Shopping for Products You Don’t Know You Need

Srikanth Jagabathula* Nina Mishra Sreenivas Gollapudi
EECS, MIT Microsoft Research Microsoft Research
Cambridge, MA _ Mountain View, CA Mountain View, CA
jskanth@mit.edu ninam@microsoft.com sreenig@microsoft.com
ABSTRACT recommendation engine resulted in a large increase inuevdi).

Recommendations today typically take the form of complemnen
an accessory to a product. However, intent to buy often plece and substitutes. For instance, people who buy cameras tend t
also buy a case or battery (complement) and people who shop fo

a user's appearance in a commerce vertical: someone itgeties fui | hop | bstitute). &n
buying a skateboard may have earlier searched for {variifiiyg, uji cameras aiso shop for canon cameras (Substitute). imaes
these recommendations serve an immediate, subsequentezomm

a trick performed on a skateboard. This paper considers how a" | q
search engine can provide early warning of commercial tnfEine clal needa.

naive algorithm of counting how often an interest precedesra- Looking over the reco.mmen.da.tion engines available toquhy, a
mercial query is not sufficient due to the number of relategsva ~ S€€M to provide suggestions within a particular commerogaitn

of expressing an interest. Thus, methods are needed fongindi " contrast, our hypothesis is that the intent to buy presedeser's
sets of queries where all pairs are related, what we cgliery appearance in a shopping vertical - that a user's interesigood

community and this is the technical contribution of the paper. We predlctor of what products they will purchasg. This papeesn
describe a random model by which we obtain relationshipséen tigates whether user interests, as captured in search aiatehe
search queries and then prove general conditions undehwige ~ €xXPloited to generate longer-range commercial recomntiemsa
can reconstruct query communities. We propose two compleme Note that our objective is not to recommend/advertise aﬁtpec
tary approaches for inferring recommendations that etitipery brand and/or model number of a product, rather our goal iglp h
communities in order to magnify the recommendation sigreal b a user find a class of products related to their interests.tagteof

yond what an individual query can provide. An extensiveesedf pinning dowp an exact product is left to a commerce vertical. .
experiments on real search logs shows that the query cortigsini As a running example we refer to a sequence of search queries

found by our algorithm are more interesting and unexpedtad & inspired byfa rea[userlsh%wn in TqEIIe L 'll;he useL belginsi with a
baseline of clustering the query-click graph. Also, wheredsting sequt_ancgdo queries re at(_e tr? Ca?‘ |ronlcock) warﬁ, thea i o
query suggestion algorithms are not designed for makingwem Vacation ideas in Europe in the winter, looks at the weath&fu-

cial recommendations, we show that our algorithms do sutiree ~ 'OP€ in the winter, then seeks a vacation in a warmer deftmat
forecasting commercial intent. Query communities inceeasth the mayan riviera, hunts for tickets to fly there, and themcess
the quantity and quality of recommendations for products related to the trip, i.e., sunblock and an uneegr

camera. The main recommendation to infer from such a uskais t

Recommendation engines today suggest one product to aymthe

Categories and Subject Descriptors people who vacation to the Mayan Riviera may need an underwa-
H.3.3 [Information Search and Retrieval]: Search Process ter camera and sunblock. However, there are many inferemees
would not like to draw: (1) people who go the Mayan Rivierachee
General Terms cast iron cookware (2) people flying to Europe need an underwa
Experimentation, Algorithms ter camera. The challenge is to find the correct recommenrdati
without introducing too many incorrect ones. To compound-ma
Keywords ters, user queries are a very noisy source of data, not etists are
guery communities, long-range recommendations necessarily expressed in the search box, and intent raghdiyges
1. INTRODUCTION during search.

Given a search query, the problem considered in this pager is

Recommendation engines have been widely adopted in manyfind related commercial queries, assuming such relatipashiist.
commerce verticals with great success. At first launch, Amaz The problem seems simple enough: Why not just recommend the
product that most often follows an interest? One problentas t
there are many ways to pose the query Mayan Riviera, e.gg; vac
tions in the Yucatan, coastal and reef destinations in thiébBean.
Similarly, there are many queries that one could pose to huyna
Permission to make digital or hard copies of all or part o twork for derwater camera. Another problem is that large co-occoerés

personal or classroom use is granted without fee providatidbpies are not necessarily an indication of relationship, the two gsecould
not made or distributed for profit or commercial advantage that copies just both be popular.

*Work done while author was an intern at MSR Search Labs

beargpishntotice at”d the full Citattion ?jr.‘ tth'i fitrsttp?ge. TWWG”MSG'_? To overcome the first difficulty that a user has multiple ways t
Liﬁumis!;dn%ﬁglsorogfseiwers orto redistribute to listguitkes prior specific express the same intent, we define a new problem, finding query
WSDM'11,February 9-12, 2011, Hong Kong, China. communities. Aguery communitys a subset of queries where alll

Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

le creuset cookware Dec 12 | 10:00am
cast iron reviews Dec 12| 10:01am
cast iron cookbook Dec 12| 10:02am
winter vacations Dec 13| 07:00pm
european vacation ideas in winter| Dec 13| 07:01pm
weather map of europe in winter | Dec 13| 07:02pm
mayan riviera trip advisor Dec 13| 07:30pm
best excursions in mayan riviera | Dec 13| 07:33pm
best resort to stay in mayan riviera Dec 13| 07:45pm
mexicana airlines flights Dec 14 | 07:00pm
buy water resistant sunblock Dec 20 | 08:05pm
where to buy an underwater camgrdec 21 | 08:15pm

Table 1: Search queries posed by a hypothetical user

pairs of queries are related. Note the key difference betaepiery
community and a query suggestion, where in the latter théigoa
to find a set of suggestions that are all related to a singleyghet
where there is no requirement that the suggestions theessbky
related. Note also the distinction with synonymous queriggere

the goal is to find queries where each is a substitute of ther.oth
While synonymous queries form a subset of a community, treay m
not be rich enough to form a complete community. For example,
{enchilada} and {enchiladas} are synonyms, but a community
Mexican food should ideally also include {burrito}, {tosta}, etc.

To overcome the second problem, that large co-occurreneg do
not necessarily imply that queries are related, we propeseteth-
ods for finding recommendations, which turn out to be compiem
tary. One is still based on co-occurrence, but uses timeleztse
co-occurrences — concretely, a recommendagien r is good if it
has strong support, many users pgdgeforer, and if ¢ precedes
r more often tham precedeg. The second method views a user’s
queries as a possible explanation for a commercial quergresgt-
ing over all users who pose a commercial query, the methddssee
a succinct justification for why the commercial query wasegabs
modeled as a classic hitting set problem.

Contributions: The technical contribution of this paper is a
method for identifying query communities in search data. réye
resent queries and relationships through a graph whereettieas
are queries and there is an edge between queries if theylatede
If the graph contained all possible relationships, thenexyjaom-
munity is a clique in this graph. However, it turns out that graph
created from available data sources is woefully incompléteus,
we propose a simple random model from which our observechgrap
is derived from an ideal graph containing all possible retethips.
The random process uniformly keeps each edge with probapili
We then propose a method that involves densifying the graph b
adding edges between vertices with probability proposdida the
number of neighbors they share. The resulting densifiedngisap
then clustered using a known algorithm.

Our analysis of the method suggests: (1) as the probability
that an edge is kept increases, the more likely our methdéudt
ceed in reconstructing query communities and (2) as closttap
decreases, the more likely we can reconstruct communiescif-
ically, as cluster overlap decreases, the more likely ouhotgis to
introduce a right edge over a wrong edge. We prove conditions
der which we can reconstruct the community: the more thealsis
overlap, the largep has to be to ensure recovery.plfs too small,
the cluster cannot be recovered at all.

