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Introduction

This chapter is a survey of query auditing techniques for detecting and
preventing disclosures in a database containing private data. Informally,
auditing is the process of examining past actions to check whether they
were in conformance with official policies. In the context of database
systems with specific data disclosure policies, auditing is the process of
examining queries that were answered in the past to determine whether
answers to these queries could have been used by an individual to ascer-
tain confidential information forbidden by the disclosure policies. Tech-
niques used for detecting disclosures could potentially also be used or
extended to prevent disclosures, and so in addition to the retroactive au-
diting mentioned above, researchers have also studied an online variant
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of the auditing problem wherein the task of an online auditor is to deny
queries that could potentially cause a breach of privacy.

Other common approaches to tackling the disclosure prevention prob-
lem include adding noise to the the data or otherwise perturbing the
query results supplied to the user. However statisticians are generally
averse to potential biases introduced by adding noise. One commonly
stated reason is that the data collection process is already prone to biases
and imperfections due to factors such as too few respondents, the cost of
gathering data, and inaccurate answers provided by respondents. Since
important decisions are made based on this data, they prefer to receive
answers without additional noise. It is in this context that query re-
striction techniques become relevant in disclosure prevention. The work
on offline (or retroactive) auditing has also similarly focused on the case
where answers supplied to users are exact.

The main focus of this chapter will be on statistical databases with a
single private attribute that only permit aggregate queries such as sum,
max, min or median over this private attribute. An instructive example is
a company database with employee salary as a private attribute. Or a set
of medical records with a boolean private attribute indicating whether or
not a patient was HIV-positive. We will first review the most commonly
used notion of disclosure in the statistical database literature called full
disclosure and then review algorithms and hardness results for offline
auditing that have been developed for different classes of queries under
this definition.

A natural question to ask is whether offline auditors could directly
be used as online auditors as well. The answer to the question, as we
shall see, is no due to the fact that query denials can leak information.
Researchers have proposed the paradigm of simulatability to surmount
this problem, and developed simulatable auditors for different classes of
queries to prevent full disclosure. We will review some of them.

The notion of full disclosure is not entirely satisfactory as a measure
of disclosure, so we will next present a recently proposed measure called
partial disclosure as well as simulatable online auditors that have been
proposed for different classes of queries under this definition. We will
conclude the chapter with a brief survey of results in another auditing
scenario where the information to be protected is an arbitrary view of the
database; and finally end with a discussion of the limitations of present
day auditing techniques.
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1. Auditing Aggregate Queries

Most work on aggregate queries has focused on the case of a single
numerical private attribute that is either real valued (from a bounded or
unbounded range) or boolean. Additionally, most auditing algorithms
developed are for queries of only one kind, with hardness results for
auditing combinations of queries. Before proceeding further, we will
formalize some of the terminology used in the remainder of this section.

Let X = {x1, . . . , xn} be the set of private attribute values of n indi-
viduals in a database. An aggregate query q = (Q, f) specifies a subset
of the records Q ⊆ {1, . . . , n} and a function f such as sum, max, min or
median. The result, f(Q), is f applied to the subset {xi | i ∈ Q}. We
call Q the query set of q.

1.1 Offline Auditing

We now survey some of the results in the offline auditing literature.

1.1.1 Full Disclosure. Given the set of private values X
and a set of aggregate queries Q = {q1, . . . , qt} posed over this data set
that were correspondingly answered {a1, . . . , at}, the goal of an offline
auditor is to determine if an individual’s private value can be deduced.
Traditionally, the definition of disclosure that has been used is the notion
of full disclosure defined below.

Definition 1.1 (Full Disclosure) An element xi ∈ X is fully dis-
closed by a query set Q if it can be uniquely determined, i.e., in all
possible data sets X consistent with the answers a1, . . . , at, to queries
q1, . . . , qt, xi is the same.

As a simple example, if the query set consisted of a single query asking
for the sum of the salaries of all the female employees in the company,
and Alice was the only female employee in the company, then the answer
to this query uniquely determines Alice’s salary.

In general the answers to many different queries can be stitched to-
gether by a user to uniquely determine an individual’s private value.
The goal of the auditor then is to prevent such a full disclosure.

