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ABSTRACT
We consider the online query auditing problem for a database
containing private information about individuals: given a se-
quence of queries posed by an attacker, when should queries
be denied to prevent privacy breaches. Historically, all re-
search in auditing has focused on static datasets and known
algorithms do not work in the presence of updates. We con-
sider a new auditing problem where records can be inserted,
deleted or modified and obtain algorithms for auditing sum
queries, max queries and bags of max and min queries in
this scenario under the classical notion of compromise.

In [11], a new probabilistic notion of compromise was pro-
posed due to the limitations of classical compromise. Not
much is known about auditing different kinds of queries un-
der this definition and we present new algorithms for au-
diting max queries and bags of max and min queries under
probabilistic compromise.

We conclude with a study of a particular dimension of the
utility delivered by an auditor and obtain initial results for
the utility of sum auditing under classical compromise. We
show a positive result for large datasets - in a sequence of
random queries, the number of queries that will be answered
before even the first denial occurs is a constant fraction of
the size of the dataset. This implies that the auditor will
not return answers that are riddled with denials.

1. INTRODUCTION
Consider a database containing sensitive information about
individuals, such as a company database containing salaries
of its employees or a hospital database containing medical
records of its patients. There is often a need to enable the
computation of useful statistics from such databases while
protecting the privacy of individuals. For example, a statis-
tician may want to know the average salary of all the female
employees in a company, but he cannot be allowed to glean
the salary of any one female employee in particular.

Let X = {x1, . . . , xn} be a dataset of n records. Each xi

is the sensitive attribute value of the ith individual in the
database and in our scenario is taken to be real-valued from a
bounded or unbounded range. A statistical query q = (Q, f)
specifies a subset of the data entries Q ⊆ {1, . . . , n} and a
function f (such as sum, max or median). The result - f(Q),
is f applied to the subset of entries {xi | i ∈ Q}. In this
paper, Q is referred to as the query set of q.

We consider the online query auditing problem: Given
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a sequence of queries q1, . . . , qt−1 that have already been
posed, answers a1, . . . , at−1 to these queries that have al-
ready been supplied and a new query qt, should qt be truth-
fully answered or should it be denied to prevent a privacy
breach. Here, each of the previous answers ai, is either the
true answer to the query fi(Qi), or a denial. In this paper,
we attempt to enhance the robustness of the notion of online
auditing by exploring the scenario of non-static databases,
the new notion of compromise introduced in [11] and the
heretofore unexamined dimension of utility.

The auditing problem may be viewed as a game between
the auditor and an attacker. The auditor monitors a se-
quence of queries posed by an attacker and denies queries
whenever answers to these and previous queries may be
stitched together to glean information about any one in-
dividual. This brings us to the definition of compromise.
In most previous work, a privacy breach occurs when the
sensitive attribute value of any individual can be uniquely
determined. We call this the classical notion of compromise.
In addition, the authors in [11] introduce a probabilistic no-
tion of compromise for bounded range data where a signifi-
cant change in the attacker’s confidence about the range of
a data point constitutes a privacy breach.

The notion of simulatable auditing was introduced in [11].
Simulatability in this scenario means that an attacker should
be able to simulate the auditor’s decision to answer or deny.
This requires that the auditor must not look at the answer
to the current query when deciding. He may only look at
past queries and corresponding answers supplied to the at-
tacker. The need for simulatability arose out of the authors’
discovery that denials based on the answer to the current
query can leak considerable information. The auditors we
look for should thus be online and simulatable.

A naive simulatable solution to the online auditing prob-
lem would be to simply deny all queries. This is not a very
satisfying solution as it does not provide much utility to the
user. To the best of our knowledge, no previous work has
attempted to quantify the utility of an auditing scheme. In
this paper, we consider a particular dimension of utility and
obtain initial utility results for the auditing algorithm for
sum queries described in [4, 11]. The result pertains to clas-
sical compromise and is a positive result for large datasets.

We also consider updates to a database and changes that
must be made to existing auditing algorithms to accommo-
date these. As far as we know, all previous auditing algo-
rithms work under the assumption that no changes are ever
made to the database and this is clearly an unrealistic as-
sumption to make - datasets are in practice, quite dynamic.
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We consider sum queries, max queries and combinations of
max and min queries under classical compromise when up-
dates can be made to the database. In doing so, we introduce
a new algorithm for auditing bags of max and min queries
where none was known before.

The next dimension in which we attempt to further our
understanding of online auditing is the new probabilistic def-
inition of compromise introduced in [11] to overcome the
shortcomings of the classical definition. Here we introduce
new simulatable algorithms for max queries and combina-
tions of max and min queries. No algorithms were previously
known for these cases.

The remainder of this paper is organized as follows. We
discuss related work and preliminaries in Section 2. A more
general overview of the field can be found in [1]. In Sec-
tions 3, 4 and 5 we discuss our new results for updates,
probabilistic compromise and utility respectively. This is
followed by conclusions and future work in Section 6.

2. BACKGROUND

2.1 Related Work
The online auditing problem was first studied in [7] and [14].
Here the authors look at the sum auditing problem in par-
ticular and restrict the sizes and pairwise overlaps of queries
that can be posed to prevent privacy breaches. Under this
scheme, if the size of each query set is restricted to be at
least k and if each pair of query sets is allowed to overlap in
at most r elements then (2k− (l +1))/r distinct queries can
be answered in total where l is the number of xis known to
the attacker beforehand. So if k = n/c for some constant
c and r = 1 then after only a constant number of distinct
queries, the auditor would have to deny all further queries
since there are only about c queries where no two overlap in
more than one element. This motivates a search for auditing
schemes that could provide greater utility.

In [3], the authors consider the offline auditing problem
for sum, max, max-and-min and sum-and-max queries. In
the offline version of the problem, we are given a sequence
of queries q1, . . . , qt that have already been posed and truth-
fully answered and are required to determine whether com-
promise has already occurred. The sum-and-max auditing
problem was shown to be NP-hard while efficient algorithms
were derived for all the others.

In [10], the authors consider the problem of auditing sub-
cube queries where queries are specified by a string of 0s,
1s and *s (don’t cares). The elements to be summed up are
those whose non-private attribute values match the pattern
specified by the query string. The authors in [12] consider
the boolean auditing problem where the attribute values to
be protected are boolean and the queries are sum queries.
They also provide a max-auditor for real-valued data. These
results once again pertain to the offline auditing problem.

In [11], the online auditing problem is looked at again.
The authors illustrate how denials that depend on the an-
swer to the current query can leak information and intro-
duce the notion of simulatability to tackle this. They pro-
vide simulatable algorithms for auditing sum queries and
max queries under classical compromise. In addition, they
introduce a probabilistic notion of compromise and provide
an algorithm for auditing sum queries over real-valued data
drawn uniformly from a bounded range under this notion.

2.2 Preliminaries
Classical Compromise: Under classical compromise, a
compromise occurs if any one private data point can be
uniquely determined, i.e. in all datasets with answers a1, . . . ,
at, to queries q1, . . . qt, some data point xi would be the
same.

Probabilistic Compromise: As noted in [2, 10, 5, 13],
the classical notion of compromise has certain limitations:

• Even though a private value may not be uniquely de-
termined, it may still be deduced to lie in a tiny inter-
val or even in a large interval with a heavily skewed
distribution - and some may consider this to be com-
promise.