To recommend products, we identify queries with commercial
intent usingl[9] and then propose two methods for making aecn

tion between search queries and commercial queries, oresésib
on co-occurrences and the other on hitting set, as mentiaineck.

To validate our methods for finding query communities and rec
ommendations, we conduct an extensive series of expersnoent
real search logs. For query communities, our experimeras sh
that many of the communities we find are of high quality — only
2.6% are bad. Also, our densification procedure enables us to find
four times as many clusters as without densification. Wiseeea
baseline of clustering the query-click graph produces canities
where 75% are minor misspelling/word additions, our teghes
find communities where 69% are interesting and unexpectest, N
we evaluate recommendations. We show that existing query su
gestion algorithms are not designed for the problem of resend-
ing commercial queries. We show that the two recommendsation
methods are complementary in the sense that each can find rec-
ommendations that the other cannot. Our most striking fonésn
that query-communities increase not only the number, tsat te
quality of recommendations.

2. RELATED WORK

We discuss work related to finding query communities as veell a
work on recommendations. While there is rich literaturehese
areas, our problem formulation differs and hence theseadsttio
not directly apply to our problem.

Query Communities: The problem of finding “concepts” or
“query clusters” has received attention in the literat@@[5]. Some
approaches involve clustering the query-click graph. Inesgperi-
ence with such techniques (Section 6.1), each cluster fosudlly
contains very tightly related queries. The queries in ateluend to
contain minor word additions/misspellings of each othdris-liare
to find a surprising cluster. Note that if two queries areteglabut
they do not share a URL in the top 10, a user cannot demonstrate
that they are connected with a click. Thus the performanes ail-
gorithm that clusters the query-click graph is upper bodnuethe
relevance of a search engine, we seek to go beyond that. Glr wo
uses the sequence of queries a user poses as a signal fednelss.
This signal is less limited by the relevance of the searclineng

In another related work, the analysis of our algorithm hamec-
tions to the analysis performed Ky [7] in the context of cuisty
with constraint graphs. The authors consider a classicidlgm
of partitioning a set of points with the additional goal o$pecting
certain constraints on which points must and must not badted in
the same partition. The authors consider the scenario viteza is
noise in the given constraints. Under two general noise tsptiey
show that even a ‘small amount’ of noise can severely affecpto-
cess of partitioning in an adverse manner. While one of thase
models foisy edgesnodel) is similar to the random graph models
we consider in this paper, the results derived there areapbicable
to our problem. Specifically, the authors consider the mobbf
finding disjoint clusters, whereas our clusters overlapaddition,
the authors consider general clustering criteria and pnegative
results on the noise levels that lead to the entire graplylggouped
into one partition. In contrast, our work focuses on a specifis-
tering criterion, but demonstrates a positive result whparéicular
algorithm is used to discover query communities.

Recommendations: In the area of query suggestions, there is a
plethora of methods including random walks on click grafthd g,
[10], snippets of search results[26], query reformulatiapys[13,
[4], and clustering the query-click graphl [5]. A recent papgr
[25] considers the problem of clustering query refinemerasiep-
resent different information needs into different group®ider to
diversify query suggestions and improve them based on assits
intent. At first glance, the work on query suggestions seqipi-a

cable to both finding query communities and inferring conuizr
recommendations. However, query suggestions do not sbese t
community problem as we define it: query suggestions ideatif
collection of queries that are related to a reference quawever,
all queries related to the reference query may not be retatedch
other. In terms of applicability to making commercial recoen-
dations, in principle, query suggestions can do so by siffildying
out the suggestions that are not commercial. However, iregur
perience (Section @.2) with a query suggestion method based
random walk on the query-click gragh]10], we find very few ecom
mercial suggestions. These techniques, while valuabteéaguery
suggestion problem, are not designed to solve our problerarbf
warning of commercial intent.

Our work may have relevance in the advertising context, ghou
we have not explored advertising in this paper. Broad-mexgian-
sion is a method for broadening the scope of a keyword toaglat
keywords so as to match an ad to more queries than an advertise
bids [11]. In addition to suggesting keywords to adversehe
techniques presented in our paper can also be used to fofietcas
commercial intent of search users to advertisers. Suchniretion
can be extremely useful and timely to advertisers in desgymiore
effective ad campaigns.

The discovery of longer-term relationships can be viewedras
association rule mining probleml[2] wherein relationstbpsveen
queries are extracted based on co-occurrence. In addiierg has
beenworkin uncovering longer-term relationships in segreries.
The work by [22] is an important step in that direction. Gieref-
erence query, a pattern of queries distinct from a basetjgecgate
is shown to uncover useful relationships. However, a ginegrest
can be expressed via a variety of search queries. Indequising
connections tend to be rarer co-occurrences, and consgoery
be difficult to find, absent grouping queries into user irgefuery
communities first.

Finally, there is rich literature in the context of recomrdation
systems, which includes content-based approaches, ocikake-
filtering based approachés [27] 2111215, 1], and hybrideguhes
[28]. In addition, popular commercial examples include Ama
zon.com recommendation systeml[17] and Netflix movie recom-
mendation systeni [3]. These methods assume access to elean d
about users, e.g., feature vectors over items (books, sionevs
articles, etc.), a sample of ratings. This data is then useither
predict ratings for unrated items or rank unrated items éoom-
mendation purposes. The challenge presented in this papemi
to recommend with search queries alone, i.e., without atiggs

a convenient graph representation of the relaitorspecifically, we
represeni? as an undirected gragh = (V, E') where the vertices
correspond to queries and an edge connects two queriesréhat a
related. We think of this graph as the ‘ground truth’. Not&ttbach
community forms a clique in this graph.

This graph representation, however, is not rich enough to de
scribe all classes of query communities. Specifically, esieach
community is defined as a maximal set of queries, it is tergptin
say that there is a one-to-one correspondence between autigsu
and maximal cliques. This statement, however, is falsethiare
communities”, C2 andCs such thatC's = (C1\ C2)U(C2\ Ch),

C1 U C> U O3 forms a maximal clique. Consequently, we assume
that each community has at least one query that is uniqueite.jt
for each communityC' there is ag € C such that for all other
communitiesC’, ¢ ¢ C’. It can be shown any set of communi-
ties satisfying such an assumption can be represented amatax
cliques in a graph (proved in the appendix). We believe therag-
tion is quite natural as there should be at least one unambgyu
search query that only belongs@b

No Relationship Graph: If we had the relationship graih, then
we could efficiently identify all communities by finding maxal
cliques via existing algorithm$ [29, 114]; however, in pieef we
are not giver, but rather a substantially sparser verdioof G (a
simple generative model f@& will be provided soon). Specifically,
depending on the application, one can use combinationsriaiuga
signals that are present in the data to infer some of the quigssnt
in graphG. In search logs, if many users issue two queries within a
small window of time, then the data provides a strong sighaho
edge between the two queries. Using this signal, one carraohs
a graphG. Since the data is noisy and fundamentally incomplete,
it follows that G cannot contain all the edges @. Further, if we
remain conservative in adding edges, it may not be unreamna
to assume that every edgedhis present inZ. Thus, we assume
that (7 is a (very) sparse subgraph@f Note that other signals of
relatedness may also be helpful such as document clickspesni
text and ad bids.

