
Version Spaces and the Consistency Problem

Haym Hirsh ∗ Nina Mishra † Leonard Pitt ‡

December 17, 2003

Abstract

A version space is a collection of concepts consistent with a given set of positive and negative examples.
Mitchell [Mit82] proposed representing a version space by its boundary sets: the maximally general (G)
and maximally specific consistent concepts (S). For many simple concept classes, the size of G and S is
known to grow exponentially in the number of positive and negative examples. This paper argues that
previous work on alternative representations of version spaces has disguised the real question underlying
version space reasoning. We instead show that tractable reasoning with version spaces turns out to
depend on the consistency problem, i.e., determining if there is any concept consistent with a set of
positive and negative examples. Indeed, we show that tractable version space reasoning is possible if
and only if there is an efficient algorithm for the consistency problem. Our observations give rise to
new concept classes for which tractable version space reasoning is now possible, e.g., 1-decision lists,
monotone depth two formulas, and halfspaces.1

1 Introduction

The problem of inductive learning is to extrapolate from a collection of training data — a set of examples
each labeled as either positive or negative by some unknown target concept — a concept definition that
accurately labels future, unlabeled data. Most inductive learning algorithms operate over some concept class
— the set of concepts that the learner can potentially generate over all possible sets of training data.

Mitchell’s [Mit82] introduction of the notion of a version space provided a useful conceptual tool for
inductive learning. Given some concept class C, the version space for a set of examples is simply the set
of concepts in C that are consistent with the data, i.e., that correctly label the set of examples. Its name
originates from the idea that all and only plausible versions of the unknown target concept are retained in
this space.

To learn and reason using version spaces Mitchell proposed representing a version space by maintaining
only the set of maximally general (G) and maximally specific (S) consistent concepts in the space. He
called these the version space’s boundary sets since they bound the set of all concepts in the version space.
Maintaining boundary sets is clearly more efficient than explicitly maintaining all elements of a version
space, since boundary sets include only a subset of the full version space. However, even the boundary-
set representation has a number of serious limitations. For example, Haussler [Hau88] showed that for the
concept class of positive-monotone terms over n variables (i.e., simple conjunctions of subsets of n unnegated
Boolean attributes) there are cases where after a number of examples linear in n, the boundary set G has size
exponential in n. Further, for infinite concept classes, boundary sets can have potentially infinite size, and
in some cases (for inadmissible concept classes [Mit82]) it is not even possible to represent a version space

∗Rutgers University, hirsh@cs.rutgers.edu. Supported in part by NSF Grant IRI-9209795.
†HP Labs and Stanford University, nmishra@theory.stanford.edu. Supported in part by NSF Grant EIA-0137761.
‡University of Illinois at Urbana-Champaign, pitt@uiuc.edu. Supported in part by NSF Grant IIS-9907483.
1This paper expands and updates the results presented by Hirsh, Mishra, and Pitt (1997).

1

by its boundary sets. (See Section 3 for further discussion of concept classes that exhibit various pathologies
of this sort.)2

A number of papers have proposed alternative representations for version spaces to overcome some of
these limitations. Smith and Rosenbloom [SR90], for example, showed that it is possible to maintain the S
and G boundary sets for all the positive data but only a selected subset of the negative data, along with a set
N of the unprocessed negative examples to guarantee tractable version-space learning for a constrained class
of conjunctive languages. Subsequent work [Hir92] took this further, doing away with the set G altogether,
and instead using an [S, N] representation that maintains only the boundary set S together with the set N
of all negative examples. For many concept classes it was shown that most of what could be done with the
[S, G] representation could be accomplished with the [S, N] representation. Moreover, tractability guarantees
could be given due to the more modest representational requirement of maintaining a single boundary set. In
contrast, both Lau, Wolfman, Domingos, and Weld [LWDW03] and Smith [Smi95] consider more markedly
different representations of version spaces. Lau et al. present compositional approach that they call a
“version space algebra” that can broaden the use of version spaces on more realistic tasks (for example, to
automate repetitive text editing). Smith presents a more theoretical broadening of version spaces in which
they are represented by grammars and operations over them.

This paper argues that the entire focus of such previous work on version-space representations disguises
the real question underlying effective learning and reasoning with version spaces. We show that if the goal is
tractable learning and reasoning with version spaces, the focus should be on finding efficient algorithms for
the consistency problem — the problem of determining if any concept in a given concept class C correctly
classifies a given set of positive and negative examples. We demonstrate that almost all operations performed
on version spaces for any concept class C can be efficiently executed if and only if there is an efficient
solution to the consistency problem for C. In version-space terminology, this says that almost all version-
space operations can be efficiently executed if and only if there is an efficient way of determining whether
a version space has collapsed, i.e., is empty. The focus of past work on version-space representations has
instead entangled questions about the tractability of computing various version-space operations within
the representation with questions about representational adequacy (such as about the inadmissibility of a
concept class). We will show that there are concept classes where boundary sets are intractable or ill-defined,
yet because the consistency operation is tractable for these classes most version-space operations are also
computable tractably. Thus, for example, the class of 1-decision lists [Riv87] can have both boundary sets
grow exponentially large in the amount of data, yet because the consistency problem is tractable for 1-decision
lists, so too are many of the most common version-space operations.3 There are therefore problems in which
version spaces are intractable if one is forced to use boundary-set representations, but where version-space
operations are tractable when they are computed directly on the data using computations that can exploit
tractable procedures for testing consistency. To motivate our work we present additional negative results of
this sort concerning the use of boundary sets. We give numerous examples where manipulating boundary
sets can be difficult because the number of elements or the size of the elements in the boundary sets may be
large or the boundary sets may be undefined. We show cases where even determining how many elements
are in the boundary sets can be extremely difficult.