• There are situations when no query would ever be an-
swered. For instance in the case of sum queries over
boolean data, in the interest of simulatability, no sum
query would ever be answered, since there could be
a data set where the answer to the query could be 0
implying that every single xi in the query set is 0.

This new notion of privacy defined in [11] arose out of the
limitations of classical compromise for bounded range data
and essentially models the change in the attacker’s confi-
dence about the value of a data point. It bounds the ratio
of the posterior probability that a value xi lies in an inter-
val I to the prior probability that xi lies in I. Given an
arbitrary dataset X ∈ [0, 1]n, queries q1, . . . , qt, answers to
these queries a1, . . . , at and predefined security parameters,
λ and α,

Sλ,i,I(q1, . . . , qt, a1, . . . , at) =

1 if (1− λ) ≤ Pr(xi∈I|∧t
j=1fj(Qj)=aj)

Pr(xi∈I)
≤ 1/(1− λ)

0 otherwise

Let I be the set of intervals [ j−1
α

, j
α
] for j = 1, . . . , α.

Sλ(q1, . . . , qt, a1, . . . , at) =

∧
i∈[n],I∈I

Sλ,i,I(q1, . . . , qt, a1, . . . , at)

Sλ(q1, . . . , qt, a1, . . . , at) thus evaluates to 1 if every single
data point, xi is “safe” with respect to every single interval,
I ⊂ [0, 1]. The attacker poses a query, qt in each round,
t for up to T rounds. The auditor can choose to deny a
query and the attacker wins if Sλ(q1, . . . , qt, a1, . . . , at) = 0
in some round. This is the (λ, α, T )-privacy game and an
auditor is (λ, δ, α, T )-private if for any attacker, A:

Pr[A wins the (λ, α, T )− privacy game] ≤ δ

Simulatable Auditing: The concept of simulatable audit-
ing was introduced in [11]. In the context of online auditing,
simulatability implies that the attacker should be able to
predict when a denial is about to occur. The need for simu-
latability can be illustrated with a simple example. Consider
an attacker who asks for max{xa, xb, xc} and is returned the
answer 9. Later the attacker asks for max{xa, xb}. If the
answer to this query is less than 9 then the attacker can de-
termine that xc must be 9. If however, the answer is exactly
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9, answering this query would not leak information. In this
situation, if the auditor does look at the answer to the query
when deciding to deny - a denial would immediately imply
that xc must be 9 and privacy is breached. The auditor
should thus not look at the true answer to a query when de-
ciding. In the case of classical compromise this implies that
the auditor must consider if there is any possible answer to
the current query, consistent with past queries that could
cause compromise. In the case of probabilistic compromise
this implies that the auditor must determine if compromise
would occur in a large fraction of datasets drawn from the
original distribution and consistent with past queries.

Synopsis Computing Blackbox B: In Sections 3.3, 4.1
and 4.2 we use a blackbox in our algorithms that is intro-
duced in [3]. The blackbox is used for the offline auditing of
max queries over real-valued data containing no duplicates.
The blackbox takes as input a set of max queries and an-
swers and converts them to a synopsis Bmax. Bmax contains
predicates of the form [max(Si)] = Mi] and [max(Sj) < Mj ]
where Si and Sj are subsets of the dataset and Si ∩ Sj = ∅.
Thus every xi can occur in at most one such predicate and
the synopsis is of size O(n). The authors show that it suffices
to consider just these query sets in detecting compromise in-
stead of the entire sequence of queries that has been posed.
The blackbox can similarly be given a set of min queries
and their answers and it outputs a synopsis Bmin containing
predicates of the form [min(Si) = mi] and [min(Sj) > mj ]
where Si and Sj are disjoint subsets of the dataset.

3. NON-STATIC DATABASES
To the best of our knowledge, existing auditing schemes for
sum and max queries only work for static datasets. We
consider extending these algorithms to handle updates to
the database as well. As queries are likely to be posed over
a period of time, we cannot expect the records in a database
to remain unchanged throughout. For example, consider
the company database containing salaries of its employees.
Three types of changes can be made to the database:

• Insertions: When new employees join the company.

• Deletions: When employees leave the company.

• Modifications: When employees gets promoted or de-
moted.

A robust query auditing scheme should work in the pres-
ence of updates, i.e. provide answers to as many queries
as possible while ensuring that no individual’s privacy is
breached. We first need to understand the level of privacy
desired when updates occur. Should we protect the very
fact that a database record was updated? Is it fine to ig-
nore the privacy of deleted or modified records? In the case
of modifications, should we protect the change in the value
of the record in addition to its past and current values?
What should we protect when there are several modifica-
tions to the same record? In this paper we assume that the
attacker has access to the fact that a record was either in-
serted, deleted or modified and we simply wish to protect all
past and present values of any record as well as individual
modifications made to them. This is a reasonable assump-
tion to make since an attacker can easily observe that an
employee joined/left the company or was promoted.

We describe schemes for handling updates in the case of
sum queries, max queries and bags of max and min queries
under the classical notion of compromise.

3.1 Sum Auditing with Updates
Existing algorithm: We consider sum queries over real-
valued data taken from an unbounded range. The existing
algorithm for sum queries can be found in [4, 11]: each query
is expressed as a row in a matrix with a 1 for every record
that is accessed by the query and a 0 for every record that is
left out. The columns of the matrix thus correspond to the
records and the rows to the queries. The row corresponding
to a query is called the “query vector”. The matrix is main-
tained in diagonalized form through a series of elementary
row-space-preserving row operations and column changes. If
the diagonalized form of the matrix contains a row with a 1
in only one column and 0s in all others then some element
can be uniquely determined. When a new query is posed,
the auditor checks to see if the new query vector is already
in the vector space spanned by the rows of the matrix in
O(nm) time, where m is the rank of the matrix. If it is, then
the query is answered (the new query vector is not added to
the matrix). If not, then adding the new query vector and
rediagonalizing the matrix also takes O(nm) steps.

Consider using this auditing scheme, as is, in the presence
of updates. The result would be an overly conservative au-
ditor - one that denies even when unnecessary. For example,
suppose a user asks for xa + xb + xc and this is followed by
an update to the database where xa is updated to xa +∆. If
the attacker now asks for xa + xb, the query will be denied
since the auditor will believe that xc can be determined.
In reality however, what the user can determine is xc + ∆
and there is in fact no privacy breach. While the existing
scheme thus continues to ensures the privacy of individuals,
it reduces the utility provided to the user since denials now
occur even when answering queries would definitely not leak
information. We therefore look for an auditing scheme that
works with updates as well.

Updates: The method we propose is a simple extension
to the existing algorithm and involves only just modifica-
tions to the query matrix that is maintained. Insertions
and deletions of records can be handled easily. When a new
record xj is inserted, we introduce a new column in the query
matrix corresponding to xj (full of zeros since no previous
query involved xj). On the other hand, when a record xj is
deleted, we leave the column as it is, but any new query that
accesses xj

1 will have a 0 in xj ’s column since in reality the
record no longer exists. We next consider the case of modi-
fications - if a record xj is modified to xj +∆j , we introduce
a new column in the matrix corresponding to xj + ∆j and
all new queries that involve this modified record will have a
1 in this new column and a 0 in the old xj column. Using
this as the query matrix in the sum auditing algorithm will
ensure the privacy of both xj and xj + ∆j . We can show
formally that 1) adding such new columns for insertions and
modifications and 2) modifying query vectors if they access
deleted or modified records – ensures the privacy of all past
and present values of records in the database even in the
presence of multiple updates to the same record. We omit
the details due to space constraints but one can easily see

1An attacker may try to fool the auditor by asking for xi+xj

before and after xj was deleted in order to determine xi.
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the intuition: all values that the attacker can deduce must
lie in the span of the query vectors.