Since is unlikely to have many true cliques, we hope to find
(a subset of) communities by finding dense subgraphs in tqghgr
this is reasonable if the structure of most of the cliquesg-ilis
essentially retained i@ — a precise analysis follows. While numer-
ous definitions of a dense subgraph exist in the literatuneotr
purposes it is crucial that some vertices belong to multhlsters
since there are many search queries with ambiguous intestt,as
jaguar. Hence, we adopt the definition of a dense subgrajm giv

or purchase data. With search data, one does not even know if ain [20]: A subset of queries is &, 3)-clusterif each query in the

particular interest is related to a product. Collaborafiltering
approaches do not apply in our context. An interesting aggro
proposed by Zheng et. al.[31] studies a different probleomfr
the one considered in this paper, namely extracting subssiand
complements from user browsing data so as to enrich recooenen
systems with this information.

3. QUERY COMMUNITY

In this section, we define a query community and describe our

algorithm for recovering communities.
Defining a query community: We assume the existence of a
relationR that describes which queries are related, Rég, ') = 1
if queriesg andq’ are related an&(q, ¢’) = 0 otherwise. We define
aquery community”' as a maximal set of queries such teaery
pair of queries is related to each other, i.e., for eacl in C,
R(q,q') = 1. In practice, note that we do not have accesR for
an arbitrary pair of queries. We return to this issue shortly
Representing a class of query communitiesWe now consider

cluster is related to at leaspiafraction of queries in the cluster, and
any query outside of the cluster is related to at mostvdraction
of the queries in the cluster:

Definition 1. Given a graph,G = (V, E), where every vertex
has a self-loop, let E(c, C') denote the edge séfc,v): Vv € C}.
Then,C' C V is an(«, B)-clusterif

1. Internally Dense: Vv € C, |E(v, C)| > B|C]
2. Externally Sparse: Vu € V' \ C, |E(u, C)| < a|C|

Given0 < a < 8 < 1, the(a, B8)-clustering problenis to find all
(a, B)-Clusters.

Observe that twdc, 3)-clusters can overlap, e.g., tuecliques
thatoverlapin one vertex are egch, 1)-clusters. Amaximal clique

This is a technical assumption needed to ensureXhatl clusters
are possible.

is an(a, 1)-cluster, wherex measures the extent to which cliques
overlap. This definition of turns out to be important in our analy-
sis: as community overlap erincreases, it becomes harder to find
the cluster.

Random Deletion Model: We now translate the above intuition
of how graphG is obtained into a formal generative model that
describes the relationship betwe@rand ;. We seek to describe
such a process so that we can design algorithms for recotiagu
an approximation of7 from G. We consider a simple model in
which each edge is kept with probabilipy

Definition 2. Given a relationship graptG = (V, E), a p-
random graplt is obtained fromz by including each edge € E
with probabilityp and not including the edge with probability- p.

One can consider more sophisticated models for describiag t
process by whiclty is obtained fromG. Indeed, the precise pro-
cess depends on the type of data that is being used to canstruc
Thus, in the spirit of keeping the analysis general, we darsihe
uniform model. Further, while being a simple, yet nontriyaodel
to analyze, it may provide insight into more complicated eied

The Recovery Algorithm: We now propose an algorithm to
recover communities frora! by finding dense subgraphs. Our al-
gorithm involves two steps, densification followed by céusig.
The densification step simply adds edges between pairs tii¢egr
with probability proportional to the number of neighborsyishare,
concretely the dice coefficient. Then the clustering athanide-
scribed in[[20] is used to identify communities. Aformaldegtion
is given in Algorithni).

Intuitively, the densification step aids in finding clustbysmak-
ing it easier to identify subgraphs that are close to beimgeeNote
that in practice, the densification step is absolutely elfor iden-
tifying communities — we are not aware of prior work that déses
the value of densification. The downside is that it also ihiices
wrong edges that could potentially lead to merging of dense s
graphs. Our analysis in the next section identifies the ¢immdi
under which carrying out the densification step is beneficial

Algorithm 1 Finding Query Communities in Sparse Graphs

Input: Graph@, sizeK, internal density3, external sparsity
Output: Set of Communitie€ each of sizek’

1: for all pairs of verticegu, v) ¢ E do

20 d(u,v) = (|P'(u) NT(0)])/(|T(w) UT(v)])

3: Add edge(u, v) to G with probability d(u, v).

4: end for

5: for eachc € V do

6: C=10

7: for eachv € I'(c) UT'(I'(¢)) do

8 if IT(v) NT(c)| > (28 — 1)K then addv to C.
9: end for

10: if C'is an(«, j3)-cluster then outpuf’.

11: end for

4. ANALYTIC EVALUATION OF THE PRO-
CEDURE

The success of our proposed procedure in terms of recovigrgng
underlying cliques depends on the value of the deletiongdibity
1 — p and the topology of grapliy. Our goal for this section is
to determine the relationship betwegrand graph topology for
which our procedure produces a good approximatiof¥ foom G.

Particularly, since? is a random graph, we find conditions under
which our procedure recovers most of the clique&in

Before we give the details of the conditions, we first desctite
problem setup. We assume that all the clique§'@ire of the same
size K. This is a reasonable assumption because the algorithm pro-
ceeds in rounds where, for a given round, the algorithm assum
that all of the clusters are of the same size. In additionaoatysis
shows that recovery of cliques depends on three quanttieted to
the underlying graph topology: the size of the maximum @apedf
cliques, the maximum degree of a vertex, and the maximum num-
ber of neighbors of a clique. Thus, we introduce three pararse
(f,d, h) to capture the underlying graph topology. Specifically, we
say thatG is an(f,d, h) graph if for any two cliquesCy, C2 in
G, |C1 N C2| < fK, the degree of any vertex is at me&k’, and
I'(C1) \ C1 < hK, where for any clique”, I'(C') denotes the set
of neighbors ofC: |J, .. I'(v). Clearly,0 < f < 1 andd > 1.

Further, let& denote the graph we obtain after densificatiortof
Since the densification procedure as welisare random, grap&'
is random.

The condition under which we can recover query-communities
depends on the clustering algorithm used to findj3) clusters.
The authors of([20] prove that the clustering algorithm,cdiéed
in steps 5-9 of Algorithniill, successfully finds @M, 3) clusters if
there is at least one champion per cluster and

B>1/2+(a+p)/2, (e
where a vertex in clusterC' is called ap-champion if|T'(v) N
V\ C| < p|C]|. In other words, roughly speaking, the underlying
clusters can be recovered provided the gap betweemd 5 is
‘large enough’. To be concise, we term ém, 3)-cluster with a
p-champion as afiw, 8, p)-cluster. In our casé&; is a graph with

B =1,a= fandp = 0. Sinced < f < 1, condition[1) is readily
satisfied forG. B

Since we run the clustering algorithm on gragh we derive
the relationship between the parameterg, d, h for recovery by
computing the values af, 3, p for random graptG and imposing
condition [3). However, sincé is random, the parameters 3
andp are all random. Hence, we assuies sufficiently large that
«, 3, p concentrate around their respective expected values., Thus
our derivations involve computing the expected valuesvof, p
and imposing conditiori{1). Our goal is to understand (ayfoat
values ofp, f, d andh can we recover the underlying cliques, and
(b) for what values o, f, d andh does it make sense to carryout
densification.