1.1.2 Examples of Offline Auditors. As one example of
such an auditor, consider a set of sum queries posed over X, the ele-
ments of which are real-valued from an unbounded range. To determine
if the answers to these queries can be used to uniquely deduce some
private value, the auditor essentially needs to solve a system of linear
equations. It maintains a matrix where the rows correspond to queries
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and the columns to private values. Each query is represented by a vector
of 1s and 0s, indexing the private elements that were in the sum query.
The matrix of query vectors is diagonalized via a series of elementary
row operations and column interchanges. If the resulting matrix has a
row with only one 1 and n − 1 0s, then some element is uniquely deter-
mined. Since only a linearly independent set of query vectors need to be
examined, the matrix is of size at most n × n, and the diagonalization
can be carried out in time O(n3). Since finding a maximal set of linearly
independent query vectors requires O(n2|Q|) time, sum queries can be
audited in polynomial time.

Theorem 1.2 Let X ∈ R
n be a data set of private values. There is an

algorithm to determine if an xi ∈ X is fully disclosed by a set of sum
queries Q and corresponding answers A that runs in time O(n3+n2|Q|).

Besides sum queries, offline auditors for exact determination of full
disclosure also exist for combinations of max and min queries, median
queries and average queries over real-valued data. Unfortunately, no
significant progress has been made in auditing arbitrary combinations
of aggregate queries. For example, the following hardness result has been
proved via a reduction from set partition.

Theorem 1.3 There is no polynomial time full-disclosure auditing al-
gorithm for sum and max queries unless P=NP.

The auditing problem has also been examined when the private at-
tribute is boolean. Surprisingly, full-disclosure auditing of sum queries
over boolean data is coNP-hard. There exists an efficient polynomial
time algorithm, however, in the special case where the queries are 1-
dimensional, i.e., for some ordering of the elements in X, the query set
for each query involves a consecutive sequence of xi’s. Considering such
restrictions of the general auditing problem is useful in practice, since in
reality, users would rarely be able to pose queries over arbitrary subsets
of the data. Rather, they would use conditions over some attribute or
combinations of attributes to select specific records in the data set to
aggregate. For example, a realistic query would ask for the total num-
ber of HIV-positive people in a particular age group. The set of queries
asking for the total number of HIV-positive people in various age groups
would form a set of 1-dimensional sum queries over a boolean private at-
tribute. Such assumptions about the structure of queries can yield even
more efficient auditors. For example, the sum auditor over real-valued
data can be made to run in linear time over 1-dimensional sum queries.
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1.2 Online Auditing

In recent years, researchers have also become interested in the on-
line auditing problem as a means of preventing data disclosure. Given
a sequence of queries, q1, . . . , qt−1 that have already been posed, corre-
sponding answers a1, . . . , at−1 that have already been supplied, and a
new query qt, the task of an online auditor is to determine if the new
query should be answered as such, or denied in order to prevent a pri-
vacy breach. Here each of the previous answers ai, is itself either the
true answer fi(Qi) to query qi, or a “denial”.

The earliest online auditors prevented disclosures by restricting the
size and overlap of queries that could be answered. For the case of sum
queries, for instance, it was shown that for queries with query sets of
exactly k elements, each pair of query sets overlapping in at most r
elements, any data set can be compromised in (2k − (l + 1))/r queries
by an attacker who knows l values a priori. For fixed k, r and l, if the
auditor denies answers to query (2k − (l + 1))/r and on, then the data
set is definitely not compromised, i.e., no private value can be uniquely
determined. Such an auditing scheme is rather limited: if k = n/c for
some constant c and r = 1, then after only a constant number of distinct
queries, the auditor would have to deny all further queries since there
are only about c queries where no two overlap in more than one element.
This motivated a search for auditors that could provide greater utility.

The next natural question is whether offline auditors can directly solve
the online auditing problem. Whenever a new query is posed, the online
auditor checks to see if the answer to this query in combination with all
previous query responses can be used to uniquely determine a private
value. If so, the query is denied, else it is answered exactly. While it
would seem that such an approach should work, in actuality it does not
as we demonstrate next.