A problem with this method for handling modifications
however, is that the update to a record can itself still be
determined. If an attacker asks for the sum of salaries
of Alice and Bob both before and after Alice got a raise,
he can figure out the exact amount of her raise since our
scheme does not protect the privacy of the ∆s. This can
easily be fixed by maintaining two matrices. If a record xj

was updated multiples times by amounts ∆1
j , ∆2

j , . . ., we

wish to protect the values xj , xj + ∆1
j , xj + ∆1

j + ∆2
j , . . .

as well as the individual updates - ∆1
j , ∆

2
j , . . .. The first

matrix we maintain, A1, contains columns corresponding
to x1, ∆

1
1, ∆

2
1, . . . , xj , ∆

1
j , ∆

2
j , . . . , xn, ∆1

n, ∆2
n . . .. The sec-

ond matrix A2, contains columns corresponding to x1, x1 +
∆1

1, . . . , xj , xj +∆1
j , xj +∆1

j +∆2
j , . . . , xn, xn +∆1

n, . . .. Now
any query can be expressed as a row in each matrix in exactly
one way and by performing Gaussian elimination on both
these matrices, we can ensure that no xj , ∆

i
j or xj + Σ∆j

can be uniquely determined.
An interesting avenue for future work would be to protect

the privacy of arbitrary sums of the ∆s. A company may
as a policy wish to protect the privacy of the total raise an
employee has received over a period of time for instance. In
this case, in addition to protecting the individual ∆s, we
also need to protect the sums of consecutive ∆s.

3.2 Max Auditing with Updates
Existing algorithm: We now consider the problem of au-
diting max queries over real-valued data taken from an un-
bounded range. The algorithm for auditing max queries can
be found in [11] and works by maintaining upper bounds
for all elements and extreme elements for query sets. An
extreme element is an element which could possibly be the
max element of the query set. For example, if the queries
max{xa, xb, xc} = 9 and max{xb, xd, xe} = 8 have already
been posed and answered, we know that xb is upper-bounded
by 8 and thus cannot be an extreme element for the first
query set. When a new query is posed, the auditor checks
to see if there is any possible answer that is consistent with
past answers and that would cause any query set to have
only one extreme element (and thus privacy to be breached).
If such an answer exists, then the query is denied. The au-
thors show that it suffices to check only a finite number of
points in (−∞,∞) as possible answers to the new query.

Updates: As in the case of sum auditing, insertions and
deletions can easily be handled, by adding new variables
corresponding to inserted elements and removing variables
from new query sets that access already deleted records.
In the case of modifications, if a record xj is modified to
x′j = xj + ∆, we consider different possibilities for what the
attacker knows beforehand about ∆:

• ∆ is known to be a non-zero real number: In this case
the value of x′j is independent of that of xj and we can
treat it as a new insertion in to the database.

• ∆ is known to be positive: This translates to the fact
that any upper bound on x′j is now also an upper
bound on xj . With this in mind we perform the same
auditing algorithm as before. For instance, suppose an
attacker asked for max{xa, xb, xc} = 9 and xa was sub-
sequently increased to x′a. If the attacker now asks for

max{x′a, xb, xd} - if no correlation between xa and x′a
is known to the attacker then the second query can be
answered since no matter the answer, both query sets
will have more than one extreme element. However, if
it is known that x′a > xa, then in reality, the attacker
is asking for max{xa, x′a, xb, xd} and the second query
must be denied. This is because if the answer to the
second query is less than 9, then xc will be revealed
to be 9. Thus we handle positive updates to vari-
ables by introducing a new variable corresponding to
the updated value and including both the old and new
variables in query sets involving the updated value.

• ∆ is known to be negative: This translates to the fact
that any upper bound on x′j is now also an upper
bound on xj . We handle this by including a vari-
able corresponding to x′j in all past query sets that
accessed the old value of xj . For example, suppose
an attacker asked for max{xa, xb, xc} = 9 and xa was
later decreased to x′a. If the attacker now asks for
max{x′a, xb, xd}, this query should be denied since the
answer to the second query could be greater than 9
thereby revealing the value of xd. In the auditing al-
gorithm, this is detected by extending the first query
set to max{xa, x′a, xb, xc} = 9 thereby placing an up-
per bound on x′a as well.

Thus, with simple manipulations to query sets, the max
query auditor can be extended to work with updates.

3.3 Max-and-Min Auditing with Updates
Prior to this work, no simulatable algorithm was known for
auditing bags of max and min queries in an online fashion.
So we begin by first describing the algorithm for the static
database scenario and then proceed to deal with the issue
of updates. Here we make the assumption that the dataset
does not contain any duplicates, i.e. if i 6= j then xi 6= xj .

Given a set of previously posed max and min queries,
q1, . . . , qt−1 with answers, a1, . . . , at−1, we would like to de-
termine if there is any possible answer to a new query qt

that is consistent with previous answers and would cause
a data value to be uniquely determined. Checking all pos-
sible answers at in (−∞, +∞) would be impossible but it
turns out that it is sufficient to check only a finite num-
ber of points. Let Q′

1, . . . , Q
′
l be the query sets of previous

queries that intersect with Qt, ordered according to their
corresponding answers, a′1 ≤ . . . ≤ a′l. Let a′lb = a′1 − 1
and a′ub = a′l + 1 be the bounding values. Our algorithm
only checks 2l + 1 points - the bounding values, the above
l answers and the mid-points of the intervals determined by
them. Algorithm 1 gives the details.

1: for at ∈ {a′lb, a′1,
a′1+a′2

2
, a′2, . . . , a

′
l−1,

a′l−1+a′l
2

, a′l, a
′
ub}

do
2: if at is consistent with a1, . . . at−1 AND if ∃1 ≤ j ≤ n

such that xj is uniquely determined then
3: Output “Deny” and return
4: end if
5: end for
6: Output f(Qt) and return

Algorithm 1: Simulatable Auditor for Max and Min
Queries
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We next address the questions of checking whether a value
is uniquely determined and whether an answer at is consis-
tent with answers to previous queries.

Checking if a value is uniquely determined: The idea
here is once again to determine the set of extreme elements
for every single query set posed by the attacker. The ex-
treme elements of a query set, Qi, are the xjs whose values
could potentially be the answer ai to the query qi. For each
query set, we would like to eliminate those xjs that could
certainly not be extreme elements and in the end if we are
left with only one xj that is an extreme element for a query
set, we know that privacy has been breached. If a query set
has only one extreme element, then the element is said to
be strictly extreme for the query set.

Given a set of queries and answers, the upper bound µj of
an element xj is defined to be the minimum over the answers
to the max queries containing xj i.e. µj = min{ak|xj ∈
Qk and Qk is a max query}. Similarly, the lower bound
λj of an element xj is defined as λj = max{ak|xj ∈
Qk and Qk is a min query}. We determine the extreme el-
ements Ek for a query set Qk as follows:

1: For k = 1 to t, Ek = ∅.
2: If Qk is a max query set, xj ∈ Qk and µj = ak then

Ek = Ek ∪ {xj}. Similarly if Qk is a min query set, if
xj ∈ Qk and λj = ak then Ek = Ek ∪ {xj}.