We now describe our results in two steps. First, we deschibe t
conditions under which we can recover the underlying ckqiorg
clustering graphy directly without any densification. Then, we
describe the conditions under which densification is beiagfic

In order to describe the results for the case when we cldster
without densification, first consider the simpler case wéecon-
sists of just two overlapping cliques!;, C>. Utilizing the notation
established aboveC:s N C2| = fK,d =2 — fandh =1 — f.
Assume thaf < 1, so that each clique has at least one vertex that
is unique to it. Because of this reason, and our model thag
obtained fromG by deleting edges independently with probability
1 — p, note that in botltz andG, each clique has at least one vertex
that is uniqye to it; therefores = 0 for both G and G. Further,
note that in7, each vertex in expectation is adjacenp o vertices
of the cluster. This implies that ~ p. Now suppose that the two
cliques are disjoint i.e.f = 0. In this casep must be zero and
hencel[(1) is satisfied provided~ 3 > 1/2. Similarly, in the case
when0 < f < 1, it can be seen that ~ fp. (@) now implies

thatp > 1/2 + fp/2 = p > 1/(2 — f). These results can be
formally stated as the following theorem.

Theorem 1.If we clusterG without carrying out densification,
then in expectation we can recover ¢ fraction of cliques provided

1
>
P=95 773

wheres = (h + 1)K exp(—¢&? fp/3).

Thus, as expected as the overlap fractjfomcreases, we need a
higher value of for recovery.

Now consider the case when we densify grapbefore clustering
it. For this case, let’s again start with the simple examphemG
consists of just two overlapping cliques. Densificationgadficial
provided the increase ifi more than compensates for the increase
in a + p. In the case when there is no overlap between the two
cliques, itis clear that even after densificatiarandp both remain
0. Hence, densification can only be beneficial. In the case when
there is non-zero overlap, however, we can show that deisific
is beneficial only whemp > 1 — 2f(1 — f). It follows from the
bound that the worst case is whén= 1/2 in which casep must
be at mostl/2. For f low, the overlap will be low and hence
the probability of adding a wrong edge will be small. Fohigh,
while the probability of adding a wrong edge is high, the nemb
of wrong edges will be low since there are very few verticext th
are non-overlapping. These results extend to a generdi ghdpre
precisely, we have the following theorem.

Theorem 2.If we clusterG after carrying out one densification
step, then in expectation we can recover ¢ fraction of cliques
provided

1
P> AT A= =39)
where
_1-p fA-=f+h)
A=~ 2— f

ands = (h+1)K exp(—e>Kt/3)+2(h+1)K? exp(—£>K fp?®/3)
with ¢ = min{fr + (1 — f)w, hw}, wherer = p + (1 — p)p/d
andw = fp.

The proofs of both the theorems are given in the appendixe Not
that in the above theorem, the valuefdepends on the value of
p. Therefore, a natural question is whether the condititins 0
and [2) can be simultaneously met. In order to see this, Sgpo
p is such thatA > 0 but A ~ 0. Then, we must havp ~
1—df(1— f+h)/(2— f). This implies that forf ~ 0, we must
havep =~ 1. On the other hand, fa ~ 0 and f =~ 0, the RHS of
@) will be ~ 1/2. This implies that under these conditiord, (2) will
be satisfied. Thus, there exist reasonable values ¢f d, andh
for which bothA > 0 and [2) are simultaneously satisfied. Using
similar arguments, one can compute precise bounds for vthih
conditionsA > 0 and [2) are satisfied.

5. RECOMMENDATION METHODS

In this section we discuss two methods for finding recommen-
dations. Both are motivated by the fact that users tend toesgp
interests related to products as they search. The methedwalr
uated in our experiments.

The first method given in Algorithrill2 essentially counts co-
occurrences. For each commercial quergnd search query,
the method outputg — r providedq is frequently posed befone

and provided more people pose the qugbgforer thanr beforeg.
The justification for using the ordering betwegandr comes from
the fact that there is an inherent sequentiality in commseegch.
For example, if a user poses the query {hdmi cable}, we woold n
want to recommend an {hdtv} — presumably the TV is purchased
before the cable.

Note that the method can be suitably modified to utilize query
communities. Specifically, the counts would then reflectrthim-
ber of users who posed any query in the community prior to acom
mercial query, and vice versa. Note that all queries are ineso
community, possibly a community of size one.

Algorithm 2 Co-Occurrence Recommendation Method

Input: Search Log, thresholé , 6

Output: Set of Recommendatiodg — r}

1: R = {Commercial queries in the Search LJog
2: @ = {Queries in the Search Lég

3: for eachr € Randg € Q do

4: ng—,,» = number of users who posed querpefore commer-
cial queryr

5. n,—, = number of users who posed commercial quebe-

fore queryg
6: end for
7: Output allng—,» whereng—,,» > 01 andng—, > 0an,—q

The above approach of finding recommendations through co-
occurrence counts is very natural and, in some sense, @anser
tive: essentially, it finds recommendations with high caewocence
counts. The co-occurrence counts exhibit a power-lawibdigion
with heavy tails. Hence, we can increase the number of recom-
mendations by designing a procedure that can dig througtathe
(low co-occurrence counts) and carefully pick relevanbremen-
dations. Since the tail is very noisy, we note that findingétevant
connections in the tail is a hard problem.

Next, we propose a method that finds recommendations thiugh
novel way of viewing connections between queries as ‘exgtlans’
rather than as co-occurrence counts. This method is deslciib
Algorithm[3. Specifically, given a commercial querythis method
seeks to find a shortest explanation for whwas posed. For in-
stance, among users who purchase underwater cameras, we may
find that the interest {mayan riviera} covers the largestafetsers
and the interest {ice fishing} covers the remaining users.vis®
the problem as a classic hitting set, one for each commegaély.

In other words, for each commercial quetywe create an instance:
Q1,...Qr Where eacl®); is the set of queries posed by a user who
posed the query and wheré: is the number of users who posed the
queryr. We seek a minimum hitting set, i.e., @ minimum sized set
of queriesI” such thafl’ N Q; is non-empty. We use the well-known
greedy algorithm for finding" that repeatedly adds the queryo

T that covers the most uncovered users. The algorithm is kinown
have alog max; |Q;| approximation. The method can be suitably
modified to utilize query communities, where again all gegire

in some community, possibly a community of size one.

6. EXPERIMENTS

The goal of our experiments is two-fold: to demonstrate tluat
method can successfully find high quality query communitiesal
search data, and to show that query communities increabehmt
number and the quality of recommendations.

For the query community problem, as a baseline, we cluseer th
query-click graph. We find that more than 75% of such clusiezs
Obviousinthe sense that they contain minor word additgpedfing

Algorithm 3 Hitting Set Recommendation Method

Input: Search Log, threshol@

Output: Set of Recommendatiodg; — r}

1: R = {Commercial queries in the Search Jog
2: @ = {Queries in the Search Ldg

3: U, =Set of subsets of search queries posed by users who also

posed the commercial query
4: repeat
Find queryg € @ that most frequently occurs i,
Outputg — r if frequency >0
Remove all subsets of querieslin that contain the query

5:
6:
7
8: until U, is empty

variations of each other. In contrast, the communities ypeced by
our Algorithmd uncover more interesting and unexpecteatiat-
ships. Also, densification yields a four-fold increase ia tumber
of query communities.

For the recommendation problem, we begin by showing that an
existing query suggestion algorithin [10] is not designegrto-
duce commercial recommendations. In comparison, bothdhe c
occurrence and hitting set method unearth a large quaritityer-
esting and surprising recommendations. Also, query conitiesn
increase the number of recommendations found for both rdstho
The increase is accompanied by anincrease in the qualigcofm-
mendations. Further, there is small overlap in co-occeeeand
hitting set recommendations, thus showing that the twocgares
are complementary.