Example where Denials Leak: Suppose that the underlying data
set is real-valued and that a query is denied only if some value is fully
disclosed. Suppose that the attacker poses the first query sum(x1, x2, x3)
and the auditor answers 15. Suppose also that the attacker then poses
a second query max(x1, x2, x3) and the auditor denies the answer. The
denial tells the attacker that if the true answer to the second query
were given then some value could be uniquely determined. Note that
max(x1, x2, x3) 6< 5 since then the sum could not be 15. Further, if
max(x1, x2, x3) > 5 then the query would not have been denied since no
value could be uniquely determined. Consequently, max(x1, x2, x3) = 5
and the attacker learns that x1 = x2 = x3 = 5 — a privacy breach of all
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three entries. The issue here is that denials reduce the space of possible
consistent solutions, and we have not explicitly accounted for this.

In this example only a few values were compromised. However, it is
possible to construct examples where a large fraction of private values
can be uniquely determined. Intuitively, denials that depend on the
answer to the current query leak information because users can ask why
a query was denied, and the reason is in the data. If the decision to
answer or deny a query depends on the actual data, it reduces the set
of possible consistent solutions for the underlying data.

Another naive solution to the leakage problem is to deny whenever the
offline algorithm does, and to also randomly deny queries that would nor-
mally be answered. While this solution seems appealing, it has its own
problems. Most importantly, although it may be that denials leak less
information, leakage is not generally prevented. Furthermore, the au-
diting algorithm would need to remember which queries were randomly
denied, since otherwise an attacker could repeatedly pose the same query
until it was answered. A difficulty then arises in determining whether
two queries are equivalent. The computational hardness of this problem
depends on the query language, and may be intractable, or even unde-
cidable. As a work around to this problem, the simulation paradigm
(used vastly in cryptography) was proposed and is described next.

1.2.1 Simulatable Auditing. The idea for simulatable au-
diting came from the following observation: Query denials have the
potential to leak information if in choosing to deny, the auditor uses
information that is unavailable to the attacker (the answer to the newly
posed query). A successful attacker capitalizes on this leakage to in-
fer private values. The requirement of a simulatable auditor then, is
that the attacker should be able to simulate or mimic the auditors de-
cisions to answer or deny a query. In such a scenario, because the at-
tacker can equivalently determine for himself when his queries will be
denied, denials provably do not leak information. More formally, let
Q = {q1, . . . , qt} be any sequence of queries and A = {a1, . . . , at} be
their corresponding answers. Here each ai is either the exact answer
fi(Qi) to query qi on the data set X, or a denial.

Definition 1.4 (Online Auditor) An online auditor B is a function
of Q,A and X that returns as output either an exact answer to qt or a
denial.

Definition 1.5 (Simulatable Auditor) An online auditor B is sim-
ulatable, if there exists another auditor B′ that is a function of only Q
and A \ at and whose output on qt is always equal to that of B.
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An attractive property of simulatable auditors is that the auditor’s
response to denied queries does not convey any new information to the
attacker (beyond what is already known given the answers to the pre-
vious queries). Hence denied queries need not be taken into account in
future decisions that the auditor makes.

Note that the auditor that restricted the size and overlap of queries
was simulatable since it never actually looked at the answers to queries
in choosing to deny. As another example of a simulatable auditor, the
sum auditor over real-valued data from Section 1.1.2 is also simulatable
since all that is examined in making the decision to deny or answer
is the matrix of query vectors and never the actual answers to any of
the queries, let alone the answer to the current query. In contrast to
the query-size-and-overlap-restricting auditor, this auditor has also been
shown to provide fairly high utility for large data sets — in a sequence
of random sum queries over a data set, the first denial can be expected
to occur only after a linear number of queries.

A more general sufficient condition for ensuring simulatability is that
in making its decision, with each new query, the auditor should deter-
mine if there is any possible data set, consistent with all past responses,
in which the answer to the current query would cause some element to be
fully disclosed. If so, the query should be denied, else it can be answered.
Since this is a condition that an attacker could check for himself and pre-
dict denials, denials leak no information. Using this idea, simulatable
online auditors have been constructed for max and min queries.