3: For a max query Qk look at all other max query sets with
answer ak and look at the largest set of extreme elements
E common to all the query sets. Set Ek = E. This
follows because there are no duplicates in the database.
For all other xj that were previously in Ek, we know
that xj < µj = ak, i.e. ak is a strict upper bound for
xj . The analogous procedure is applied for min query
sets.

4: If any extreme element, xj , of a max query set, QM , is
strictly extreme for some min query set, Qm and aM 6=
am then xj < aM and EM = EM − {xj} (and similarly
for extreme elements of a min query set).

Algorithm 2: Determining Extreme Elements for Max and
Min Query Sets

The last step in this procedure could spark a trickle effect
and computing the final set of extreme elements for each
query set takes O(t2Σt

i=1|Qi|) time. Once extreme elements
have been computed in this way, we can show the following
theorem (proved in the appendix).

Theorem 1. Given a set of queries, q1, . . . , qt and cor-
responding answers a1, . . . , at, the database is secure if and
only if every max or min query set has more than one ex-
treme element and there does not exist any max query, qi

and min query, qj such that ai = aj.

Checking for consistency: Checking for consistency can
also be done in polynomial time.

Theorem 2. Given a set of queries q1, . . . , qt, responses
a1, . . . , at are consistent if and only if a) every max and
min query set has at least one extreme element b) for every
element xi, µi > λi if either the upper bound or lower bound
for xi is strict and µi ≥ λi otherwise and c) if ai = aj for
some min query qi and some max query qj, then Qi and Qj

should have only one extreme element in common.

This theorem is proved in the appendix. We now make
the following claim also proved in the appendix.

Theorem 3. For 1 ≤ j ≤ n, xj is uniquely determined
for some value of at in (a′s, a

′
s+1) if and only if xj is uniquely

determined when at =
a′s+a′s+1

2
. Furthermore, the values of

at in (a′s, a
′
s+1) are either all consistent or inconsistent.

This completes our proof of correctness. Since we run
through the for loop in Algorithm 1 2l + 1 times, the run-
ning time of the algorithm is O(t3Σt

i=1|Qi|).

The “no duplicates” assumption: Note that the as-
sumption of no duplicates in the database can easily be
achieved by perturbing a dataset if it does contain dupli-
cates. This however leads to a conservative auditor. Con-
sider a scenario when a user asks for max{xa, xb, xc} and
later for max{xa, xd, xe}. Due to the imposition of the con-
straint that there be no duplicates in the dataset, the second
query will be denied since if both queries were to have the
same answer, the value of xa would be revealed. If dupli-
cates are allowed however, both queries can be answered.

Although the “no duplicates” assumption thus reduces
the utility delivered to the user, it does have an advan-
tage. The size of the audit trail can be significantly re-
duced using blackbox B (see Section 2.2). B can be used to
maintain separate synopses Bmax and Bmin for past queries
q1, . . . , qt−1 and answers a1, . . . , at−1. When a new query
is asked, the new query along with a possible answer can
be submitted to B to obtained updated synopses B′

max and
B′

min. Since B′
max captures all the information contained in

the max queries and their answers and B′
min contains all the

information contained in the min queries and their answers,
we only need to consider these query sets in determining
the extreme elements as in Algorithm 2. We thus no longer
need to maintain the entire sequence of queries that have
been posed and an audit trail of size O(n) suffices. This was
not possible in the max auditing algorithm in [11] where du-
plicates were allowed.

Updates: If we assume that a modification to a data point
is such that the “no duplicates” assumption continues to
hold, then the only difference from the max auditing scenario
is that we need to take care of lower bounds as well. Ad-
ditionally, we need to maintain information about whether
the lower and upper bounds on the modified elements are
strict. If an element xj is updated to x′j = xj +∆ where ∆ is
known to be positive, then any lower bound on xj is a strict
lower bound on x′j . Thus any past min query set involving
xj should be updated to include x′j as well. Similarly, if
∆ is known to be negative then any future min query set
involving x′j should be modified to include xj as well since
any lower bound on x′j is now a strict lower bound on xj .

4. PROBABILISTIC COMPROMISE
The notion of probabilistic compromise was introduced for

the first time in [11] and is described in Section 2.2. The au-
thors in [11] provide an algorithm for auditing sum queries
over data points taken uniformly from the range [0, 1], leav-
ing open the problem of auditing other kinds of queries for
data taken from other distributions. We now show how max
queries and bags of max and min queries can be audited un-
der this notion of compromise.
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4.1 Max Auditing
We consider the problem of building a simulatable auditor

for max queries that is (λ, δ, α, T )-private for any attacker
A. We assume that the dataset is taken uniformly from the
set of points in the unit cube [0, 1]n that do not have xi = xj

for any i 6= j.
Recall that under the probabilistic notion of compromise,

a query is safe to answer if doing so is not likely to cause
a significant change in the attacker’s confidence that a data
point lies in a particular interval. Also, the decision to deny
must be simulatable. The idea here is that the auditor gen-
erates a random dataset that is consistent with the answers
to queries thus far and checks to see if answering the current
query on this dataset would bring about a significant change
in the attacker’s confidence about the value of any xi. If the
answer is no for a sizable fraction of the random datasets
generated, the query is safe to answer.

We first consider the problem of determining whether know-
ing the answer at to query qt brings about a significant
change in the attacker’s confidence about a particular data
value. For this we make use of the blackbox B described
in Section 2.2. Given queries q1, . . . , qt and corresponding
answers a1, . . . , at, B returns a synopsis, Bmax that rep-
resents all derivable information as predicates of the form
[max(S) = M ] or [max(S) < M ] where every data point
can occur in at most one such predicate. For any xi and
any interval I, we would thus like to find Pr{xi ∈ I|Bmax}.

Posterior distribution of the xis: The prior probabil-
ity that an xi lies in an interval I of length 1/α is given by
Pr{xi ∈ I} = 1/α. This is because xi is initially uniformly
distributed in [0, 1] 2. The posterior probability distribution
of xi given Bmax is part continuous and part discrete and
the computations here require measure-theoretic justifica-
tions that we omit. But it can be shown that if xi ∈ S and
[max(S) = M ] ∈ Bmax, then xi is uniformly distributed in
[0, M) with probability 1−1/|S| and xi = M with probabil-
ity 1/|S|. On the other hand, if xi ∈ S and [max(S) < M ] ∈
Bmax then xi is uniformly distributed in [0, M) with proba-
bility 1. As an example, if [max{xa, xb, xc} = 0.75] ∈ Bmax,
then since any one of the data points is equally likely to
be the max value, xa = 0.75 with probability 1/3 and with
the remaining 2/3 probability, it is uniformly distributed
in [0, 0.75). Thus for any interval in [0, 1] it is possible
to determine the ratio of the posterior to prior probability
that any xi lies in the interval. This gives rise to Algo-
rithm 5 (presented in the appendix) that returns false if
Sλ(q1, . . . , qt, a1, . . . , at) = 0 and returns true otherwise.