Our positive results establish a number of key equivalences between various version-space operations.
Clearly the question of whether there exists any concept c in a concept class C that is consistent with
positive data P and negative data N is equivalent to the question of whether the version space for P and
N has collapsed, i.e., whether there are no concepts c consistent with the data. More interesting is that
the operation of classifying a new example using a partially learned version space — determining if every
element of a version space classifies the example identically and what the classification is — is computationally
tractable if and only if the consistency problem is tractable.

Given that one of the main insights and sources of power concerning version spaces is that they provide a

2Version spaces also clearly face a number of other difficulties, such as in their limited capacity to handle noisy data or
concept classes that do not contain the target concept [Utg86, Hir94], but we concern ourselves in this paper solely with
limitations of version spaces that are present even when these are not at issue.

3It is interesting to contrast this with the case of conjunctions of existentially quantified predicates, which Haussler [Hau89]
showed can have exponential boundary sets, but for which consistency is not computable tractably.

2

way to classify future, unseen examples even when insufficient data have been obtained to identify the unique
identity of the target concept, we take a moment here to sketch the simple argument of the equivalence. To
classify an example x according to the version space defined by positive examples P and negative examples
N , we run the consistency algorithm twice. The first time, we run the algorithm assuming x is a positive
example (i.e., with positives P ∪ {x} and negatives N). If no consistent concept exists (i.e., if the version
space collapses), then every consistent concept must classify x negative. Otherwise, we run the consistency
algorithm assuming x is a negative example (i.e., with positives P and negatives N ∪ {x}). Similarly, if no
consistent concept exists, then every consistent concept must classify x positive. If neither case holds, there
must be at least one consistent concept that classifies x positive and at least one that classifies x negative
— the label of x is not determined by the version space, and, consequently, x is labeled “?”.

In addition to this equivalence, we show that determining whether the version space for one set of data
is a subset of the version space for a second set of data is computationally equivalent to the consistency
problem (and thus also equivalent to the problem of classifying examples using partially learned version
spaces). Finally, a tractable solution to any of these operations also implies that it is possible to test if
two version spaces are equivalent. The positive consequence of the above equivalences is that many classes
previously not tractable using the boundary-set representation for version spaces can now be learned in
the version-space framework. Such concept classes include, for example, 1-decision lists, half-spaces, and
conjunctions of Horn clauses.

In Section 2 we give necessary preliminaries and notation, and formally define the problems addressed
in the paper. After considering in Section 3 various boundary-set pathologies as discussed above, we prove
in Section 4 that classifying an example with a partially learned version space is computationally exactly
the consistency problem, and that almost all of the standard operations on version spaces can be performed
using an efficient solution to the consistency problem. The main moral of this paper is that when dealing
with version spaces, the operative question should not be “What is a good representation of the version
space?”, but rather “Is there an efficient consistency algorithm?” We make this more explicit in Section 5 by
exhibiting concept classes where version-space manipulations turn out to be quite easy, since these classes
have efficient consistency algorithms — whereas maintaining boundary sets for these concept classes can be
intractable or even impossible.

2 Definitions and Notation

Concepts. Let V = {v1, . . . , vm} be a collection of Boolean variables. An example v is any assignment
of the variables in V to 0 or 1, i.e., v ∈ {0, 1}m. We use the terms example, vector, and assignment
interchangeably. We denote by X the space of all examples {0, 1}m. A concept c is a subset c ⊆ X . An
example x ∈ X is said to be labeled positive by c if x ∈ c, and negative otherwise. A concept class, C ⊆ 2X ,
is a collection of concepts. A concept c is not typically represented “extensionally” by explicitly listing
its elements, but rather “intensionally” by giving a representation r for c from which one can efficiently
compute whether a given example x is in c. More generally, concept classes C are defined by describing a
collection of admissible representations R, where each r ∈ R denotes some concept c, and where C is the set
of representable concepts. For simplicity of exposition we will ignore this distinction, except where it helps
to clarify a technical point.

