine, we seek to go beyond that. Our work
uses the sequence of queries a user poses as a signal for relatedness.
This signal is less limited by the relevance of the search engine.

In another related work, the analysis of our algorithm has connec-
tions to the analysis performed by [7] in the context of clustering
with constraint graphs. The authors consider a classical problem
of partitioning a set of points with the additional goal of respecting
certain constraints on which points must and must not be included in
the same partition. The authors consider the scenario when there is
noise in the given constraints. Under two general noise models, they
show that even a ‘small amount’ of noise can severely affect the pro-
cess of partitioning in an adverse manner. While one of theirnoise
models (noisy edgesmodel) is similar to the random graph models
we consider in this paper, the results derived there are not applicable
to our problem. Specifically, the authors consider the problem of
finding disjoint clusters, whereas our clusters overlap. Inaddition,
the authors consider general clustering criteria and provenegative
results on the noise levels that lead to the entire graph being grouped
into one partition. In contrast, our work focuses on a specific clus-
tering criterion, but demonstrates a positive result when aparticular
algorithm is used to discover query communities.

Recommendations: In the area of query suggestions, there is a
plethora of methods including random walks on click graphs [6, 19,
10], snippets of search results [26], query reformulation graphs [13,
4], and clustering the query-click graph [5]. A recent paperby
[25] considers the problem of clustering query refinements that rep-
resent different information needs into different groups in order to
diversify query suggestions and improve them based on user session
intent. At first glance, the work on query suggestions seems appli-



cable to both finding query communities and inferring commercial
recommendations. However, query suggestions do not solve the
community problem as we define it: query suggestions identify a
collection of queries that are related to a reference query;however,
all queries related to the reference query may not be relatedto each
other. In terms of applicability to making commercial recommen-
dations, in principle, query suggestions can do so by simplyfiltering
out the suggestions that are not commercial. However, in ourex-
perience (Section 6.2) with a query suggestion method basedon a
random walk on the query-click graph [10], we find very few com-
mercial suggestions. These techniques, while valuable forthe query
suggestion problem, are not designed to solve our problem ofearly
warning of commercial intent.

Our work may have relevance in the advertising context, though
we have not explored advertising in this paper. Broad-matchexpan-
sion is a method for broadening the scope of a keyword to related
keywords so as to match an ad to more queries than an advertiser’s
bids [11]. In addition to suggesting keywords to advertisers, the
techniques presented in our paper can also be used to forecast future
commercial intent of search users to advertisers. Such information
can be extremely useful and timely to advertisers in designing more
effective ad campaigns.

The discovery of longer-term relationships can be viewed asan
association rule mining problem [2] wherein relationshipsbetween
queries are extracted based on co-occurrence. In addition,there has
been work in uncovering longer-term relationships in search queries.
The work by [22] is an important step in that direction. Givena ref-
erence query, a pattern of queries distinct from a baseline aggregate
is shown to uncover useful relationships. However, a given interest
can be expressed via a variety of search queries. Indeed, surprising
connections tend to be rarer co-occurrences, and consequently may
be difficult to find, absent grouping queries into user interests/query
communities first.

Finally, there is rich literature in the context of recommendation
systems, which includes content-based approaches, collaborative-
filtering based approaches [27, 21, 12, 15, 1], and hybrid approaches
[28]. In addition, popular commercial examples include Ama-
zon.com recommendation system [17] and Netflix movie recom-
mendation system [3]. These methods assume access to clean data
about users, e.g., feature vectors over items (books, movies, news
articles, etc.), a sample of ratings. This data is then used to either
predict ratings for unrated items or rank unrated items for recom-
mendation purposes. The challenge presented in this paper is how
to recommend with search queries alone, i.e., without any ratings
or purchase data. With search data, one does not even know if a
particular interest is related to a product. Collaborativefiltering
approaches do not apply in our context. An interesting approach
proposed by Zheng et. al. [31] studies a different problem from
the one considered in this paper, namely extracting substitutes and
complements from user browsing data so as to enrich recommender
systems with this information.

3. QUERY COMMUNITY
In this section, we define a query community and describe our

algorithm for recovering communities.
Defining a query community: We assume the existence of a

relationR that describes which queries are related, i.e.,R(q, q′) = 1
if queriesq andq′ are related andR(q, q′) = 0otherwise. We define
a query communityC as a maximal set of queries such thatevery
pair of queries is related to each other, i.e., for eachq, q′ in C,
R(q, q′) = 1. In practice, note that we do not have access toR for
an arbitrary pair of queries. We return to this issue shortly.

Representing a class of query communities:We now consider

a convenient graph representation of the relationR. Specifically, we
representR as an undirected graphG = (V,E) where the vertices
correspond to queries and an edge connects two queries that are
related. We think of this graph as the ‘ground truth’. Note that each
community forms a clique in this graph.

This graph representation, however, is not rich enough to de-
scribe all classes of query communities. Specifically, since each
community is defined as a maximal set of queries, it is tempting to
say that there is a one-to-one correspondence between communities
and maximal cliques. This statement, however, is false: forthree
communitiesC1, C2 andC3 such thatC3 = (C1 \C2)∪(C2 \C1),
C1 ∪ C2 ∪ C3 forms a maximal clique. Consequently, we assume
that each community has at least one query that is unique to it, i.e.,
for each communityC there is aq ∈ C such that for all other
communitiesC′, q 6∈ C′. It can be shown any set of communi-
ties satisfying such an assumption can be represented as maximal
cliques in a graph (proved in the appendix). We believe the assump-
tion is quite natural as there should be at least one unambiguous
search query that only belongs toC.

No Relationship Graph: If we had the relationship graphG, then
we could efficiently identify all communities by finding maximal
cliques via existing algorithms [29, 14]; however, in practice, we
are not givenG, but rather a substantially sparser versionĜ of G (a
simple generative model for̂G will be provided soon). Specifically,
depending on the application, one can use combinations of various
signals that are present in the data to infer some of the edgespresent
in graphG. In search logs, if many users issue two queries within a
small window of time, then the data provides a strong signal of an
edge between the two queries. Using this signal, one can construct
a graphĜ. Since the data is noisy and fundamentally incomplete,
it follows that Ĝ cannot contain all the edges inG. Further, if we
remain conservative in adding edges, it may not be unreasonable
to assume that every edge in̂G is present inG. Thus, we assume
thatĜ is a (very) sparse subgraph ofG. Note that other signals of
relatedness may also be helpful such as document clicks, snippet
text and ad bids.