Simulatable auditor: We now construct the simulatable
auditor by estimating the probability that answering qt would
breach privacy. The probability is taken over the distribu-
tion from which the dataset is drawn and is conditioned on
the past queries and their answers. To estimate this proba-
bility, we draw a random dataset X ′ that is consistent with
the answers already given, compute an answer a′t according
to X ′ and evaluate Algorithm 5 on q1, . . . , qt, a1, . . . a

′
t to see

if this answer would cause a considerable change in the at-
tacker’s confidence about any one data point. The sampling
is then repeated to get a good estimate.

2The set of points in the n dimensional cube where xi = xj

for some i 6= j has measure 0

In order to sample X ′ uniformly drawn from all datasets
consistent with the previous answers, the auditor looks at
each predicate [max(S) = M ] or [max(S) < M ] in Bmax. If
the predicate has an equality then it sets some xi ∈ S to
M and assigns to other xis in S a value drawn uniformly at
random from [0, M). If the predicate has a strict inequality
it assigns each xi ∈ S a value drawn uniformly at random
from [0, M). Every other xi not represented by a predicate
is given a value drawn uniformly at random from [0, 1]. In
case xi = xj for some i 6= j, the sample is thrown out and
another is chosen. But this happens with probability zero.
Algorithm 3 gives the details for the simulatable auditor.

1: Input: past queries q1, . . . , qt−1, answers a1, . . . , at−1,
new query qt, parameters λ, α, n, δ, T .

2: for O(T
δ
log T

δ
) times do

3: Sample a data set X ′ consistent with previous answers
4: Evaluate Algorithm 5 on input q1, . . . , qt, a1, . . . , a

′
t

and parameters λ, α, n
5: end for
6: if the fraction of sampled data sets for which Algo-

rithm 5 returned false is more than δ/2T then
7: Return “denied”
8: else
9: Return at = maxx(Qt)

10: end if

Algorithm 3: Simulatable Auditor for Max Queries

Theorem 4. Algorithm 3 is a (λ, δ, α, T )-private simu-
latable auditor for max queries.

Proof. An attacker wins the game in round t if he poses
a query qt for which Sλ(q1, . . . , qt, a1, . . . , at) = 0 and the
auditor does not deny qt. The probability that the attacker
wins in round t given the answers to previous queries equals
pt = Pr{Sλ(q1, . . . , qt, a1, . . . , at−1, maxX′(Qt)) = 0 |

q1, . . . , qt−1, a1, . . . , at−1}
where X ′ is a data set drawn uniformly from the set of
all data sets consistent with the previous answers. Thus
Algorithm 3 essentially estimates pt via multiple draws of
random data sets X ′. When pt > δ/T , by the Chernoff
bound, the fraction of sampled data sets for which algorithm
safe returns false is larger than δ/2T with probability at
least 1 − δ/T . Hence if pt > δ/T the attacker wins with
probability at most δ/T . When pt < δ/T , the attacker wins
only if the query is answered and even then with probability
pt. In both cases the attacker wins with probability at most
δ/T . Thus the probability that the attacker wins in any of
the T rounds is less than δ by the union bound.

4.2 Max-and-Min Auditing
Once again we assume that the dataset is taken from the set
of points in the unit cube [0, 1]n that do not have xi = xj for
any i = j. We consider the problem of building a (λ, δ, α, T )-
private simulatable auditor for bags of max and min queries.
Due to space constraints we do not give the algorithm in full
but give a sketch of the main ideas involved in constructing
the auditor.

As previously, we would like to determine if answering
the current query would lead to a significant change in the
attacker’s confidence about the value of a particular data
point. We first consider the problem of determining whether
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knowing the answer at to query qt brings about a signif-
icant change in the attacker’s knowledge. We make use
of the blackbox B described in Section 2.2. Given queries
q1, . . . , qt and corresponding answers a1, . . . , at, B returns a
synopsis B = (Bmax, Bmin). Bmax represents all derivable
information from the max queries as predicates of the form
[max(S) = M ] or [max(S) < M ] where every data point can
occur in at most one such predicate. And Bmin represents
all derivable information from the min queries as predicates
of the form [min(S) = m] or [min(S) > m] where every
data point can occur in at most one such predicate. We
further modify the predicates as follows: if any max pred-
icate and min predicate have the same value, M , then the
corresponding query sets - S1 and S2 must have exactly one
element, xj , in common due to the assumption of no dupli-
cates. We remove the two predicates and replace them with
the predicates [max(xj) = M ], [max(S1 − xj) < M ] and
[min(S2 − xj) > M ]. At the end of this process no two max
and min predicates will have the same answer and each xi

can be determined to lie in a range Ri. Let `i be 1 divided
by the length of this interval.

Posterior distribution of the xis: The prior probabil-
ity that an xi lies in an interval I of length 1/α is given by
Pr{xi ∈ I} = 1/α. This is because xi is initially uniformly
distributed in [0, 1]. We would like to determine the poste-
rior probability Pr{xi ∈ I|B}. As a simple example, let’s
consider two predicates of the form [max{xa, xb, xc} = 1]
and [min{xa, xb} = 0.2]. We know that xa and xb must
lie in the range [0.2, 1] and xc must lie in the range [0, 1].
Moreover, one of xa or xb must be exactly 0.2, and one of
xa, xb or xc must be exactly 1. Now if xa = 1, then xb must
be 0.2 and xc can lie anywhere in the range [0, 1). This
determines a line segment of (one-dimensional) volume 0.8.
Enumerating over the other three possible cases, we find
that the volume covered by all possible points that satisfy
the two constraints is 3.6. Now if we consider the probabil-
ity that xa = 1, the volume covered by points that satisfy
the two constraints and the condition that xa = 1 is 1. Thus
Pr{xa = 1} = 1/3.6 = 5/18.

Equivalent graph coloring problem: The above pro-
cedure can be generalized, but the number of cases to sum
over may be exponential in the number of queries. So in-
stead, we approximate the required probability by sampling
from the joint distribution over the entire dataset X. As
an intermediate step, consider the following graph color-
ing problem. Let Q be the set of predicates in B with a
strict equality. We construct a graph G with a node cor-
responding to each predicate in Q. Let S(Q) denote the
query set of a predicate Q ∈ Q and let A(Q) denote the
answer of the predicate. G has an an edge between Q1

and Q2 iff S(Q1) ∩ S(Q2) 6= ∅. Each element xi in the
dataset corresponds to a color, and the set of colors avail-
able at node Q is just the query set S(Q). A valid coloring
of G is a mapping c that assigns to each node Q a color
c(Q) ∈ S(Q), such that if there is an edge between Q1 and
Q2, then c(Q1) 6= c(Q2). We define a probability distribu-

tion over valid colorings P̃ (c) = 1
Z

∏
Q∈Q `c(Q), where Z is

a constant3 chosen to make P̃ sum to 1.
The intuition is that the process of generating a dataset

3Note that our algorithm doesn’t explicitly compute Z

according to the posterior distribution can be split into two
parts. First, for each max or min query with equality, we
choose an item from its query set which will achieve the
bound. This is exactly the information contained in the
coloring. After doing this for every query, the values of the
remaining items may now be chosen uniformly at random.
More formally,

Theorem 5. The following procedure generates a sample
from P (X|B):

1. Sample a coloring according to P̃ (c).

2. For each Q, set xc(Q) = A(Q).

3. For each remaining unassigned item xi, sample a value
uniformly at random from Ri.

Proof. Given a dataset X that satisfies the queries, we
can associate to it a unique coloring c as follows : for each
predicate Q with strict equality, there must be exactly one
item xi in S(Q) such that xi = A(Q). Set c(Q) = xi. Con-
versely, a coloring c specifies the values of a subset of the
variables as described in step 2 above, and the remaining
ones can take any value in their range. We can therefore
write P (X|B) = P (c|B)P (X|c, B). Now, given B and c,
the remaining unassigned variables are independent and uni-
formly distributed over the ranges determined by B. Thus,
step 3 above does generate samples from P (X|B, c).