Data Our experiments are based on searches collected from 1.
million users over a one month time period. The logs areictstt
to queries of one or two words so as to limit the data to a manage
able size — queries reported below that are longer than twdsvo
contain underscores which we omit for clarity. We utilizarshes
in different ways depending on whether we seek query communi
ties or recommendations. Specifically, communities aredan
queries posed in close temporal proximity while recomméada
are based on queries that may or may not be close in time.

6.1 Query Communities

As abaseline for finding query communities, we cluster thegu
click graph[[30]. For the same time period and queries, wsitoot
a bipartite query click graph, where an edge connects a doexy
URL if the query led to at least three clicks on the URL. Thepgra
was clustered usind [20] where the goal is to find dense liipart
subgraphs — specifically, of size at least four queries amdJ&Ls,
where each query is adjacent to at least three URLs and eath UR
is adjacent to at least three queries. The method produci€d 51
clusters.

Our Method: Algorithm L To discover communities using
our method, we utilize queries posed in rapid successior.véh
tices of the graph correspond to queries while the edgeseobnn
queries posed in rapid succession, set to within five minatesir
study. The weight of an edge in this graph reflects the number o

Category Baseline: Clustef Algorithm[]
Query-Click Graph
Surprising 0% 21%
Good 14% 48%
Obvious 76% 10%
Bad 1% 3%
Foreign 6% 16%
Adult 3% 2%

Table 2: Evaluation of Query Communities

131K components with two queries. Clustering the graphauith
densification yields 17.7K query communities.

Once the graph was constructed, we employed the densificatio
step described in Algorithid 1, i.e., adding edges betweenviv-
tices with probability proportional to the number of neighbthey
share. The densification steps added 336K edges to the graph —
increasing the number of edges by over 50%. Then we ran the
clustering algorithm described in AlgoritHth 1, from[20]eeking
clusters of at least four, six and eight queries, each withsitg
at least3/4, 2/3, and3/4, respectively. For example, for clusters
of four vertices, each query in the cluster has to be adjaceat
least two other queries in the cluster, with an implied tisietf-loop
edge, yieldings = 3/4. The algorithm identified a total of 72K
clusters and the average number of queries per cluster tuakldte
that the densification step increased the number of disedwarery
communities by a factor of four.

7 Evaluating Query Communities: To evaluate the clusters, we

randomly selected a sample and conducted a manual invisstiga
We cannot use automatic evaluation schemes because ttierrela
ships we find do not already exist in the data and the underlyin
relationship is not always evident, for example, itis natiediately
apparent that the set {love & monsters}, {the impossiblenpld,
{the satan pit}, {the idiot’s lantern} is a community of epides of
Dr. Who. We also believe that the task of characterizing bsters
would be too complex and time-consuming for a mechanicél tur

Our evaluation is limited to queries present in the comnynit
and not the queries missing from the community — for any elust
we find, we can easily imagine additional queries that coaldrigy
to the cluster. Fundamentally, our ability to find clustersimited
by the queries in the logs: if we based our study on more users
over a longer period of time, we would be able to generate more
queries per community. Another possibility is to design moes
that generate more queries from a seed collection. Forriosta
techniques froni[24, 23] can be used to infer probabilisitomata
that can generate more similar queries. Our evaluationcissied
on whether all pairs of queries are related.

Each community was categorized into one of seven categories
Surprising, Good, Obvious, Bad, Foreign and Adult. A commu-
nity was “Surprising” if an unexpected set of queries appean
the same community, “Good” if the set was expected but never-
theless interesting, “Obvious” if the set contained mingelkng
variations, “Bad” if we could not find a connection betweee th

users who posed the queries in rapid succession. We keps edge queries, “Foreign” if the query was not in English and “Adufithe

only if a minimum number of users posed both queries in a short
time window (minimum set to two users in our experiments). In
addition, we removed head queries, i.e., vertices of degrester
than 100. Head queries were removed because otherwisesjueri
such as {facebook} belong to more clusters than they sholite:
resulting graph contained 680K vertices and 632K edges giidph

is extremely sparse, containing 195K connected componditis
largest connected component contains 29K queries and #nere

query contained adult content. We manually labeled aboua80
domly sampled query communities found by the baseline ngetho
and AlgorithnT1. A summary of our findings appears in Table 2.
While clustering the query-click graph produces many elsst
the overwhelming majority are Obvious, e.g., {all recifmeng, {all
reciepes}, {all recipes}, {all receipe}, {all recipe welis}. The
main reason is that users can only click on what they see,rend t
clusters can only be as good as the search engine. If thehsearc

engine does not know that two queries fall in the same comiypuni
then it cannot display the same search results for the twadegue
We seek to go beyond what the search engine already knows.

Among the clusters found by AlgoritHnh 1, nearly half of thezo
munities are rated “Good”. Two examples of Good communities
with the theme of Mexican food and shopping include: (1) fgnc
lada recipe}, {chimichanga}, {enchilada}, {tostada} (2d{llards
dresses}, {macys dresses}, {macy’s dresses}, {macy’stiocs}

The next largest category was “Surprising” communities and
these were quite unexpected: (1) {kira-kira}, {the highewer
of lucky}, {newberry award}, {newberry medal}, {criss cre}
(2) {kktv},{krdo},{kvor},{kccy} (3) {sri lanka lion}, {ca ve lion},
{steppe wisent}, {cebu warty pig} (4) {love & monsters}, {&h
impossible planet}, {the satan pit}, {the idiot’s lanterf}he exam-
ples above are tied by the themes: (1) Books that won the New-
berry Award (2) Channels serving Colorado (3) Extinct spe¢#)
Episodes of Dr. Who.

In summary, clustering the query click graph produces lgrge
obvious clusters, while Algorithi] 1 produces more Good amd S
prising clusters.

6.2 Recommendations

Next we evaluate recommendations generated by the two aietho
described in Sectidd 5. Our recommendation experimentsettee
same data used to find communities. The data is used diffgrent

Co-Occurrencs Co-Occurrencs

Category Recommendation$ Recommendations
w/o Communities| with Communities
Surprising 2% 12%
Good 28% 49%
Obvious 54% 11%
Bad 7% 10%
—Commercial 6% 13%
Adult 3% 3%
Foreign 0% 2%

Table 3: Evaluation of Co-Occurrence Recommendations

used to selectT’, r) combinations. The method found 9K recom-
mendations without communities, and 11K recommendatiatis w
communities. The intersection contained 7.7K recommeéaoiasit

To evaluate, we manually categorized each recommendation i
one of five types, “Surprising” if the connection was unexpd¢
“Good” if the recommendation was reasonable, “Obvious’hi t
suggestion was a spelling variation or just added a closgéted
word “Not Commercial” if the commercial intent classifieiiléal
by asserting that the recommended query was commercial ishen
fact it was not, and “Bad” if we could not find an explanatiom fo
the recommendation. We randomly selected 100 recommendati

in that now we make connections between queries posed over anwithout communities and we also selected another 100 re@mm

arbitrarily long period of time, since it may take time forelated
product to follow an expressed interest.

Query Suggestion:We are not aware of any existing algorithms
that specifically recommend commercial queries. One magthyp
esize that query suggestion algorithms already recommeoend
commercial queries. To answer, we adapt a query suggedtion a
gorithm [10] as follows: Given a seed query, a random walk on
the query-click graph is performed, treating the seed gasrgn
absorbing node. Queries that have a sufficiently high pritibab
of ending at that absorbing node are viewed as suggestiaie to
seed query. We keep only those suggestions that are conanesei
ing [9]. One complication is how best to select seed nodestriét
two methods. In the first, we randomly selected frequentlsepo
queries as seed queries, 1.6K out of the top 100K most frélguen
posed queries. However, this method of selecting seedeguéidl
not work: for 95% of the queries, no commercial recommenda-
tions were generated. In the second method, we selectedoé set
100 queries that we knew possessed future commercial ifntent
our own algorithms. Again, this method did not work because f
two-thirds of the queries, no commercial recommendatios pva-
duced. Since this algorithm was designed for a differenppse,
i.e., suggesting keywords to advertisers, we would not &xjpeo
solve our problem. What we observe is that longer-range carmm
cial recommendations are rare, in fact in many cases the® rout
seem to be a path from a search query to a commercial querg in th
query-click graph.