SinceĜ is unlikely to have many true cliques, we hope to find
(a subset of) communities by finding dense subgraphs in the graph;
this is reasonable if the structure of most of the cliques inG is
essentially retained in̂G – a precise analysis follows. While numer-
ous definitions of a dense subgraph exist in the literature, for our
purposes it is crucial that some vertices belong to multipleclusters
since there are many search queries with ambiguous intent, such as
jaguar. Hence, we adopt the definition of a dense subgraph given
in [20]: A subset of queries is an(α, β)-clusterif each query in the
cluster is related to at least aβ-fraction of queries in the cluster, and
any query outside of the cluster is related to at most anα-fraction
of the queries in the cluster:

Definition 1. Given a graph,G = (V,E), where every vertex
has a self-loop1, letE(c, C) denote the edge set{(c, v) : ∀v ∈ C}.
Then,C ⊂ V is an(α, β)-clusterif

1. Internally Dense: ∀v ∈ C, |E(v, C)| ≥ β|C|

2. Externally Sparse: ∀u ∈ V \ C, |E(u,C)| ≤ α|C|

Given0 ≤ α < β ≤ 1, the(α, β)-clustering problemis to find all
(α, β)-clusters.

Observe that two(α, β)-clusters can overlap, e.g., two4-cliques
that overlap in one vertex are each( 1

4
, 1)-clusters. A maximal clique

1This is a technical assumption needed to ensure thatβ = 1 clusters
are possible.



is an(α, 1)-cluster, whereα measures the extent to which cliques
overlap. This definition ofα turns out to be important in our analy-
sis: as community overlap orα increases, it becomes harder to find
the cluster.

Random Deletion Model: We now translate the above intuition
of how graphĜ is obtained into a formal generative model that
describes the relationship betweenĜ andG. We seek to describe
such a process so that we can design algorithms for reconstructing
an approximation ofG from Ĝ. We consider a simple model in
which each edge is kept with probabilityp.

Definition 2. Given a relationship graphG = (V,E), a p-
random grapĥG is obtained fromG by including each edgee ∈ E
with probabilityp and not including the edge with probability1−p.

One can consider more sophisticated models for describing the
process by whicĥG is obtained fromG. Indeed, the precise pro-
cess depends on the type of data that is being used to construct Ĝ.
Thus, in the spirit of keeping the analysis general, we consider the
uniform model. Further, while being a simple, yet nontrivial, model
to analyze, it may provide insight into more complicated models.

The Recovery Algorithm: We now propose an algorithm to
recover communities from̂G by finding dense subgraphs. Our al-
gorithm involves two steps, densification followed by clustering.
The densification step simply adds edges between pairs of vertices
with probability proportional to the number of neighbors they share,
concretely the dice coefficient. Then the clustering algorithm de-
scribed in [20] is used to identify communities. A formal description
is given in Algorithm 1).

Intuitively, the densification step aids in finding clustersby mak-
ing it easier to identify subgraphs that are close to being dense. Note
that in practice, the densification step is absolutely crucial for iden-
tifying communities – we are not aware of prior work that describes
the value of densification. The downside is that it also introduces
wrong edges that could potentially lead to merging of dense sub-
graphs. Our analysis in the next section identifies the conditions
under which carrying out the densification step is beneficial.

Algorithm 1 Finding Query Communities in Sparse Graphs

Input: GraphĜ, sizeK, internal densityβ, external sparsityα
Output: Set of CommunitiesC each of sizeK
1: for all pairs of vertices(u, v) 6∈ E do
2: d(u, v) = (|Γ(u) ∩ Γ(v)|)/(|Γ(u) ∪ Γ(v)|)

3: Add edge(u, v) to Ĝ with probabilityd(u, v).
4: end for
5: for eachc ∈ V do
6: C = ∅
7: for eachv ∈ Γ(c) ∪ Γ(Γ(c)) do
8: if |Γ(v) ∩ Γ(c)| ≥ (2β − 1)K then addv toC.
9: end for
10: if C is an(α, β)-cluster then outputC.
11: end for

4. ANALYTIC EVALUATION OF THE PRO-
CEDURE

The success of our proposed procedure in terms of recoveringthe
underlying cliques depends on the value of the deletion probability
1 − p and the topology of graphG. Our goal for this section is
to determine the relationship betweenp and graph topology for
which our procedure produces a good approximation toG from Ĝ.

Particularly, sinceĜ is a random graph, we find conditions under
which our procedure recovers most of the cliques inG.

Before we give the details of the conditions, we first describe the
problem setup. We assume that all the cliques ofG are of the same
sizeK. This is a reasonable assumption because the algorithm pro-
ceeds in rounds where, for a given round, the algorithm assumes
that all of the clusters are of the same size. In addition, ouranalysis
shows that recovery of cliques depends on three quantities related to
the underlying graph topology: the size of the maximum overlap of
cliques, the maximum degree of a vertex, and the maximum num-
ber of neighbors of a clique. Thus, we introduce three parameters
(f, d, h) to capture the underlying graph topology. Specifically, we
say thatG is an(f, d, h) graph if for any two cliques,C1, C2 in
G, |C1 ∩ C2| ≤ fK, the degree of any vertex is at mostdK, and
Γ(C1) \ C1 ≤ hK, where for any cliqueC, Γ(C) denotes the set
of neighbors ofC:

⋃

v∈C
Γ(v). Clearly,0 ≤ f ≤ 1 andd ≥ 1.

Further, letG̃ denote the graph we obtain after densification ofĜ.
Since the densification procedure as well asĜ are random, graph̃G
is random.