It remains to be shown that step 1 above generates sam-
ples from P (c|B). To see this, we examine the geometry
more closely. Suppose there are n items in the dataset, and
k predicates with equality. Which datasets are compatible
with the evidence? Once we choose a coloring, this deter-
mines the values of k items, and the remaining items may
vary across their ranges. The posterior is thus uniform over
a union of rectangles of dimension n − k. Each rectangle
corresponds to a coloring c, and P (c|B) is therefore propor-
tional to the volume of this rectangle, which is the product
of 1/`i for those xi that aren’t set by c. Equivalently, the
probability is proportional to the product of `i for those xi

that are set by c, which is exactly the definition of P̃ .

We now describe a Markov chain M over valid color-
ings, which is a slightly modified version of ones found in
the Markov Chain Monte Carlo literature (e.g. [9]). The
Markov chain is initialized by looking at the actual state of
the database and constructing the corresponding coloring.
At each successive step, given a valid c, the Markov chain
generates c′ as follows:

• Pick Q uniformly from Q.

• For each Q′ 6= Q, set c′(Q′) = c(Q′).

• Pick a color xi from S(Q) with probability propor-
tional to `i.

• Set c′(Q) = xi if this results in a valid coloring, and
set it to c(Q) otherwise.

We prove the following theorem.

Theorem 6. The stationary distribution of M is P̃ .
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Proof. Let MQ denote the transition distribution in the
case when we pick Q. Since M is a convex combination of
the MQs, it suffices to show that each MQ preserves P̃ , i.e.,
sampling from P̃ and then applying one step of MQ results
in a coloring whose distribution is also P̃ .

Let c1 be a coloring sampled from P̃ and let c2 be the
resulting coloring after transitioning according to MQ. Let
c be any fixed coloring. We would like to show that Pr{c2 =

c} = ˜P (c). Let p be the total probability of colorings that

agree with c onQ\Q in P̃ . Assume without loss of generality
that c(Q) = 1, the other valid colors for Q given the rest of c
are 2, . . . , r, and the remaining colors in S(Q) are r+1, . . . , s.
To get c after one step of MQ, either we must have begun
with c and chosen c(Q) or an invalid color, or we must have
begun with a coloring that differed from c only on Q, and
then chosen the color c(Q). Use the notation `a:b to denote
`a + `a+1 + . . . + `b. The total probability of these events is
then

p
`1
`1:r

`1 + `r+1:s

`1:s
+ p

`2:r
`1:r

`1
`1:s

= p
`1
`1:r

(1− `2:r
`1:s

) + p
`2:r
`1:r

`1
`1:s

= p
`1
`1:r

= P̃ (c)

We can also show the following:

Theorem 7. Let ∆ be the maximum degree of G, and
pmax and pmin be, respectively, the maximum and minimum
conditional probabilities for the color of some Q given a col-
oring of the rest of the graph. If n > ∆(1 + 2 pmax

pmin
), then M

has mixing time O(k log(k)).

The (omitted) proof is an adaption of that given, e.g.,
in [9], the main difference being that in our case the distribu-
tion over colorings is non-uniform. Together, these theorems
show that by starting with any valid coloring and running
M for O(k log(k)) steps, we can generate a sample from a

distribution that is close to P̃ . We may thus answer proba-
bility questions up to accuracy ε by generating a set of such
samples and forming a Monte Carlo estimate. For any xi

and interval I, we can thus get arbitrarily close estimates of
Pr{xi ∈ I|B}. Even if the condition on n in Theorem 7 is
not satisfied, there exist other inference techniques besides
Markov Chain Monte Carlo sampling, for example a reduc-
tion to probabilistic graphical models which we omit here
for lack of space.

Simulatable auditor: As in the case of the max auditor,
before answering qt, the auditor generates random datasets
consistent with answers to past queries by generating col-
orings according to distribution P̃ as described above. For
each such dataset, X ′, he checks whether answering qt in
X ′ is likely to cause a privacy breach. This is done by gen-
erating random datasets consistent with all past answers as
well as the answer to qt in X ′ and estimating the posterior
probability that each xi lies in each interval. A significant
difference in the posterior and prior probabilities that any
xi lies in any interval implies that qt is not safe to answer in
the dataset X ′. If for a large fraction of sampled datasets,
qt is deemed unsafe, the query is rejected, otherwise it is
answered.

5. UTILITY
In this section we attempt to get a handle on the util-
ity provided by the existing online auditing algorithm for
sum queries over real-valued data taken from an unbounded
range. While there are several possible dimensions along
which utility can be measured (and we discuss these later),
the dimension that we consider here is the number of queries
posed by a user that are actually answered. In particular we
would like to measure the expected number of queries that
would be answered in a sequence of random queries 4 posed
by the user. The larger this number, the greater the utility
derived by the user. We show here a surprisingly positive
result for large databases - the number of queries that can
be answered is at least a constant fraction of the size of the
database.

The sum auditing algorithm can be found in [4, 11] and
was briefly described in Section 3.1. Essentially a diagonal-
ized form of the query matrix is efficiently maintained to
detect when individual values can be determined via Gaus-
sian elimination. We consider a series of random queries
posed to the auditor and compute the expected time to first
denial, Tdenial.

Theorem 8. E[Tdenial] ≥ n/5

Proof.

E[Tdenial] =

∞∑
m=1

mPr{Tdenial = m}

=

∞∑
m=1

Pr{Tdenial ≥ m}

= 1 +

∞∑
m=2

Pr{Tdenial ≥ m}

= 1 +

∞∑
m=2

Pr{No denial in q1 . . . qm−1}

We would thus like to get a lower bound on the probability
that there is no denial in the first m of a sequence of ran-
dom queries. Let the query vectors of the posed queries be
v1, . . . , vm and let A be the matrix of query vectors. Note
that v1, . . . , vm are random 0-1 vectors. Compromise occurs
if we can find any real-valued λis such that Σiλivi gives us a
unit vector (a vector with only one 1 and n− 1 0s). Let AT

be the transpose of the matrix A. AT is thus an n×m ma-
trix of 0s and 1s. Now if we could find some m-dimensional
vector w such that AT w gives us a unit vector then the el-
ements of w would correspond to the λis that give rise to
the privacy breach. w must thus be perpendicular to all
the rows in AT except for the one row which gives rise to
the 1 in the unit vector. We can now state that there is
no denial amongst the first m queries if and only if there
is no m-dimensional vector that is perpendicular to all but
one of the rows in AT . We thus need to lower bound the
probability that there is no such m-dimensional vector.