Co-Occurrence: To evaluate the co-occurrence method, for the
set of all querieg), we compute a subsé® C @ that possess
commercial intent[[9]. Then we compute two counts.., the
number of users who pose querpefore commercial query, and
nr— 4 the number of users that posbeforeq. This simple method
recommends- to g if nq_» occurs more frequently than,_,,.

In our experiments, we outpdy, r) for which n,—,, > 5 and
Ng—r > 2. Nr—q-

To assess the impact of communities, we compute,,, the
number of users that posed at least one qgdrythe community
T that later pose the commercial query The same heuristic is

dations found with communities that were not found withowrne
munities. The manual categorization is shown in the secod a
third columns of Tablgl3.

The majority of recommendations found without the benefit of
communities are Obvious. Most are spelling corrections 8r m
nor variations such as {christmas backgrounds}christmas bor-
ders}. The next largest category are Good recommendatiais s
as {itunes download}— {zune}. Not Commercial is a problem
for about6% of the queries. Some of these recommendations are
good, but simply do not direct the user to a commercial spBoe.
example, {wizards of waverly}- {suite life on deck}, while both
are shows on the Disney channel, the latter need not have eomm
cial intent. The Bad recommendations we could not justifyhsas
{rice} — {oil} and {fireworks} — {fire truck}. There are very few
surprising recommendations.

Query Communities improve our ability to find unexpected rec
ommendations. The major shift is away from Obvious recommen
dations towards more Good and Surprising. A Surprising exam
ple is {engagement ring}~ {promise ring} — a promise ring is
a pre-engagement promise to be loyal ring, a social signss le
commitment. The increase in Good and Surprising recommenda
tions comes at a slight increase in Bad recommendationonhe s
circumstances, communities create transient connectibos ex-
ample, {presentation clipart}> {christmas lights} is a Bad recom-
mendation created because the search logs are from Decantber
{presentation clipart} is in a community with {christmas &ge},
{christmas images}, and {christmas clipart}.

Hitting Set Next we evaluate the hitting set method. The exper-
iment was run on the same data as before. In our experimeats, w
output (¢, r) if at least three uncovered users posed the queries
andr. The method found 36K recommendations when query com-
munities were not used and 42K when query communities were
used.

The results are shown in Talfle 4. As with co-occurrence, note
the intriguing shift towards good and surprising recomnagioms
that communities bring, at the cost of some increase in Bed re
ommendations. Some of the surprising recommendationsdacl

Hitting Set Hitting Set

Category Recommendation$ Recommendations
w/o Communities| with Communities
Surprising 2% 12%
Good 24% 24%
Obvious 52% 42%
Bad 2% 4%
—Commercial 16% 8%
Adult 4% 4%
Foreign 0% 6%

Table 4: Evaluation of Hitting Set Recommendations

{hard flip} — {zero skateboards} and {double backflip} {tram-
poline}, where {hard flip} is in a community with {varial hegip},
{laser flip}, {pressure flip}, {360 hardflip} — all moves thatan be
executed on a zero skateboard. In the second case, {doutke ba
flip} is in @ community with other flips that can be performedan
trampoline.

Finally, there is a noticeable fraction of recommendatibias are
not commercial. The commercial intent identification mettiioat
we are using([9] produces a score betwéeand1 indicating how
likely it is the query has commercial intent. In our expenise we
set this threshold t6.6. Our results could improve if we increased
this threshold. One example of such a non-commercial recamm
dation is {david paterson}- {blindness}. While some implication
exists, blindness is not a commercial query.

What is the difference between the recommendations found by [

the co-occurrence and the hitting set algorithms? Hittieigis-
creases the number of recommendations found with little &is
quality. One way to achieve this is to decrease the thresbfalie
co-occurrence frequency. We observed that decreasindtbsht
old below five results in a high number of “Bad” recommendasio
Further, note that hitting set fails to find recommendatiurith
high co-occurrence frequency — algorithmically, it renmrogevered
users resulting in the loss of some high co-occurrence retm
dations. Therefore, the two algorithms are complimentang we
recommend using both to find an extensive set of high quadity r
ommendations.

In summary, prior query suggestion methods largely do not ge
erate commercial recommendations, nor are they desigmelgo
purpose. Further, both co-occurrence and hitting set recamda-
tion methods produce interesting and unexpected recomatiend.
Query communities are the key to increasing the number aalétyju

of recommendations. The two methods can be used in tandem to[11]

produce a large collection of high quality recommendations

7. CONCLUSIONS & FUTURE WORK

We presented an approach to forecast future commerciaitinte
of search users, thereby enabling product recommendadityie
the search process. A crucial feature of the approach issh®l
query communities which amplify forecasting signals belamat
each individual query can provide.

We leave many interesting directions for future work. Orerae
is the investigation of richer random deletion models. Iditon
to the uniform deletion model we studied, one can consideerot
types of models that are tailored to the type of data usedeXam-
ple, we could imagine models where users initially pose igsen
the overlap of communities, i.e., ambiguous queries, aed tme
make their queries less ambiguous. The deletion processicase
may be different from uniform, and such structure may beaigd
to improve recovery of communities.

Itwould be beneficial to understand how signals from othercses
impact the quality of query communities. In this paper, weniit
fied interests via only search queries. One may augment larcep
the graph with edges between queries if they share clickbeif
are both bid on by the same advertiser, etc.

In addition, one may consider the problem of assemblingerdiv
sified portfolio of product recommendations for each quemyas to
maximize the probability that a user clicks on at least ose, min-
imize the probability the portfolio defaults. In this cortework on
creating a diversified portfolio of investments may be rate\g].

Next, an ideal recommendation system would explain to tee us
why the product was recommended. In some cases, there ina cha
of reasoning involved and methods that provide justificatian
help the user. At the moment, we have statistics such gesople
who queryq later queryr. It may be desirable to also provide a
sequence of queries— ¢1 — g2 — r to help the user understand
the recommendation.

Finally, we have not touched on the privacy angle and our rec-
ommendations are based on quite private user searche ¢ash
of hitting set, we find more surprising recommendations winen
signal is based on a smaller number of users. From a privaey pe
spective, if a query is in the tall it is intuitively more unig to a
user and hence more private [16]. We leave the question wtpri
recommendation$ [18] as an interesting direction for fituork.

8. REFERENCES

[1] D. Achlioptas and F. McSherry. Fast computation of lowkanatrix

approximations. IIBTOG pages 611-618, 2001.

R. Agrawal and R. Srikant. Fast algorithms for mining@sation rules in large

databases. INLDB'94, Proceedings of 20th International Conference enV

Large Data Basegages 487—-499, 1994,

[3] R.Bell, Y. Koren, and C. Volinsky. Modeling relationgts at multiple scales to
improve accuracy of large recommender system&DiD, pages 95-104, 2007.

[4] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis,&8. Vigna. The
query-flow graph: model and applications.@fKM, pages 609-618, 2008.

[5] H.Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. lantext-aware

query suggestion by mining click-through and session datéDD, pages

875-883, 2008.