The condition under which we can recover query-communities
depends on the clustering algorithm used to find(α, β) clusters.
The authors of [20] prove that the clustering algorithm, described
in steps 5-9 of Algorithm 1, successfully finds all(α, β) clusters if
there is at least oneρ champion per cluster and

β > 1/2 + (α+ ρ)/2, (1)

where a vertexv in clusterC is called aρ-champion if|Γ(v) ∩
V \ C| ≤ ρ|C|. In other words, roughly speaking, the underlying
clusters can be recovered provided the gap betweenα and β is
‘large enough’. To be concise, we term an(α, β)-cluster with a
ρ-champion as an(α, β, ρ)-cluster. In our case,G is a graph with
β = 1, α = f andρ = 0. Since0 < f < 1, condition (1) is readily
satisfied forG.

Since we run the clustering algorithm on graphG̃, we derive
the relationship between the parametersp, f, d, h for recovery by
computing the values ofα, β, ρ for random graph̃G and imposing
condition (1). However, sincẽG is random, the parametersα, β
andρ are all random. Hence, we assumeK is sufficiently large that
α, β, ρ concentrate around their respective expected values. Thus,
our derivations involve computing the expected values ofα, β, ρ
and imposing condition (1). Our goal is to understand (a) forwhat
values ofp, f, d andh can we recover the underlying cliques, and
(b) for what values ofp, f, d andh does it make sense to carryout
densification.

We now describe our results in two steps. First, we describe the
conditions under which we can recover the underlying cliques by
clustering graphĜ directly without any densification. Then, we
describe the conditions under which densification is beneficial.

In order to describe the results for the case when we clusterĜ
without densification, first consider the simpler case whenG con-
sists of just two overlapping cliques:C1, C2. Utilizing the notation
established above,|C1 ∩ C2| = fK, d = 2 − f andh = 1 − f .
Assume thatf < 1, so that each clique has at least one vertex that
is unique to it. Because of this reason, and our model thatĜ is
obtained fromG by deleting edges independently with probability
1− p, note that in bothG andĜ, each clique has at least one vertex
that is unique to it; therefore,ρ = 0 for bothG andĜ. Further,
note that inĜ, each vertex in expectation is adjacent topK vertices
of the cluster. This implies thatβ ≈ p. Now suppose that the two
cliques are disjoint i.e.,f = 0. In this case,α must be zero and
hence (1) is satisfied providedp ≈ β > 1/2. Similarly, in the case
when0 < f < 1, it can be seen thatα ≈ fp. (1) now implies



thatp > 1/2 + fp/2 =⇒ p > 1/(2 − f). These results can be
formally stated as the following theorem.

Theorem 1.If we clusterĜ without carrying out densification,
then in expectation we can recover1−δ fraction of cliques provided

p >
1

2− f − 3ε
,

whereδ = (h+ 1)K exp(−ε2fp/3).

Thus, as expected as the overlap fractionf increases, we need a
higher value ofp for recovery.

Now consider the case when we densify graphĜ before clustering
it. For this case, let’s again start with the simple example whenG
consists of just two overlapping cliques. Densification is beneficial
provided the increase inβ more than compensates for the increase
in α + ρ. In the case when there is no overlap between the two
cliques, it is clear that even after densification,α andρ both remain
0. Hence, densification can only be beneficial. In the case when
there is non-zero overlap, however, we can show that densification
is beneficial only whenp > 1 − 2f(1 − f). It follows from the
bound that the worst case is whenf = 1/2 in which casep must
be at most1/2. For f low, the overlap will be low and hence
the probability of adding a wrong edge will be small. Forf high,
while the probability of adding a wrong edge is high, the number
of wrong edges will be low since there are very few vertices that
are non-overlapping. These results extend to a general graph. More
precisely, we have the following theorem.

Theorem 2.If we clusterĜ after carrying out one densification
step, then in expectation we can recover1 − δ fraction of cliques
provided

p >
1

(1 + ∆)(2− f − 3ε)
(2)

where

∆ =
1− p

d
−

f(1− f + h)

2− f

andδ = (h+1)K exp(−ε2Kt/3)+2(h+1)K2 exp(−ε2Kfp2/3)
with t = min {fr + (1− f)w, hw}, wherer = p + (1 − p)p/d
andw = fp.

The proofs of both the theorems are given in the appendix. Note
that in the above theorem, the value of∆ depends on the value of
p. Therefore, a natural question is whether the conditions∆ > 0
and (2) can be simultaneously met. In order to see this, suppose
p is such that∆ > 0 but ∆ ≈ 0. Then, we must havep ≈
1− df(1− f + h)/(2− f). This implies that forf ≈ 0, we must
havep ≈ 1. On the other hand, for∆ ≈ 0 andf ≈ 0, the RHS of
(2) will be≈ 1/2. This implies that under these conditions, (2) will
be satisfied. Thus, there exist reasonable values ofp, f , d, andh
for which both∆ > 0 and (2) are simultaneously satisfied. Using
similar arguments, one can compute precise bounds for whichthe
conditions∆ > 0 and (2) are satisfied.

5. RECOMMENDATION METHODS
In this section we discuss two methods for finding recommen-

dations. Both are motivated by the fact that users tend to express
interests related to products as they search. The methods are eval-
uated in our experiments.

The first method given in Algorithm 2 essentially counts co-
occurrences. For each commercial queryr and search queryq,
the method outputsq → r providedq is frequently posed beforer

and provided more people pose the queryq beforer thanr beforeq.
The justification for using the ordering betweenq andr comes from
the fact that there is an inherent sequentiality in commercesearch.
For example, if a user poses the query {hdmi cable}, we would not
want to recommend an {hdtv} – presumably the TV is purchased
before the cable.

Note that the method can be suitably modified to utilize query
communities. Specifically, the counts would then reflect thenum-
ber of users who posed any query in the community prior to a com-
mercial query, and vice versa. Note that all queries are in some
community, possibly a community of size one.