In the example from the previous section, the query q1 = sum{x1, x2, x3}
would be answered, since no matter the answer, no element from the data
set could be uniquely pinned down. The second query q2 = max{x1, x2, x3}
would always be denied, since there is a possible answer to this query,
consistent with the answer to q1 that would cause a private value to
be uniquely determined. Note that if the actual answer to q2 had been
greater than 1

3f1(Q1), q2 would in reality have been safe to answer, and
thus we lose some utility due to the requirement of simulatability.

1.2.2 Partial Disclosure. The notion of full disclosure as a
measure of privacy breach has certain shortcomings. Even if a private
value cannot be uniquely determined, it might still be determined to
lie in a tiny interval, or even in a large interval with a heavily skewed
distribution — and some might consider this to be sufficient disclosure.
Researchers proposed a new definition of privacy to mitigate this issue
by modeling the change in an attacker’s confidence about the values
of private data points. In this definition, it is assumed that the data is
drawn from some distribution D on (−∞,∞)n that is known to both the
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attacker and the auditor. See Section 1.2.3 for some discussion about
this assumption.

Let Q = {q1, . . . , qt} be a sequence of queries on the data set X and
let A = {a1, . . . , at} be the corresponding answers. Here each ai is either
the true answer to query qi on X or a denial. We allow the auditor to
be randomized, i.e., it’s decision to answer or deny a query need not be
deterministic.

Definition 1.6 (Randomized Auditor) A randomized auditor is a
randomized function of Q, A, X and D that returns as output either an
exact answer to qt on X or a denial.

We say that the sequence of queries and corresponding answers is λ-
safe for an element xi and an interval I ⊆ (−∞,∞) if the attacker’s con-
fidence that xi ∈ I does not change significantly upon seeing the queries
and answers. Consider for example a private value such as salary: if a
sequence of queries and answers does not change an attacker’s confidence
about a private individual’s salary, then the sequence is safe.

Definition 1.7 (λ-safe) The sequence of queries and answers, q1, . . . , qt,
a1, . . . , at is said to be λ-safe with respect to a data element xi and an
interval I ⊆ (−∞,∞) if the following Boolean predicate evaluates to 1:

Safeλ,i,I(q1, . . . , qt, a1, . . . , at) =
{

1 if 1/(1 + λ) ≤ PrD(xi∈I|q1,...,qt,a1,...,at)
PrD(xi∈I) ≤ (1 + λ)

0 otherwise

Partial disclosure is defined in terms of the following predicate that
evaluates to 1 if and only if q1, . . . , qt, a1, . . . , at is λ-safe for all entries
and all intervals1:

AllSafeλ(q1, . . . , qt, a1, . . . , at) = (1.1)






1 if Safeλ,i,I(q1, . . . , qt, a1, . . . , at) = 1, for every i ∈ [n] and
every interval I

0 otherwise

We now turn to the privacy definition. Consider the following (λ, T )-
privacy game between an attacker and an auditor, where in each round
t (for up to T rounds):

1 The attacker (adaptively) poses a query qt = (Qt, ft).

1In reality, the privacy definition only considers all intervals that have a significant prior
probability mass.
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2 The auditor determines whether qt should be answered. The au-
ditor responds with at = ft(Qt) if qt is allowed and with at =
“denied” otherwise.

3 The attacker wins if AllSafeλ(q1, . . . , qt, a1, . . . , at) = 0.2

Definition 1.8 (Private Randomized Auditor) An auditor is (λ, δ, T )-
private if for any attacker A

Pr[A wins the (λ, T )-privacy game] ≤ δ .

Here the probability is taken over the distribution D that the data comes
from and the coin tosses of the auditor and the attacker.

Since here too, one would like to ensure that denials leak no infor-
mation, the condition of simulatability is imposed on auditors that are
designed. Consider Q, A and X as before. Then,

Definition 1.9 (Simulatable Randomized Auditor) A randomized
auditor B is simulatable, if there exists another auditor B′ that is a ran-
domized function of only Q, A \ at and D such that the output of B′ on
qt is computationally indistinguishable from that of B.