Note that if we could divide the rows of AT in to two
disjoint sets, each of which forms a basis for Rm, then there
could be no such vector. This is because there can be no m-
dimensional vector that is perpendicular to all the vectors

4A random query is a query drawn uniformly at random
from the set of all sum queries that could be formulated
over the data.
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that form the basis of Rm. So if we take any row in the
matrix and claim that there is some vector w perpendicular
to all other rows but this, we know that this is not possible
since a subset of the remaining rows must form a basis for
Rm. We thus need to lower bound the probability that AT

contains such a double basis. For this we consider the rows
of AT one after the other and calculate the probability that
both the first n/2 and the last n/2 rows span Rm separately.
The following lemma is useful in finding this probability:

Lemma 1. A hyperplane H in Rm can intersect Bm in
at most 2d(H) points where d(H) is the dimension of the
hyperplane.

Here B is the set {0, 1} and Bm is the boolean hypercube
in m dimensions. Note that the rows of AT correspond to
vertices of Bm. As we consider the rows of AT in order, we
would like to find the probability that a new row raises the
rank of the matrix. If i rows have been considered thus far,
they can span a hyperplane of dimension at most i. From
our lemma, this can intersect Bm in at most 2i points. Thus
there are 2i points in Bm that are linearly dependent on the
i rows and 2m − 2i points that are linearly independent. So
the probability that the i + 1st row raises the rank of the
matrix is simply 1 − 2i/2m > 1/2. We can thus consider
a process where we toss a coin n/2 times. At each time
step the probability of heads is 1/2 and we would like to
compute the probability that m of the tosses turn up heads.
This would be a lower bound for the probability that the first
n/2 rows of AT span Rm. Using Chernoff bounds, we can
show that if m ≤ n/5 then with high probability (1− o(1))
this happens. Similarly, the remaining n/2 rows also span
Rm with high probability. Thus

E[Tdenial] ≥ 1 +

n/5∑
m=2

Pr{no denial in q1 . . . qm−1}

= 1 +

n/5∑
m=2

1− o(1)

= n/5

Thus the first denial occurs after θ(n) queries. We now show
that it also occurs within θ(n) queries.

Theorem 9. E[Tdenial] ≤ n + log n + θ(1)

Proof.

E[Tdenial] =

∞∑
m=1

Pr{X ≥ m}

For m ranging from 1 to m∗ = n + log(n ln 2), we upper-
bound Pr{x ≥ m} by 1. This gives us

E[Tdenial] ≤ n + log(n ln 2)− 1 +

∞∑
m=m∗

Pr{X ≥ m}

= n + log(n ln 2)− 1 +
∞∑

m=m∗

Pr{no denial in q1 . . . qm}

Once again we consider the n×m matrix AT and the proba-
bility that there is no vector perpendicular to all but one of

its rows. Note that if these n rows were linearly independent
then there would always be such a vector. So we would like
to upper-bound the probability that the n random 0-1 rows
of the matrix are not linearly independent. If we call this
probability Pn,m, then we can show that Pn,m ≤ n/2m−n+1.
Thus

E[Tdenial] ≤ n + log(n ln 2)− 1 +

∞∑
m=m∗

n

2m−n+1

= n + log(n ln 2)− 1 +
n

2m∗−n

= n + log(n ln 2)− 1 +
1

ln 2
= n + log n + θ(1)

Thus we can expect the first denial to occur in θ(n) queries.
Note that our lower bound on the expected time to first
denial is a high probability result - with high probability
(1 − o(1)) there will be no denial in the first n/5 queries
posed to the database. This is a positive result for very
large datasets - since n is large, many queries will be an-
swered before even the first denial occurs.

The next question to ask is what happens after the first
denial. Note that once the rank of the query matrix reaches
n − 1, denials will happen with probability at least 1/2.
This because at least half the points in Bm will be linearly
independent of the rows of the query matrix and if any of
these are answered, the rank of the query matrix will reach
n, enabling the attacker to solve the system of equations
for all the points in the dataset. The question to answer is
thus how quickly does the rank of the query matrix become
n− 1 after the first denial. It seems that this would happen
rapidly since we can show, using similar arguments, that
the expected time till n − 1 linearly independent queries
are posed is θ(n). Not all these queries would be answered
however, and an exact analysis remains to be done.

In case n is small, the above would indicate a need to
relax some of the strict conditions required off an auditor -
in particular the requirement that an auditor answer truth-
fully, if at all. We suggest combining denials with adding
noise (as in the output perturbation approaches in [6, 8])
as a solution. The idea is to set a bound on the amount
of noise that can be added to any answer and then to add
noise (within this bound) to the answer to a query depend-
ing on how much private information the query reveals. If
the answer to a query would reveal the value of any individ-
ual no matter how much noise is added, the query should
be denied. Such an approach would probably enable us to
answer more queries than in the exact answer approach and
at the same time would probably give greater precision in
answers that are provided than a pure output perturbation
based approach. Another possible approach, if queries are
taken from some distribution other than uniform, is to deny
certain queries in the present (even if they do not cause a
privacy breach) in the hope that more queries can be an-
swered in the future.

Note that in addition to the number of queries that are
answered, there are several other dimensions along which
utility can be measured. There is the price of simulatability
- how many queries were denied when they could have been
safely answered because we did not look at the true answers
to the queries when choosing to deny them. Additionally,
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there might be some important, fairly generic queries that
the world would always like to have answered. For example
the total number of cancer patients in a particular hospital.
An auditing scheme that could deny such a query would be
considered to provide low utility. A complete analysis of all
these different aspects of utility is an avenue for future work.

6. CONCLUSIONS
We considered a wide variety of problems with the goal

of increasing the robustness of the notion of query auditing.
We considered the realistic scenario of non-static databases
and showed how existing algorithms could be modified to
work in this case. In the process we introduced a new simu-
latable algorithm for bags of max and min queries when the
database does not contain duplicates. An interesting avenue
for future work here is to devise an algorithm that works in
the presence of duplicates as well. The next problem we con-
sidered was building new simulatable auditors for different
kinds of queries under the new notion of probabilistic com-
promise and here we introduced auditors for max queries
and bags of max and min queries. Considering more com-
plex kinds of queries would be the next step. Further, we
gave an initial analysis of the utility of simulatable sum au-
diting showing a positive result for large databases. There
is scope for much future work here - the question of utility
for other types of queries and other dimensions of utility
mentioned in Section 5 remains unexplored.
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APPENDIX

A. MAX-AND-MIN AUDITING UNDER CLAS-
SICAL COMPROMISE

A.1 Proof of Theorem 1
Proof. If any query set has only one extreme element,

xi, then we know that the value of xi has to be the answer
to the corresponding query. In addition, if there exist a
max query and a min query with the same answer, a, then
their corresponding query sets can have only one element in
common whose value has to be a.

Now suppose that every query set has at least two ex-
treme elements. We first show how to assign values to each
of the xis so that the answers to the queries on these val-
ues will be consistent with the observed answers. Initially
mark all query sets as “unvisited” and all data elements as
“unchosen”. Then carry out the following procedure.

1: while there exist unvisited query sets do
2: Pick an arbitrary unvisited query set - Qk.
3: Find all other query sets of the same type (max or

min) as Qk with the same answer. Let the query sets
be Q and the answer be a.

4: Let E be the set of extreme elements common to these
query sets. Set some unchosen xi ∈ E to a.

5: Mark every query set in Q as “visited” and xi as “cho-
sen”.

6: if xi is also extreme for unvisited query set, Ql of
opposite type then

7: Go to step 3 with Qk = Ql.
8: end if
9: end while

10: Set every unchosen xi to some arbitrary value between
its upper and lower bound.