Algorithm 2 Co-Occurrence Recommendation Method
Input: Search Log, thresholdθ1, θ2
Output: Set of Recommendations{q → r}
1: R = {Commercial queries in the Search Log}
2: Q = {Queries in the Search Log}
3: for eachr ∈ R andq ∈ Q do
4: nq→r = number of users who posed queryq before commer-

cial queryr
5: nr→r = number of users who posed commercial queryr be-

fore queryq
6: end for
7: Output allnq→r wherenq→r > θ1 andnq→r > θ2nr→q

The above approach of finding recommendations through co-
occurrence counts is very natural and, in some sense, conserva-
tive: essentially, it finds recommendations with high co-occurrence
counts. The co-occurrence counts exhibit a power-law distribution
with heavy tails. Hence, we can increase the number of recom-
mendations by designing a procedure that can dig through thetail
(low co-occurrence counts) and carefully pick relevant recommen-
dations. Since the tail is very noisy, we note that finding therelevant
connections in the tail is a hard problem.

Next, we propose a method that finds recommendations througha
novel way of viewing connections between queries as ‘explanations’
rather than as co-occurrence counts. This method is described in
Algorithm 3. Specifically, given a commercial queryr, this method
seeks to find a shortest explanation for whyr was posed. For in-
stance, among users who purchase underwater cameras, we may
find that the interest {mayan riviera} covers the largest setof users
and the interest {ice fishing} covers the remaining users. Weview
the problem as a classic hitting set, one for each commercialquery.
In other words, for each commercial queryr, we create an instance:
Q1, . . . Qk where eachQi is the set of queries posed by a user who
posed the queryr and wherek is the number of users who posed the
queryr. We seek a minimum hitting set, i.e., a minimum sized set
of queriesT such thatT ∩Qi is non-empty. We use the well-known
greedy algorithm for findingT that repeatedly adds the queryq to
T that covers the most uncovered users. The algorithm is knownto
have alogmaxi |Qi| approximation. The method can be suitably
modified to utilize query communities, where again all queries are
in some community, possibly a community of size one.

6. EXPERIMENTS
The goal of our experiments is two-fold: to demonstrate thatour

method can successfully find high quality query communitiesin real
search data, and to show that query communities increase both the
number and the quality of recommendations.

For the query community problem, as a baseline, we cluster the
query-click graph. We find that more than 75% of such clustersare
Obvious in the sense that they contain minor word additions/spelling



Algorithm 3 Hitting Set Recommendation Method

Input: Search Log, thresholdθ
Output: Set of Recommendations{q → r}
1: R = {Commercial queries in the Search Log}
2: Q = {Queries in the Search Log}
3: Ur =Set of subsets of search queries posed by users who also

posed the commercial queryr
4: repeat
5: Find queryq ∈ Q that most frequently occurs inUr

6: Outputq → r if frequency >θ
7: Remove all subsets of queries inUr that contain the queryq
8: until Ur is empty

variations of each other. In contrast, the communities produced by
our Algorithm 1 uncover more interesting and unexpected relation-
ships. Also, densification yields a four-fold increase in the number
of query communities.

For the recommendation problem, we begin by showing that an
existing query suggestion algorithm [10] is not designed topro-
duce commercial recommendations. In comparison, both the co-
occurrence and hitting set method unearth a large quantity of inter-
esting and surprising recommendations. Also, query communities
increase the number of recommendations found for both methods.
The increase is accompanied by an increase in the quality of recom-
mendations. Further, there is small overlap in co-occurrence and
hitting set recommendations, thus showing that the two approaches
are complementary.

Data Our experiments are based on searches collected from 1.7
million users over a one month time period. The logs are restricted
to queries of one or two words so as to limit the data to a manage-
able size – queries reported below that are longer than two words
contain underscores which we omit for clarity. We utilize searches
in different ways depending on whether we seek query communi-
ties or recommendations. Specifically, communities are based on
queries posed in close temporal proximity while recommendations
are based on queries that may or may not be close in time.

6.1 Query Communities
As a baseline for finding query communities, we cluster the query-

click graph [30]. For the same time period and queries, we construct
a bipartite query click graph, where an edge connects a queryto a
URL if the query led to at least three clicks on the URL. The graph
was clustered using [20] where the goal is to find dense bipartite
subgraphs – specifically, of size at least four queries and four URLs,
where each query is adjacent to at least three URLs and each URL
is adjacent to at least three queries. The method produced 51K
clusters.

Our Method: Algorithm 1: To discover communities using
our method, we utilize queries posed in rapid succession. The ver-
tices of the graph correspond to queries while the edges connect
queries posed in rapid succession, set to within five minutesin our
study. The weight of an edge in this graph reflects the number of
users who posed the queries in rapid succession. We kept edges
only if a minimum number of users posed both queries in a short
time window (minimum set to two users in our experiments). In
addition, we removed head queries, i.e., vertices of degreegreater
than 100. Head queries were removed because otherwise queries
such as {facebook} belong to more clusters than they should.The
resulting graph contained 680K vertices and 632K edges. Thegraph
is extremely sparse, containing 195K connected components. The
largest connected component contains 29K queries and thereare

Category Baseline: Cluster Algorithm 1
Query-Click Graph

Surprising 0% 21%
Good 14% 48%
Obvious 76% 10%
Bad 1% 3%
Foreign 6% 16%
Adult 3% 2%

Table 2: Evaluation of Query Communities

131K components with two queries. Clustering the graph without
densification yields 17.7K query communities.

Once the graph was constructed, we employed the densification
step described in Algorithm 1, i.e., adding edges between two ver-
tices with probability proportional to the number of neighbors they
share. The densification steps added 336K edges to the graph –
increasing the number of edges by over 50%. Then we ran the
clustering algorithm described in Algorithm 1, from [20] – seeking
clusters of at least four, six and eight queries, each with density
at least3/4, 2/3, and3/4, respectively. For example, for clusters
of four vertices, each query in the cluster has to be adjacentto at
least two other queries in the cluster, with an implied thirdself-loop
edge, yieldingβ = 3/4. The algorithm identified a total of 72K
clusters and the average number of queries per cluster was 4.5. Note
that the densification step increased the number of discovered query
communities by a factor of four.