N. Craswell and M. Szummer. Random walks on the click grapSIGIR

pages 239-246, 2007.

[7] A.Freund, D. Pelleg, and Y. Richter. Clustering from straint graphs. In
SIAM International Conference on Data Mining008.

[8] R.Frey, A. McNeil, and M. Nyfeler. Copulas and credit net&l Risk
14(10):111-114, 2001.

[9] A.Fuxman, A. Kannan, A. Goldberg, R. Agrawal, P. Tsapaend J. Shafer.

Improving classification accuracy using automatically&sted training data. In

KDD, pages 1145-1154, 2009.

A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal. Udiregvtisdom of the

crowds for keyword generation. WWW pages 61-70, 2008.

S. Gupta, M. Bilenko, and M. Richardson. Catching thié:dtearning broad

matches from clickthrough data. KDD, 2009.

T. Hofmann and J. Puzicha. Latent class models for bolative filtering. In

IJCAI, pages 688-693, 1999.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Rakijmd G. Gay.

Evaluating the accuracy of implicit feedback from clickslajuery

reformulations in web searcACM Trans. Inf. Syst25(2), 2007.

D. S. Johnson, C. H. Papadimitriou, and M. Yannakakisg@nerating all

maximal independent setsiformation Processing Letter@7(3):119-123,

1988.

J. Kleinberg and M. Sandler. Using mixture models foltatworative filtering.

In STOG pages 569-578, 2004.

A. Korolova, K. Kenthapadi, N. Mishra, and A. NtoulaselRasing search

queries and clicks privately. MWW pages 171-180, 2009.

G. Linden, B. Smith, and J. York. Amazon.com recomm¢iotia: [tem-to-item

collaborative filtering|EEE Internet Computing7(1):76—80, 2003.

F. McSherry and I. Mironov. Differentially private remmender systems:

building privacy into the net. IiKDD, pages 627-636, 2009.

Q. Mei, D. Zhou, and K. Church. Query suggestion usirtgrtg time. INCIKM,

pages 469-478, 2008.

N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan. Figdstrongly knit clusters

in social networkslnternet Mathematicss(1):155-174, 2009.

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, andedIRGrouplens: an

6

[10]

[12]

[13]

[14]

[15]

[21]

open architecture for collaborative filtering of netnewsCISCW pages
175-186, 1994.

M. Richardson. Learning about the world through loegat query logsTWEB
2(4):1-27, 2008.

D. Ron, Y. Singer, and N. Tishby. The power of amnesiaarheng probabilistic
automata with variable memory lengtflachine Learning25(2-3):117-149,
1996.

D. Ron, Y. Singer, and N. Tishby. On the learnability arsge of acyclic
probabilistic finite automatal. Comput. Syst. Scb6(2):133-152, 1998.

E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustequery refinements
by user intent. IWWW pages 841-850, 2010.

M. Sahami and T. Heilman. A web-based kernel functiamfieasuring the
similarity of short text snippets. IWWW pages 377-386, 2006.

B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. lteredubcollaborative
filtering recommendation algorithms. WWW pages 285-295, 2001.

D. Stern, R. Herbrich, and T. Graepel. Matchbox: larggles online bayesian
recommendations. IWWW pages 111-120, 2009.

S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. Awnalgorithm for
generating all the maximal independent s8i&\M J. Compyt6(3):505-517,
1977.

J. Yiand F. Maghoul. Query clustering using click-tagh graph. InWVWW
pages 1055-1056, 2009.

J. Zheng, X. Wu, J. Niu, and A. Bolivar. Substitutes omgements: another
step forward in recommendations. T, pages 139-146, 2009.

[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]

APPENDIX

A. REPRESENTING A CLASS OF QUERY-
COMMUNITIES

We prove that if each community has a query that is unique to it
then a set of queries forms a community iff the set forms a maki
clique.

Theorem 3.Let C be a class of query communities such that
each community has at least one query that is unique to itGlm
the graph representation @f. ThenC € C is a community if and
only if the set of vertices i@’ forms a maximal clique .

Proof. We first show that each community forms a maximal
cligue. Let the set of communities be denoted’by: Ci, ..., Ck
whereg; is the query that is unique ©; fori =1, ..., k. EachC;
is a clique in the graph representatiorCdfy construction. Assume
by way of contradiction thaf’; is not maximal. Then there exists
a vertexv that can be added t0; that neighbors all of”;. This
in turn implies thaw is adjacent tay;, which contradicts thag; is
unique toC;.

We now show that each maximal clique forms a community. Con-
sider a maximal cliqu&”’ in G. Note that the set of vertices i’
must contain some communi€y € C, by construction of7. Letq
be the query that is unique t@. Assume by way of contradiction
that there exists a vertax € V' that is not inC. Observe that
must be adjacent to each vertexGtsincev is in a maximal clique
V' containing the community/cliqué’. In particular,u must be
adjacent tay, contradicting the fact thatis unique toC'. Thus,V’
is identical toC. Combining the above, the theorem followd.]

B. PROOFS OF THEOREMS

wheret = min{r,w + f(r —w), hw}, if w # 0 andt = frif
w = 0.

Lemma 2.Consider graph(that is generated frort from the
deletion model. Fix acliqué€'. Then, for two vertices, v € C, we
must have the dice coefficiefitu, v) > (1 — er)p/d with proba-
bility 1 — 2 exp(—e?Kp?/3), wheres;, = 2¢/(1 + ¢). Similarly,
whenu € C andv ¢ C, then we must haw&(u, v) < (1+¢ev)fp
with probability at leastl — 2exp(—e?fKp?/3), whereeyr =
2¢/(1—e¢).

Lemma 3.Consider a random variabl¢ = nr/dr. Lety =
E [nr] /E [dr]. Then, with probability atleast—6, Z < (1+ev)u
and with probability at least — 6, Z > (1 — er)u, whered =
exp(—&’E [nr] /3) + exp(—e?E [dr] /3), ev = 2¢/(1 — ¢) and
er =2/(1+e¢).

Proof of Theorerf]1l. We invoke Lemrfih 1 with appropriate val-
ues ofr andw to derive the relationship betwegrand graph topol-
ogy for which recovery of cliques is possible. It follows fincour
deletion model that all clusters @& havep = 0. In order to invoke
Lemmdl, we consider the following dual interpretation @f dele-
tion model: we obtair; by starting with an empty graph and add
edges independently between two vertiaes with probabilityp if
and only if(u, v) € G. Inthe language of Lemnfa 1, it now follows
that the probability of adding a right edge between two ¢eriin
same clique: = p and than of adding a wrong edge between two
vertices in different cliguesv = 0. Therefore, a given cliqué’
forms an(«, 3)-cluster witha < (1+¢) fpandg > (1 —¢)p with
probability at leastl — &, where§ = (h + 1)K exp(—<*fp/3).
Clique C will be recovered if5 > 1/2 + (a+ p)/2. Thus,C will
be recovered if

(1+e)fp 1
I i e)

p>

1
(1—E)p>§+

= 2— f 3
Since each clique is recovered with a probability at léastd, on
an average a fraction df — ¢ cliques will be recovered provided
p > 1/(2 — f — 3e). This finishes the proof of the theorem[]

Proof of Theorerf]2. First, we fix a cliqu&in G. Lgté denote
the random graph we obtain upon densificatiold-0f is random
not only becaus&: is random, but also because the densification
step is random. Because of this reason, the probabilitiesidihg
right and wrong edges if¥ are both random. Specifically, consider
a pair of verticesu, v in clique C. The probability that there is an
edge between andv in Gisr = p+ (1 — p)d(u,v) since the edge
could either be present id or have been added in the densification
step. The dice coefficient(u, v) is a random quantity and hence
r is random. It follows from LemmAl2 that with a probability at
leastl — 2 exp(—e?Kp?/3), d(u,v) > (1 —er)p/d, wheres, =
2¢/(1 — €). Ignoringe to simplify expressions we can write that
for all verticesu, v € C' (using a union bound),

Before we prove Theoreri$ 1 did 2, we state the lemmas we need. > p+(1—p)p/d with probability > 1—2K2 exp(_€2Kp2/3)_

to prove the theorems.