1.2.3 Discussion on Privacy Definition. Note that the
above definition of privacy makes the assumption that the distribution
from which the data is drawn is known to the attacker. In reality it need
not be. In this scenario, the predicate AllSafe needs to be evaluated with
respect to the attacker’s prior distribution, since compromise occurs only
if there is a substantial change in his beliefs. However, if the attacker’s
distribution can be arbitrarily far from the true data distribution, there is
not much that the auditor can release without causing partial disclosure
of some private value, since it is required to release exact answers if at
all. For example, consider a database that contains height as a private
attribute, and consider an attacker whose prior belief is that all men
are less than a foot tall. If by querying the data, the attacker suddenly
learns that this is not true and there is substantial change in his posterior
distribution, the privacy breach would be massive. In reality, his prior
beliefs are so far off the mark, that there is no aggregate query about
the heights that the auditor can truthfully answer without compromising
privacy, not even the average height of all people in the database.

Instead the data distribution that we assume the auditor and the at-
tacker share is supposed to represent such common sense facts and it

2Hereafter, we will refer to the predicates without mentioning the queries and answers for
the sake of clarity.
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Figure 1.1. Skeleton of a simulatable private randomized auditor

allows for more useful information to be released. There are many cir-
cumstances where such an assumption is realistic. For example, distri-
butions of attributes such as age or salary may be known from previous
data releases or even published by the auditor itself.

1.2.4 A General Approach for Constructing Private Ran-

domized Auditors. A query is thus safe to answer if doing so is not
likely to cause a significant change in the attacker’s confidence that an xi

lies in any interval. Also, the decision to deny must be simulatable. We
now describe a general approach that could be used to construct such
simulatable randomized auditors. Figure 1.1 gives a high level picture.

The basic idea is to have the auditor generate random data sets (of
n private values) consistent with answers to past queries. The data sets
are generated according to the distribution D conditioned on the past
answers. The auditor then checks to see if answering the new query
on these random data sets causes a significant change in the attacker’s
confidence about any xi. If the answer is ‘no’ for a sizable fraction of the
generated data sets, the query is safe to answer. Since the true answer to
the query is never looked at in this process, the auditors are simulatable
and denials provably do not leak information.

The left circle in Figure 1.1 thus represents the process of generating a
possible answer a′t to the new query according to D conditioned on past
answers, and the right circle represents the evaluation of the predicate
AllSafe (Equation 1.1) that checks to see whether privacy is violated
for any xi and any interval I if a′t were revealed in conjunction with all
previous answers. For each new query this procedure is repeated many
times, and the decision to deny is based on the fraction of sampled con-
sistent answers that cause a privacy breach. By repeating often enough
and choosing an appropriate cut-off for denials, it can be shown using
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Chernoff bounds, that the above procedure gives us a (λ, δ, T )-private
auditor.

One technicality arises from the fact that the AllSafe predicate needs
to be evaluated with respect to an infinite number of intervals. It can be
shown that requiring the a-priori and posteriori probabilities of a private
value to be close on arbitrarily small intervals would cause no queries to
be answered at all, and therefore existing literature focuses on protecting
the privacy of only intervals that have a significant a-priori probability
mass. While there may also be an infinite number of such intervals, it
can be shown that if each xi is drawn independently according to some
distribution H on (−∞,∞), then we only need to check for privacy
with respect to a finite number of non-overlapping intervals I. Thus far
randomized auditors have only been designed for data sets where the
private values are drawn iid from such an underlying distribution.

1.2.5 Randomized Auditor for Sum Queries. We will now
briefly describe how the above generic approach can be tuned to obtain
a private randomized auditor for sum queries (where each query is of the
form sum(Qj) for some query set, Qj).

Prior to describing the solution, we give some intuition. Assume for
simplicity that each private value is drawn uniformly at random from
the range [0, 1]. Then the data set X = {x1, . . . , xn} can be any point
in the unit cube [0, 1]n with equal probability. A sum query and its
corresponding answer induce a hyperplane. The data sets consistent
with one sum query and its answer are then those points in [0, 1]n that
fall on this hyperplane. Each successive query and answer reduces the
space of possible consistent data sets to those points in [0, 1]n that fall
in the intersection of the induced hyperplanes, i.e., the consistent data
sets lie in a convex polytope. Because the prior distribution is uniform,
the posterior distribution (given the queries and answers) inside the
convex polytope is also uniform. Thus it would suffice to sample data
sets uniformly at random from this convex polytope to generate the
consistent answers required in the left circle of Figure 1.1. Further we
can determine if the answer to the query in a sampled data set would
cause a privacy breach (in the right circle of Figure 1.1): Suppose that P
is the current convex polytope. To determine if a partial disclosure has
occurred for a particular individual xi and a particular interval I ∈ I,
consider the definition of privacy breach:

PrD{xi ∈ I|q1, . . . qt, a1, . . . at}

PrD{xi ∈ I}
=

PrD{xi ∈ I|~x ∈ P}

|I|
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The probability in the numerator can be estimated by sampling from
the convex polytope P and counting the fraction of the sampled points
for which xi lies inside I. If the fraction above is greater than (1 +λ) or
less than 1

1+λ
then the query is unsafe for this sampled data set.

Rather than a uniform prior distribution, we can assume an even more
general log-concave distribution, since algorithms exist for sampling from
it. The class of log-concave distributions forms a common generalization
of uniform distributions on convex sets and Gaussian distributions. A
distribution over a domain T is said to be log-concave if it has a den-
sity function g such that the logarithm of g is concave on its support.
That is, the density function g : T → R+ is log-concave if it satisfies
g(αx + (1 − α)y) ≥ g(x)αg(y)1−α for every x, y ∈ T and 0 ≤ α ≤ 1.
These distributions constitute a broad class and play an important role
in stochastic optimization.

Assume that each element xi is independently drawn according to
the same log-concave distribution H over R. Let D = Hn denote the
joint distribution. Using the properties of log-concave functions, it can
be shown that the joint distribution D is also log-concave and further,
the posterior distribution, D conditioned on ∧t

j=1(sum(Qj) = aj) is also
log-concave. In addition, there exist randomized, polynomial-time algo-
rithms for sampling (with a small error) from a log-concave distribution.

Without going into the technical details, we will sketch how one can
adapt the generic randomized auditor from Section 1.2.4 for the problem
of auditing sum queries. An algorithm for sampling from a log-concave
distribution can be used to estimate the posterior probabilities required
for evaluating the AllSafe predicate in the right circle of Figure 1.1. This
algorithm can also be used in the left circle of Figure 1.1 for sampling
data sets and hence consistent answers from the posterior distribution D
conditioned on previous answers. The AllSafe predicate is evaluated for
a λ′ smaller than λ to accommodate the sampling algorithm’s inability
to sample exactly from the underlying log-concave distribution.

Besides sum queries, randomized auditors have also been developed
for max queries where the sampling procedure for uniform priors is much
more efficient, and for combinations of max and min queries. We do not
go in to the details in this chapter, instead we next very briefly discuss
auditing in another scenario when the queries are not aggregate queries.

2. Auditing Select-Project-Join Queries

Other than aggregate queries, auditing has also been studied in the
context of select-project-join queries when the information to be kept
confidential is a forbidden view of the database. The secret view itself is
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also specified via a select-project-join query. For example the database
may consist of a single relation, Employee(name, department, phone),
and the forbidden view may be of the form πname,phone(Employee). Here
π represents the projection of the table on to the name and phone at-
tributes. The forbidden view thus represents that the name and phone
attributes of the Employee relation, or perhaps some combination of
them, are sensitive and should not be revealed. The task of an offline
auditor then is to determine whether a set of select-project-join queries
answered in the past disclosed any information about the forbidden view,
and the task of an online auditor is to deny queries when their answers
could disclose information about the forbidden view.

The precise semantics of what the forbidden view represents in terms
of what should be kept private could vary from system to system. For
example, the above forbidden view could represent the requirement that
not a single phone number or name in the database should be disclosed.
Alternatively, it could represent the requirement that it is only the as-
sociation between the name and phone number of any individual in the
database that should be kept private and so on. The first ever formal no-
tion of forbidden view privacy suggested in the literature was the notion
of perfect privacy defined below. It assumes an underlying distribution
D that the tuples of the database are drawn from.

Definition 1.10 (Perfect Privacy) Let D be the underlying distri-
bution according to which tuples of the database are drawn. A set of
queries, Q, are said to respect perfect privacy of a forbidden view V if
for any set of answers to the queries, ~a, and any instantiation of the
forbidden view, v,

PrD{V = v|Q = ~a} = PrD{V = v}

If the distribution D is such that each tuple ti from the (finite) do-
main of possible tuples is included in the database with some probability
pi, independently of other tuples, the condition of checking for perfect
privacy of a set of queries reduces to a purely logical statement. We will
introduce some definitions before stating the result.