Evaluating Query Communities: To evaluate the clusters, we
randomly selected a sample and conducted a manual investigation.
We cannot use automatic evaluation schemes because the relation-
ships we find do not already exist in the data and the underlying
relationship is not always evident, for example, it is not immediately
apparent that the set {love & monsters}, {the impossible planet},
{the satan pit}, {the idiot’s lantern} is a community of episodes of
Dr. Who. We also believe that the task of characterizing the clusters
would be too complex and time-consuming for a mechanical turk.

Our evaluation is limited to queries present in the community,
and not the queries missing from the community — for any cluster
we find, we can easily imagine additional queries that could belong
to the cluster. Fundamentally, our ability to find clusters is limited
by the queries in the logs: if we based our study on more users
over a longer period of time, we would be able to generate more
queries per community. Another possibility is to design methods
that generate more queries from a seed collection. For instance,
techniques from [24, 23] can be used to infer probabilistic automata
that can generate more similar queries. Our evaluation is focused
on whether all pairs of queries are related.

Each community was categorized into one of seven categories:
Surprising, Good, Obvious, Bad, Foreign and Adult. A commu-
nity was “Surprising” if an unexpected set of queries appeared in
the same community, “Good” if the set was expected but never-
theless interesting, “Obvious” if the set contained minor spelling
variations, “Bad” if we could not find a connection between the
queries, “Foreign” if the query was not in English and “Adult” if the
query contained adult content. We manually labeled about 80ran-
domly sampled query communities found by the baseline method
and Algorithm 1. A summary of our findings appears in Table 2.

While clustering the query-click graph produces many clusters,
the overwhelming majority are Obvious, e.g., {all recipe.com}, {all
reciepes}, {all recipes}, {all receipe}, {all recipe website}. The
main reason is that users can only click on what they see, and the
clusters can only be as good as the search engine. If the search



engine does not know that two queries fall in the same community
then it cannot display the same search results for the two queries.
We seek to go beyond what the search engine already knows.

Among the clusters found by Algorithm 1, nearly half of the com-
munities are rated “Good”. Two examples of Good communities
with the theme of Mexican food and shopping include: (1) {enchi-
lada recipe}, {chimichanga}, {enchilada}, {tostada} (2) {dillards
dresses}, {macys dresses}, {macy’s dresses}, {macy’s locations}

The next largest category was “Surprising” communities and
these were quite unexpected: (1) {kira-kira}, {the higher power
of lucky}, {newberry award}, {newberry medal}, {criss cross}
(2) {kktv},{krdo},{kvor},{kccy} (3) {sri lanka lion}, {ca ve lion},
{steppe wisent}, {cebu warty pig} (4) {love & monsters}, {the
impossible planet}, {the satan pit}, {the idiot’s lantern}The exam-
ples above are tied by the themes: (1) Books that won the New-
berry Award (2) Channels serving Colorado (3) Extinct species (4)
Episodes of Dr. Who.

In summary, clustering the query click graph produces largely
obvious clusters, while Algorithm 1 produces more Good and Sur-
prising clusters.

6.2 Recommendations
Next we evaluate recommendations generated by the two methods

described in Section 5. Our recommendation experiments areon the
same data used to find communities. The data is used differently
in that now we make connections between queries posed over an
arbitrarily long period of time, since it may take time for a related
product to follow an expressed interest.

Query Suggestion:We are not aware of any existing algorithms
that specifically recommend commercial queries. One may hypoth-
esize that query suggestion algorithms already recommend decent
commercial queries. To answer, we adapt a query suggestion al-
gorithm [10] as follows: Given a seed query, a random walk on
the query-click graph is performed, treating the seed queryas an
absorbing node. Queries that have a sufficiently high probability
of ending at that absorbing node are viewed as suggestions tothe
seed query. We keep only those suggestions that are commercial us-
ing [9]. One complication is how best to select seed nodes. Wetried
two methods. In the first, we randomly selected frequently posed
queries as seed queries, 1.6K out of the top 100K most frequently
posed queries. However, this method of selecting seed queries did
not work: for 95% of the queries, no commercial recommenda-
tions were generated. In the second method, we selected a setof
100 queries that we knew possessed future commercial intentfrom
our own algorithms. Again, this method did not work because for
two-thirds of the queries, no commercial recommendation was pro-
duced. Since this algorithm was designed for a different purpose,
i.e., suggesting keywords to advertisers, we would not expect it to
solve our problem. What we observe is that longer-range commer-
cial recommendations are rare, in fact in many cases there does not
seem to be a path from a search query to a commercial query in the
query-click graph.

Co-Occurrence: To evaluate the co-occurrence method, for the
set of all queriesQ, we compute a subsetR ⊂ Q that possess
commercial intent [9]. Then we compute two countsnq→r, the
number of users who pose queryq before commercial queryr, and
nr→q the number of users that poser beforeq. This simple method
recommendsr to q if nq→r occurs more frequently thannr→q.
In our experiments, we output(q, r) for which nq→r > 5 and
nq→r > 2 · nr→q.

To assess the impact of communities, we computenT→q , the
number of users that posed at least one queryq in the community
T that later pose the commercial queryr. The same heuristic is

Co-Occurrence Co-Occurrence
Category Recommendations Recommendations

w/o Communities with Communities
Surprising 2% 12%
Good 28% 49%
Obvious 54% 11%
Bad 7% 10%
¬Commercial 6% 13%
Adult 3% 3%
Foreign 0% 2%

Table 3: Evaluation of Co-Occurrence Recommendations

used to select(T, r) combinations. The method found 9K recom-
mendations without communities, and 11K recommendations with
communities. The intersection contained 7.7K recommendations.

To evaluate, we manually categorized each recommendation into
one of five types, “Surprising” if the connection was unexpected,
“Good” if the recommendation was reasonable, “Obvious” if the
suggestion was a spelling variation or just added a closely related
word “Not Commercial” if the commercial intent classifier failed
by asserting that the recommended query was commercial whenin
fact it was not, and “Bad” if we could not find an explanation for
the recommendation. We randomly selected 100 recommendations
without communities and we also selected another 100 recommen-
dations found with communities that were not found without com-
munities. The manual categorization is shown in the second and
third columns of Table 3.