Lemma 1.Let G = (V,E) be the underlying ground truth
that is a collection of overlapping cliques and fix a cligGein
G. Suppose we construct a random gra@h with vertex setl”
by putting an edge between vertiaeand v with ‘right’ probabil-
ity r if (u,v) € E and ‘wrong’ probabilityw if v € T'(C) \ C,
where(C' is the clique containing.. Then, with probability at least
1 — (h 4+ 1)K exp(—€®K1/3), C forms ana, 3, p cluster with
a<A+e)(fr+(1—flw),B> 1 —e)r,andp < (1+¢)hw,

Coming to the wrong edges, note that the densification stgp on
adds edges betweenc C andv ¢ C if v € I'(C) \ C. Thus,
using the same argument as above, it can be shown using LElmma 2
(and ignorings¢) that forall verticesu € C, v € T'(C) \ C (again
by union bound),

w < fp with probability > 1 — 2hK?> exp(—sszpz/S).

Invoking lemmadL, it now follows that cliqu€ will be recovered
with probability atleast —J, wheres = (h+1)K exp(—e*Kt/3)+

2(h 4 1)K? exp(—£?K fp*/3) with
t =min{fr+ (1 — f)w, hw} (sincer —w > 0) if

A+e)(fr+ (1 - fHlw+ hw)
2

Re-arranging the terms in the above equation, it can be skiwatn
recovery is possible fgs > 1/((2 — f — 3¢)(1 + A)) where

L—p fO-F+R)(1+e)
d 2—f—e2+f)

Assuminge is small, we ignore it in the expression fdrin order
to simplify the expressions. Therefore, since each cliguzn be
recovered with a probability at leakt- §, on an average a fraction
of 1—¢ cliques will be recovered provided> 1/((2— f —3¢)(1+
A)). This finishes the proof of the theorem[]

Proof of Lemm&ll. Letw € C andv € T'(C) \ C. Further
let C’ denote the clique that contaims It now follows from our
definitions that

1

ma
K vEF(C})(\C

1
(1—E)T>§+

A =

1 .
- P@)NCl, 8= 2 min ()N O]

1
p< 2P\ Cl.

Since G’ is random, all the quantities on the right in the above
expressions are random. Hence, we compute their expecked va
ues, and argue that with a high probability they concenaedend
their expected values. To this end, ffu, v) denote the indicator
random variable for adding an edge between verticasdv. It fol-

lows from our definitions that for any’ € C, E [X (u,v")] = r if

v' € CandE [X (v,v")] =rifv' € CNC’ andE [X (v, v)] = w

if o' € C'\ C’. Letting|C' N C’| = nK, we can now write

E[C(w)nCl= Y E[X =Kr
v'eC
E[P)\C[]= Y E[X(4,v)]<hKuw,
v/ ET(C)\C
and
E(Fw)nC= Y E[X > E[X(v,0)

v eC\C" v'ecno!
=Kw+ Kn(r —w) < Kw+ Kf(r —w),

where the last inequality follows from the fact that< f and
r —w > 0. It follows from Chernoff bound that PZ > (1 —

e)E[Z]) < 1 — exp(—£”E [Z] /3) for any random variablg that
is a sum of independent indicator random variables. It tblievi's

that each of the above quantities concentrate around tkeécea-
tions with probabilities that can easily derived from thee@toff
bound. Moreover, since the expressionsdandg involve taking
maximization and minimization over a set of vertices, wechtee
apply union bound. Particularly, letting; (v) denote|I’(v) N C/,

Z3(u) denote|I'(u) N C|, and Z3(u) denote|I'(u) \ C|, we can

write
Zo(u) > (1 —e)KrVYu e C wp.1— Kexp(—e>Kt/3)
Z3(u) < (14 ¢e)hKw w.p. 1 — exp(—e°Kt/3),
and
Zi(v) < (1+e)(Kw+ Kf(r—w))VvoeI'(C)\ C

w.p. 1 — hK exp(—°Kt/3)

wheret = min {r,w + f(r — w), hw}. Putting everything to-
gether, we cannow write < (1+¢)(fr+(1—f)w), 8 > (1—¢)r,

andp < (14 ¢)hw with probabilityl — (h+ 1)K exp(—¢?Kt/3).

If w = 0, then itis easy to see that= 0 and, hence, we only need
to considery, 5. Thus, forw = 0, the above expressions carry with
t = min{r, fr + (1 — f)w} = fr. This finishes the proof of this
lemma. O

Proof of Lemm&P. Iffollows from our definitions thétu, v) =
nr /dr, wherenr = 2|I'(u) N T'(v)| anddr = |T'(w)| + |T'(v)].
Let X (u,v) denote the indicator random variable of there being
an edge between andwv; it follows from our deletion model that
E [X (u,v)] = pif u,v are in the same clique aribtherwise. For
u,v € C, it follows that

E[nr] =2 Z E [X (u,v") X (v,

v’ €l (u)

v)] > 2Kp?,
where the last inequality follows because the random vigab
X(-,-) are independent andl'(v)| > K. Similarly,

E(f(ll= Y E[X(uv

v/ €T(C)

)] < dKp,

since by definition ofl, it follows that|I'(u)| < dK for any vertex
v. Putting the above two together, we get

E[nr] _ 2Kp?
= > =p/d.
Bl = 2akp Y/
It follows from lemmd3 thatl(u, v) > (1—er)u, with probability
at leastl — 6 where

6 < exp(—2e’Kp®) + exp(—e’Kp) < 2exp(—e’Kp?).

Similarly, whenu, v belong to different cluster§€ and C’, we

have
> E[X(u,)X(,

E[nr] = :|C’ﬂC,|p2§pr2
v'eCcnc’

v)]

where the last inequality follows from the fact that overegction
is at mostf. SinceE [dr] > E[|T'(u)|] > Kp, it follows that

uw:E[ner[dr]_f r_ g

It now follows from lemmdB thati(u, v)
probability at least — § where

§ < exp(—e’K fp®) + exp(—£*Kp) < 2exp(—£*K fp°).

< (1 + ev)pw With

This finishes the proof of the lemmal]

Proof of Lemmd1. This lemma can be proved by a direct appli-
cation of Chernoff bound. We prove the upper bound. The proof
for lower bound is similar.

It follows from Chernoff bound thahr < (1 + ¢)E [nr] with
probability at leastl — exp(—&”E [nr] /3) andE[dr] > (1 —
¢)E [dr] with probability at leastl — exp(—¢?E [dr] /3). Thus,

it follows that with probability at least — exp(—¢”E [nr] /3) —
exp(—¢?E [dr] /3), we have
nr _ (14 ¢)E[nr] 2e
=<l .
2= & SR iz

The result of the lemma now follows.[]

	Introduction
	Related Work
	Query community
	Analytic evaluation of the procedure
	Recommendation Methods
	Experiments
	Query Communities
	Recommendations

	Conclusions & Future Work
	References
	Representing a class of query-communities
	Proofs of Theorems