Definition 1.11 (Critical Tuple) A tuple t from the finite domain
of possible tuples is critical for a query Q, if there exists a possible in-
stance of the database, I, where the presence or absence of t makes a
difference to the result of Q, i.e., Q(I − {t}) 6= Q(I).

We then get the following characterization of query-view privacy which
applies for queries that follow a set semantics.
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Theorem 1.12 A set of queries, Q, violates perfect privacy of a forbid-
den view, V, if and only if there exists a tuple in the domain of possible
tuples that is critical to both V and some query in Q.

This useful result implies that for a set of queries to violate perfect
privacy of the forbidden view, some query in the set must violate it.
Thus an offline auditor auditing a set of queries to check for violations of
perfect privacy needs to audit each query in turn, and an online auditor
interested in maintaining perfect privacy of the forbidden view can make
its decisions to answer or deny each new query independently of past
queries. Collusion between users is not a problem. In addition, since
tuple criticality and therefore query denials are independent of the actual
database instance, such an online auditor is simulatable and denials do
not leak information.

Unfortunately, checking the condition in Theorem 1.12 is ΠP
2 -complete,

even when the forbidden view and the queries are conjunctive. Auditors
have been developed, however, for particular subclasses of conjunctive
queries. Even so an online auditor that maintains perfect privacy of its
forbidden view would result in a very strict denial policy. For instance,
going back to the example of the Employee relation, suppose the forbid-
den view is πphone(Employee), then even just the query πname(Employee)
asking for the names of all employees would be denied, even though it
does not access a single phone number. This is because every single tuple
in the domain of possible tuples would be critical to both the forbidden
view and the query. The idea is that just by revealing information about
the size of the relation, the query reveals some information about the
forbidden view and should be denied. The notion of perfect privacy of
the forbidden view may thus be a little too strong.

Ongoing research aims to relax the notion of privacy of a forbidden
view, thereby permitting auditors that would provide more utility to a
user. These new notions of privacy also permit more efficient auditors
that can run in polynomial time for large classes of queries. See Section 4
for recommended reading on this topic.

3. Challenges in Auditing

We describe challenges and future directions in auditing where further
research is warranted.

Privacy Definition: There has been a steady evolution of privacy
definitions and notions of compromise over the years starting from full
disclosure (Definition 1.1) to more recent notions of partial disclosure (Def-
inition 1.8) and perfect privacy (Definition 1.10). But there is certainly
room for further improvement. One assumption made by the more re-
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cent definitions is that there is one probability distribution D from which
the data is generated and which is known to both the attacker and the
auditor. In reality, there are two other distributions, the attacker’s prior
and the auditor’s prior. While it may be reasonable to assume that
these three distributions are close, current definitions and auditors all
assume that these three distributions are the same. In the case of aggre-
gate queries, another problem is that current definitions only consider
the privacy of a single individual to be important, whereas in reality, it
may be important to protect the privacy of groups of individuals such as
families. In the case of select-project-join queries, the notion of perfect
privacy is far too strong causing many seemingly innocuous queries to
be deemed suspicious.

Algorithmic Limitations: Online simulatable algorithms for au-
diting aggregate queries following the general framework suggested in
this chapter have several limitations. They require sampling a data set
consistent with a given set of queries and answers. In practice, this
procedure may be computationally prohibitive given the massive size
of data sets, although such sampling algorithms have been steadily im-
proving over the years. In addition, as already mentioned, it is assumed
that both the attacker and auditor know the distribution D from which
the data is generated. Algorithms that could overcome these sampling
requirements would make great improvements.

Section 1 largely focused on auditing one kind of query: sum. In real-
ity, a large variety of queries are posed to data sets. While there has been
some investigation into auditing max, min, median queries, intermingling
these queries has proven to be a greater challenge. For example, under
full disclosure, it is NP-hard to audit intermingled sum and max queries,
while polynomial time algorithms are known for auditing exclusively sum

queries and exclusively max queries. While there are situations in which
only one kind of query need be considered (e.g. when releasing contin-
gency tables sum queries are the only kind of queries that are answered),
ultimately, in order for auditing to be truly useful, we will need to al-
low richer queries of varied types, such as those posed in data mining
applications such as clustering or decision tree classification.