The majority of recommendations found without the benefit of
communities are Obvious. Most are spelling corrections or mi-
nor variations such as {christmas backgrounds}→ {christmas bor-
ders}. The next largest category are Good recommendations such
as {itunes download}→ {zune}. Not Commercial is a problem
for about6% of the queries. Some of these recommendations are
good, but simply do not direct the user to a commercial space.For
example, {wizards of waverly}→ {suite life on deck}, while both
are shows on the Disney channel, the latter need not have commer-
cial intent. The Bad recommendations we could not justify such as
{rice} → {oil} and {fireworks} → {fire truck}. There are very few
surprising recommendations.

Query Communities improve our ability to find unexpected rec-
ommendations. The major shift is away from Obvious recommen-
dations towards more Good and Surprising. A Surprising exam-
ple is {engagement ring}→ {promise ring} – a promise ring is
a pre-engagement promise to be loyal ring, a social sign of less
commitment. The increase in Good and Surprising recommenda-
tions comes at a slight increase in Bad recommendations. In some
circumstances, communities create transient connections. For ex-
ample, {presentation clipart}→ {christmas lights} is a Bad recom-
mendation created because the search logs are from Decemberand
{presentation clipart} is in a community with {christmas image},
{christmas images}, and {christmas clipart}.

Hitting Set Next we evaluate the hitting set method. The exper-
iment was run on the same data as before. In our experiments, we
output(q, r) if at least three uncovered users posed the queriesq
andr. The method found 36K recommendations when query com-
munities were not used and 42K when query communities were
used.

The results are shown in Table 4. As with co-occurrence, note
the intriguing shift towards good and surprising recommendations
that communities bring, at the cost of some increase in Bad rec-
ommendations. Some of the surprising recommendations include:



Hitting Set Hitting Set
Category Recommendations Recommendations

w/o Communities with Communities
Surprising 2% 12%
Good 24% 24%
Obvious 52% 42%
Bad 2% 4%
¬Commercial 16% 8%
Adult 4% 4%
Foreign 0% 6%

Table 4: Evaluation of Hitting Set Recommendations

{hard flip} → {zero skateboards} and {double backflip}→ {tram-
poline}, where {hard flip} is in a community with {varial heelflip},
{laser flip}, {pressure flip}, {360 hardflip} – all moves that can be
executed on a zero skateboard. In the second case, {double back-
flip} is in a community with other flips that can be performed ona
trampoline.

Finally, there is a noticeable fraction of recommendationsthat are
not commercial. The commercial intent identification method that
we are using [9] produces a score between0 and1 indicating how
likely it is the query has commercial intent. In our experiments, we
set this threshold to0.6. Our results could improve if we increased
this threshold. One example of such a non-commercial recommen-
dation is {david paterson}→ {blindness}. While some implication
exists, blindness is not a commercial query.

What is the difference between the recommendations found by
the co-occurrence and the hitting set algorithms? Hitting set in-
creases the number of recommendations found with little loss of
quality. One way to achieve this is to decrease the thresholdof the
co-occurrence frequency. We observed that decreasing the thresh-
old below five results in a high number of “Bad” recommendations.
Further, note that hitting set fails to find recommendationswith
high co-occurrence frequency – algorithmically, it removes covered
users resulting in the loss of some high co-occurrence recommen-
dations. Therefore, the two algorithms are complimentary,and we
recommend using both to find an extensive set of high quality rec-
ommendations.

In summary, prior query suggestion methods largely do not gen-
erate commercial recommendations, nor are they designed for that
purpose. Further, both co-occurrence and hitting set recommenda-
tion methods produce interesting and unexpected recommendations.
Query communities are the key to increasing the number and quality
of recommendations. The two methods can be used in tandem to
produce a large collection of high quality recommendations.

7. CONCLUSIONS & FUTURE WORK
We presented an approach to forecast future commercial intent

of search users, thereby enabling product recommendation early in
the search process. A crucial feature of the approach is the use of
query communities which amplify forecasting signals beyond what
each individual query can provide.

We leave many interesting directions for future work. One avenue
is the investigation of richer random deletion models. In addition
to the uniform deletion model we studied, one can consider other
types of models that are tailored to the type of data used. Forexam-
ple, we could imagine models where users initially pose queries in
the overlap of communities, i.e., ambiguous queries, and over time
make their queries less ambiguous. The deletion process in this case
may be different from uniform, and such structure may be exploited
to improve recovery of communities.

Itwouldbebeneficial tounderstandhow signals fromothersources
impact the quality of query communities. In this paper, we identi-
fied interests via only search queries. One may augment or replace
the graph with edges between queries if they share clicks, ifthey
are both bid on by the same advertiser, etc.

In addition, one may consider the problem of assembling a diver-
sified portfolio of product recommendations for each query,so as to
maximize the probability that a user clicks on at least one, i.e., min-
imize the probability the portfolio defaults. In this context, work on
creating a diversified portfolio of investments may be relevant [8].

Next, an ideal recommendation system would explain to the user
why the product was recommended. In some cases, there is a chain
of reasoning involved and methods that provide justification can
help the user. At the moment, we have statistics such asx people
who queryq later queryr. It may be desirable to also provide a
sequence of queriesq → q1 → q2 → r to help the user understand
the recommendation.

Finally, we have not touched on the privacy angle and our rec-
ommendations are based on quite private user searches. In the case
of hitting set, we find more surprising recommendations whenthe
signal is based on a smaller number of users. From a privacy per-
spective, if a query is in the tail it is intuitively more unique to a
user and hence more private [16]. We leave the question of private
recommendations [18] as an interesting direction for future work.
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APPENDIX

A. REPRESENTING A CLASS OF QUERY-
COMMUNITIES

We prove that if each community has a query that is unique to it
then a set of queries forms a community iff the set forms a maximal
clique.

Theorem 3.Let C be a class of query communities such that
each community has at least one query that is unique to it. LetG be
the graph representation ofC. ThenC ∈ C is a community if and
only if the set of vertices inC forms a maximal clique inG.