Algorithm 4: AssignValues

Clearly every unvisited query set has only at most one of
its extreme elements set to chosen and thus we can always
set the value of another extreme element to be the answer
to the query set when visiting it.

Suppose that after this process, an xi is uniquely deter-
mined to be either its upper or lower bound. Without loss
of generality, let’s assume that xi is set to its upper bound.
Look at all the max sets, QM , in which xi is an extreme
element. For each of these sets, there exists at least one
other extreme element, xj . Repeat the above procedure for
assigning values to elements starting out by visiting the sets
in QM and choosing xj . Since no other max set outside of
QM can contain xi as an extreme element, xi will either be
set to its lower bound (which is not equal to its upper bound
since no pair of max and min queries have the same answer)
or to some value between its upper and lower bound by the
end of this procedure. Yet the new assignment of values is
still consistent with the answers to the queries. Thus xi is
not in fact uniquely determined.

A.2 Proof of Theorem 2
Proof. If any of the conditions in the theorem are vio-

lated it is easy to see that the answers to the queries are
not consistent. It thus remains to show that any set of re-
sponses that satisfy the above conditions are consistent. We

show this by providing an assignment of values to elements
such that the responses to queries on these elements would
be the same as the observed responses. We first consider all
the query sets, Qi that have only one extreme element, xj .
We set xj = ai. Note that if any other max or min query,
Qk had xj as an extreme element, ak = ai and in this way
we satisfy all queries with xi as an extreme element. Now all
the remaining query sets have at least two extreme elements
that have not had values assigned to them as yet. Applying
Algorithm 4, we can get a feasible assignment of values to
the elements.

A.3 Proof of Theorem 3

Proof. Assume that qt is a max query (the claim for
min queries can be proved similarly). Observe that reveal-
ing at may affect elements in Qt and elements in other max
query sets intersecting Qt. This is because revealing at can
possibly lower the upper bounds of elements in Qt thereby
making some element in Qt or the max query sets intersect-
ing it the only extreme element of that set. Revealing at

would only affect other query sets (min query sets or other
non-intersecting max query sets) if it did in fact make one
of elements of an intersecting max query set a strictly ex-
treme element or if the answer to the query set was at. In
the former case compromise occurs any way, so it suffices to
consider only the impact that at has on Qt and intersecting
max query sets - Q1∗, . . . , Qm∗. We consider the following
cases:

• Qt = {xj}: Clearly xj is breached irrespective of at.

• xj is the only extreme element of Qt and |Qt| > 1:
Suppose that xj is uniquely determined for some value
of at in (a′s, a

′
s+1). This means that each element in

Qt − xj had an upper bound < at and hence less than
a′s (since an upper bound can only be one of the answers

so far). Since this holds even for at =
a′s+a′s+1

2
, xj is

still uniquely determined. A similar argument applies
for the converse.

• xj is the only extreme element of Qk∗ for some k: Sup-
pose that xj is uniquely determined for some value of
at in (a′s, a

′
s+1). This means that at < ak∗ (and hence

a′s+1 ≤ ak) and revealing at reduced the upper bound
of some element in Qk ∗ −xj . This would be the case

even when at =
a′s+a′s+1

2
. A similar argument applies

for the converse.

To complete the proof, we show that values of at in (a′s, a
′
s+1)

are either all consistent or inconsistent. Suppose that some
value of at in (a′s, a

′
s+1) results in inconsistency. This means

that either it causes some Qα to have no extreme elements
or it causes the inferable upper bound on some xi to become
smaller than its lower bound.

Suppose that the response at causes some Qα to have
no extreme elements. This could either be the result of an
immediate effect on Qt or one of the intersecting max query
sets or it could be the result of a trickle effect. In the former
case, suppose at causes either Qt or an intersecting max
query set to have no extreme element. Then every element in
Qα must have had an upper bound < at and hence less than
a′s. This is true for any at in (a′s, a

′
s+1). If the inconsistency

was brought about by a trickle effect that was spawned by
either Qt or an intersecting max query set having a single
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extreme element, xj , then any other at in (a′s, a
′
s+1) would

cause xj to become strictly extreme thereby spawning the
same trickle effect.

Similarly, we can show that if at causes the inferable upper
bound on some xi to become smaller than its lower bound,
either directly or through a trickle effect, we can achieve the
same effect by using any at in (a′s, a

′
s+1).

B. ALGORITHM 5

1: Input: Queries and Answers qj and aj for j = 1, . . . , t
and parameters λ, α, n.

2: Let safe = true
3: for each xi and each interval Ij in I do
4: if xi ∈ S and [max(S) = M ] ∈ Bmax then

5: Let y = (1−1/|S|)
Mα

6: if j < dMαe then
7: if α× y < (1− λ) OR > 1/(1− λ) then
8: Let safe = false
9: end if

10: else if j = dMαe then
11: if α((Mα − dMαe + 1)y + 1/|S|) < (1 − λ) OR

> 1/(1− λ) then
12: Let safe = false
13: end if
14: else
15: Let safe = false
16: end if
17: else if xi ∈ S and [max(S) < M ] ∈ Bmax then
18: Let y = 1

Mα
19: if j < dMαe then
20: if α× y < (1− λ) OR > 1/(1− λ) then
21: Let safe = false
22: end if
23: else if j = dMαe then
24: if yα(Mα−dMαe+1) < (1−λ) OR > 1/(1−λ)

then
25: Let safe = false
26: end if
27: else
28: Let safe = false
29: end if
30: else
31: Let safe = true
32: end if
33: end for
34: Return safe.

Algorithm 5: Safe

C. PROOF OF LEMMA 1
Proof. Let B be the set {0, 1}. Bm is then the boolean

hypercube in m dimensions. A hyperplane H is a set of the
form {v +

∑l
i=1 λivi} where v, v1, . . . , vl are points in Rm

and λi range over the reals. In our scenario, v = (0, . . . , 0)
since our hyperplane always passes through the origin. The
span of a hyperplane is the set of points which can be written
as x − x′ where x, x′ ∈ H. Note that the span is a linear
subspace of Rm. We define the dimension d(H) of H to be
the dimension of its span. Our claim is that a hyperplane
H in Rm can intersect Bm in at most 2d(H) points.

The proof is by induction on m. Let l = d(H). Note that
l ≤ m. The case m = 1 is trivial.

Suppose m > 1. If l = m, the statement is true since
|Bm| = 2m = 2l. The remaining case is when m > l. As-
sume for a contradiction that x1, . . . , xk are distinct points
in Bm ∩H with k > 2l.

Let Pj denote the projection map from Rm to Rm−1 that
simply omits the jth dimension. Consider the points Pjx1, . . .
Pjxk. If, for some j, these points are all distinct, we then
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have k distinct points in PjB
m∩PjH = Bm−1∩PjH. Since

projecting a hyperplane cannot increase its dimension, we
have a contradiction to the induction hypothesis.

The other possibility is that, for each j, there are two
different points xi1 and xi2 with Pjxi1 = Pjxi2 . Since xi1 6=
xi2 , xi1 and xi2 must differ on the jth coordinate and be the
same on all others. It follows that the vector ej , which has
a 1 in the jth position and 0 elsewhere, is in the span of H.
But since this happens for each of the m dimensions j, the
span of H has dimension m > l, which is a contradiction.
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