As mentioned in Section 2 checking for perfect privacy violations of
the forbidden view for a very simple kind of probability distribution is
ΠP

2 -complete even just for conjunctive queries and views. While, audi-
tors have been developed for various subclasses of conjunctive queries,
weakening the requirement of “perfect privacy” may go a long way in en-
abling the design of efficient auditors for larger classes of queries. There
has already been some effort in this direction, where assumptions are
imposed on the distribution from which the data is drawn.
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Collusion: Collusion is a largely unaddressed issue in most interac-
tive data sharing mechanisms today. In the absence of any obstacles to
collusion, the online auditors from Section 1 would need to pool together
aggregate queries posed by all users in the past in order to determine
potential privacy breaches. This could result in a user receiving more
than his fair share of denials. On a related note, online auditors might
need to maintain a large audit trail of queries posed in the past. While
the auditors we saw in this chapter were able to maintain a query history
of bounded size, or even no query history at all, this need not be true in
general, and with the possibility of collusion, larger query histories may
need to be stored for longer periods of time. The notion of perfect pri-
vacy (1.10) is so strong that past queries need not even be considered in
determining privacy breaches — a set of queries leak information about
a forbidden view only if some query in the set leaks some (potentially
negligible) amount of information about the view. However, strengthen-
ing the privacy definition in this way, results in only more denials, and
is not a satisfactory solution to the collusion problem.

Utility: While there have been some initial analyses on the utility of
online auditors, utility is a dimension that is not well understood. How
should we even define utility? One line of work attempts to study the
expected number of denials in a random sequence of aggregate queries.
However, it is unlikely that users would be able to pose aggregate queries
over arbitrary subsets of the data and queries are likely to come from a
non-uniform distribution. Furthermore, there might be some important,
fairly generic queries, that should always be answered, such as the total
number of HIV-positive people in the country. An auditor that would
deny such a query could be construed as providing weak utility.

In general, we would like to ensure that a database will not be rendered
useless with too many denials. To this end, it might well be worthwhile
to sacrifice some privacy for greater utility.

4. Reading

A general, though somewhat dated, overview of disclosure control
methods for statistical databases can be found in [1]. Some of the repre-
sentative work in offline auditors for aggregate queries and full disclosure
can be found in [4, 8, 19, 12]. [4] describes offline auditors for sum and
max queries over real-valued data. [8] considers auditing subcube queries,
[19] considers the case of auditing average and median queries, while
[12] considers the case when the private attribute is boolean. Most of
the above work treats online and offline auditing interchangeably — the
difference is not made explicit — and in [11] the issue of denials leak-



A Survey of Query Auditing Techniques for Data Privacy 17

ing information is uncovered. [11] proposes the simulatable auditing
paradigm as a solution, and [10] and [18] construct online simulatable
auditors for different kinds of queries and different kinds of data distri-
butions. Chapter 2 in [10] is an extended and refined version of [11].
Algorithms for uniform sampling from convex polytopes and from log-
concave distributions can be found in [13, 3, 7, 9, 14]. [18] also contains
an initial analysis of the utility of online auditors. The earliest examples
of online auditors that restrict the size and overlap of queries can be
found at [6].

The work on auditing select-project-join queries presented in this
chapter can be found in [16]. [15] contains algorithms for auditing spe-
cific classes of conjunctive queries to check for perfect privacy violations
of the forbidden view. [5] considers a data distribution that is a variant
of that considered in [16] where tuples are drawn independently of one
another, but the expected size of the database is a constant. The au-
thors show that privacy violations for conjunctive queries and views can
be determined algorithmically in this situation as the size of the domain
of the tuples grows to infinity. [2] builds a practical system for detecting
“suspicious” select-project-join queries, however the privacy guarantees
of their definition of suspiciousness are not made explicit. [17] suggests
other notions of suspiciousness that lie in between those of [16] and [2]
both in terms of their disclosure detection guarantees and the ease of
auditing under them.
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