Proof. We first show that each community forms a maximal
clique. Let the set of communities be denoted byC = C1, . . . , Ck

whereqi is the query that is unique toCi for i = 1, . . . , k. EachCi

is a clique in the graph representation ofC by construction. Assume
by way of contradiction thatCi is not maximal. Then there exists
a vertexv that can be added toCi that neighbors all ofCi. This
in turn implies thatv is adjacent toqi, which contradicts thatqi is
unique toCi.

We now show that each maximal clique forms a community. Con-
sider a maximal cliqueV ′ in G. Note that the set of vertices inV ′

must contain some communityC ∈ C, by construction ofG. Let q
be the query that is unique toC. Assume by way of contradiction
that there exists a vertexv ∈ V ′ that is not inC. Observe thatv
must be adjacent to each vertex inC sincev is in a maximal clique
V ′ containing the community/cliqueC. In particular,v must be
adjacent toq, contradicting the fact thatq is unique toC. Thus,V ′

is identical toC. Combining the above, the theorem follows.

B. PROOFS OF THEOREMS
Before we prove Theorems 1 and 2, we state the lemmas we need

to prove the theorems.

Lemma 1. Let G = (V,E) be the underlying ground truth
that is a collection of overlapping cliques and fix a cliqueC in
G. Suppose we construct a random graphG′ with vertex setV
by putting an edge between verticesu andv with ‘right’ probabil-
ity r if (u, v) ∈ E and ‘wrong’ probabilityw if v ∈ Γ(C) \ C,
whereC is the clique containingu. Then, with probability at least
1 − (h + 1)K exp(−ε2Kt/3), C forms anα, β, ρ cluster with
α ≤ (1 + ε)(fr+ (1− f)w), β ≥ (1− ε)r, andρ ≤ (1 + ε)hw,

wheret = min {r, w + f(r − w), hw}, if w 6= 0 and t = fr if
w = 0.

Lemma 2.Consider graphĜ that is generated fromG from the
deletion model. Fix a cliqueC. Then, for two verticesu, v ∈ C, we
must have the dice coefficientd(u, v) ≥ (1− εL)p/d with proba-
bility 1− 2 exp(−ε2Kp2/3), whereεL = 2ε/(1 + ε). Similarly,
whenu ∈ C andv /∈ C, then we must haved(u, v) ≤ (1 + εU )fp
with probability at least1 − 2 exp(−ε2fKp2/3), whereεU =
2ε/(1− ε).

Lemma 3.Consider a random variableZ = nr/dr. Letµ =
E [nr] /E [dr]. Then, with probability at least1−δ,Z ≤ (1+εU)µ
and with probability at least1 − δ, Z ≥ (1 − εL)µ, whereδ =
exp(−ε2E [nr] /3) + exp(−ε2E [dr] /3), εU = 2ε/(1 − ε) and
εL = 2ε/(1 + ε).

Proof of Theorem 1. We invoke Lemma 1 with appropriate val-
ues ofr andw to derive the relationship betweenp and graph topol-
ogy for which recovery of cliques is possible. It follows from our
deletion model that all clusters in̂G haveρ = 0. In order to invoke
Lemma 1, we consider the following dual interpretation of the dele-
tion model: we obtain̂G by starting with an empty graph and add
edges independently between two verticesu, v with probabilityp if
and only if(u, v) ∈ G. In the language of Lemma 1, it now follows
that the probability of adding a right edge between two vertices in
same cliquer = p and than of adding a wrong edge between two
vertices in different cliquesw = 0. Therefore, a given cliqueC
forms an(α, β)-cluster withα ≤ (1+ε)fp andβ ≥ (1−ε)p with
probability at least1 − δ, whereδ = (h + 1)K exp(−ε2fp/3).
CliqueC will be recovered ifβ > 1/2 + (α+ ρ)/2. Thus,C will
be recovered if

(1− ε)p >
1

2
+

(1 + ε)fp

2
⇐⇒ p >

1

2− f − ε(2 + f)

⇐= p >
1

2− f − 3ε
.

Since each clique is recovered with a probability at least1− δ, on
an average a fraction of1 − δ cliques will be recovered provided
p > 1/(2− f − 3ε). This finishes the proof of the theorem.

Proof of Theorem 2. First, we fix a cliqueC in G. Let G̃ denote
the random graph we obtain upon densification ofĜ; G̃ is random
not only becausêG is random, but also because the densification
step is random. Because of this reason, the probabilities ofadding
right and wrong edges iñG are both random. Specifically, consider
a pair of verticesu, v in cliqueC. The probability that there is an
edge betweenu andv in G̃ is r = p+(1−p)d(u, v) since the edge
could either be present in̂G or have been added in the densification
step. The dice coefficientd(u, v) is a random quantity and hence
r is random. It follows from Lemma 2 that with a probability at
least1− 2 exp(−ε2Kp2/3), d(u, v) ≥ (1− εL)p/d, whereεL =
2ε/(1 − ε). Ignoringε to simplify expressions we can write that
for all verticesu, v ∈ C (using a union bound),

r ≥ p+(1−p)p/d with probability ≥ 1−2K2 exp(−ε2Kp2/3).

Coming to the wrong edges, note that the densification step only
adds edges betweenu ∈ C andv /∈ C if v ∈ Γ(C) \ C. Thus,
using the same argument as above, it can be shown using Lemma 2
(and ignoringεU ) that forall verticesu ∈ C, v ∈ Γ(C) \C (again
by union bound),

w ≤ fp with probability ≥ 1− 2hK2 exp(−ε2Kfp2/3).

Invoking lemma 1, it now follows that cliqueC will be recovered
withprobabilityat least1−δ, whereδ = (h+1)K exp(−ε2Kt/3)+



2(h+ 1)K2 exp(−ε2Kfp2/3) with
t = min {fr + (1− f)w, hw} (sincer −w > 0) if

(1− ε)r >
1

2
+

(1 + ε)(fr + (1− f)w + hw)

2

Re-arranging the terms in the above equation, it can be shownthat
recovery is possible forp > 1/((2− f − 3ε)(1 + ∆)) where

∆ =
1− p

d
−

f(1− f + h)(1 + ε)

2− f − ε(2 + f)

Assumingε is small, we ignore it in the expression for∆ in order
to simplify the expressions. Therefore, since each cliqueC can be
recovered with a probability at least1− δ, on an average a fraction
of 1−δ cliques will be recovered providedp > 1/((2−f−3ε)(1+
∆)). This finishes the proof of the theorem.

Proof of Lemma 1. Letu ∈ C and v ∈ Γ(C) \ C. Further
let C′ denote the clique that containsv. It now follows from our
definitions that

α =
1

K
max

v∈Γ(C)\C
|Γ(v) ∩ C|, β =

1

K
min
u∈C

|Γ(u) ∩ C|

ρ ≤
1

K
|Γ(u) \ C|.

SinceG′ is random, all the quantities on the right in the above
expressions are random. Hence, we compute their expected val-
ues, and argue that with a high probability they concentratearound
their expected values. To this end, letX(u, v) denote the indicator
random variable for adding an edge between verticesu andv. It fol-
lows from our definitions that for anyv′ ∈ C, E [X(u, v′)] = r if
v′ ∈ C andE [X(v, v′)] = r if v′ ∈ C ∩C′ andE [X(v′, v)] = w
if v′ ∈ C \ C′. Letting |C ∩ C′| = ηK, we can now write

E [|Γ(u) ∩ C|] =
∑

v′∈C

E
[

X(u, v′)
]

= Kr

E [|Γ(u) \ C|] =
∑

v′∈Γ(C)\C

E
[

X(u, v′)
]

≤ hKw,

and

E [|Γ(v) ∩ C|] =
∑

v′∈C\C′

E
[

X(v, v′)
]

+
∑

v′∈C∩C′

E
[

X(v, v′)
]

= Kw +Kη(r − w) ≤ Kw +Kf(r − w),

where the last inequality follows from the fact thatη ≤ f and
r − w > 0. It follows from Chernoff bound that Pr(Z ≥ (1 −
ε)E [Z]) ≤ 1− exp(−ε2E [Z] /3) for any random variableZ that
is a sum of independent indicator random variables. It thus follows
that each of the above quantities concentrate around their expecta-
tions with probabilities that can easily derived from the Chernoff
bound. Moreover, since the expressions forα andβ involve taking
maximization and minimization over a set of vertices, we need to
apply union bound. Particularly, lettingZ1(v) denote|Γ(v) ∩ C|,
Z2(u) denote|Γ(u) ∩ C|, andZ3(u) denote|Γ(u) \ C|, we can
write

Z2(u) ≥ (1− ε)Kr ∀u ∈ C w.p. 1−K exp(−ε2Kt/3)

Z3(u) ≤ (1 + ε)hKw w.p. 1− exp(−ε2Kt/3),

and

Z1(v) ≤ (1 + ε)(Kw +Kf(r − w)) ∀v ∈ Γ(C) \ C

w.p. 1− hK exp(−ε2Kt/3)

where t = min {r, w + f(r − w), hw}. Putting everything to-
gether, we can now writeα ≤ (1+ε)(fr+(1−f)w), β ≥ (1−ε)r,

andρ ≤ (1+ε)hw with probability1−(h+1)K exp(−ε2Kt/3).
If w = 0, then it is easy to see thatρ = 0 and, hence, we only need
to considerα, β. Thus, forw = 0, the above expressions carry with
t = min {r, fr + (1− f)w} = fr. This finishes the proof of this
lemma.

Proof of Lemma 2. If follows fromourdefinitions thatd(u, v) =
nr /dr, wherenr = 2|Γ(u) ∩ Γ(v)| anddr = |Γ(u)| + |Γ(v)|.
Let X(u, v) denote the indicator random variable of there being
an edge betweenu andv; it follows from our deletion model that
E [X(u, v)] = p if u, v are in the same clique and0 otherwise. For
u, v ∈ C, it follows that

E [nr] = 2
∑

v′∈Γ(u)

E
[

X(u, v′)X(v′, v)
]

≥ 2Kp2,

where the last inequality follows because the random variables
X(·, ·) are independent and|Γ(u)| ≥ K. Similarly,

E [|Γ(u)|] =
∑

v′∈Γ(C)

E
[

X(u, v′)
]

≤ dKp,

since by definition ofd, it follows that|Γ(u)| ≤ dK for any vertex
v. Putting the above two together, we get

µr =
E [nr]

E [dr]
≥

2Kp2

2dKp
= p/d.

It follows from lemma 3 thatd(u, v) ≥ (1−εL)µr with probability
at least1− δ where

δ ≤ exp(−2ε2Kp2) + exp(−ε2Kp) ≤ 2 exp(−ε2Kp2).

Similarly, whenu, v belong to different clustersC andC′, we
have

E [nr] =
∑

v′∈C∩C′

E
[

X(u, v′)X(v′, v)
]

= |C ∩ C′|p2 ≤ fKp2

where the last inequality follows from the fact that overlapfraction
is at mostf . SinceE [dr] ≥ E [|Γ(u)|] ≥ Kp, it follows that

µw = E [nr] /E [dr] ≤
fKp2

Kp
= fp

It now follows from lemma 3 thatd(u, v) ≤ (1 + εU )µw with
probability at least1− δ where

δ ≤ exp(−ε2Kfp2) + exp(−ε2Kp) ≤ 2 exp(−ε2Kfp2).

This finishes the proof of the lemma.

Proof of Lemma 3. This lemma can be proved by a direct appli-
cation of Chernoff bound. We prove the upper bound. The proof
for lower bound is similar.

It follows from Chernoff bound thatnr ≤ (1 + ε)E [nr] with
probability at least1 − exp(−ε2E [nr] /3) and E [dr] ≥ (1 −
ε)E [dr] with probability at least1 − exp(−ε2E [dr] /3). Thus,
it follows that with probability at least1 − exp(−ε2E [nr] /3) −
exp(−ε2E [dr] /3), we have

Z =
nr

dr
≤

(1 + ε)E [nr]

(1− ε)E [dr]
= (1 +

2ε

1− ε
)µ.

The result of the lemma now follows.
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