Boolean formulas, etc. A Boolean function f(v1, . . . , vm) is a function f : {0, 1}m → {0, 1}. A monotone
Boolean function f has the property that if f(x) = 1 then for all y ≥ x, f(y) = 1, where “≥” is defined by
the partial order induced by the n-dimensional Boolean hypercube {0, 1}m. Equivalently, y ≥ x means that
each bit of the vector y is at least as large as the corresponding bit of x. The class of Boolean formulas F
over variable set V = {v1, . . . , vm} is defined inductively as follows: (1) each of the symbols {0, 1, v1, . . . , vm}
is a Boolean formula over V ; (2) if F1 and F2 are Boolean formulas over V then so are (F1 ∨ F2), (F1 ∧ F2);
and (3) if F1 is a Boolean formula over V then so is F1. The class of monotone Boolean formulas F is
defined inductively in the same way, but using only rules (1) and (2). Thus, a monotone Boolean formula is
one which contains no negation symbols. We use the terms formula and expression interchangeably. Each

3

Boolean formula over V describes a Boolean function of m Boolean variables in the usual way, with the
standard interpretation of the logical connectives ∨ (OR), ∧ (AND) and ¬ (NOT).

A monotone Boolean function f can be described by its minimally positive assignments (minimal models).
A minimally positive assignment of f is a positive assignment with only negative assignments below it, i.e.,
a vector v ∈ {0, 1}m such that f(v) = 1 and for all u < v f(u) = 0. A monotone Boolean function can also
be described dually by its maximally negative assignments, i.e., the vectors u such that f(u) = 0 and for all
v > u, f(v) = 1.

A term t is the function represented by a simple conjunction (AND) t = vi1 ∧ vi2 ∧ · · · ∧ vis
of literals vij

,
where a literal is either a variable xi or its negation xi. A term is monotone if all literals in its representation
are unnegated variables. Henceforth, we consider only monotone terms. The (monotone) term t evaluates
to 1 if and only if each of the variables vi1 , vi2 , . . . , vis

have value 1. Similarly, a monotone clause c is the
function represented by a disjunction (OR) c = vj1 ∨ vj2 ∨ · · · ∨ vjr

of variables. The clause c evaluates to 1
if and only if at least one of the variables vj1 , vj2 , . . . , vjr

has value 1.
A monotone DNF expression is a disjunction (OR) of monotone terms t1∨ t2∨· · ·∨ ta, and evaluates to 1

iff at least one of the terms has value 1. If T = {t1, . . . , ta} is a set of terms, then ∨T is the DNF expression
t1∨ t2∨· · ·∨ ta. Similarly, a monotone CNF expression is a conjunction of monotone clauses c1∧c2∧· · ·∧cb,
and evaluates to 1 iff each of the clauses has value 1. If C = {c1, . . . , cb} is a set of clauses then ∧C is the
CNF expression c1 ∧ c2 ∧ · · · ∧ cb.

A decision list is an ordered sequence of if-then-else statements. The sequence of if-then-else conditions
are tested in order and the answer bit associated with the first satisfied condition is output. In the following
decision list the answer bit bi ∈ {0, 1}, each ci is a term, and p corresponds to some example.

if c1(p) then b1

else if c2(p) then b2

..
else bq

Decision lists are typically written in the form (c1(p), b1), (c2(p), b2), . . . , bq. In a k-decision list (k-DL), each
term ci has no more than k variables.

A Horn clause resembles a rule vj1 ∧ · · · ∧ vjr
→ vj . A Horn clause evaluates to 0 if and only if the

antecedent (vj1 ∧ · · · ∧ vjr
) evaluates to 1 and the consequent vj evaluates to 0. A Horn sentence is a

conjunction of Horn clauses.

Version Spaces. For a set of positive examples, P , negative examples, N , and a concept class, C, the
version space is the set of all concepts in C consistent with P and N [Mit82]. We use CP,N to denote the
version space induced by P and N . Specifically, CP,N = {c ∈ C : P ⊆ c, and N ∩ c = ∅}. If CP,N is empty
we say that the version space has collapsed; if it contains a single concept we say that the version space has
converged.

A version space can be viewed as a function. In particular, if every element of a version space labels an
example x positive then that example x can be unambiguously labeled positive since the target concept is
one of the elements in the version space and, independent of which element is the target, the example x is
labeled positive. Similarly if every element of a version space labels an example x negative. We thus define,
for a version space CP,N , a corresponding function, classify(CP,N), that, given an example, outputs a label
that reflects the consensus of concepts in CP,N :

classify(CP,N)(x) =















“∅” if CP,N is empty
“+” if x ∈ c for all c ∈ CP,N

“−” if x 6∈ c for all c ∈ CP,N

“?” otherwise

We sometimes abuse notation and write CP,N (x) instead.
The tractable computation of the classify function is one of the key questions that we study here:

Definition 2.1 A concept class C is (efficiently) version-space predictable if there exists an algorithm that,

4

given a set P of positive examples, a set N of negative examples, and an example x, outputs CP,N (x) in time
polynomial in |P |, |N |, and |x|.

Note that we are only interested in the question of the tractable computation of CP,N (x) for concept
classes C that are “missing” some concepts, i.e., C 6= 2X . Otherwise, if C = 2X (e.g., if C is the class of
Boolean formulas in Disjunctive Normal Form (DNF)) then it is easy to see that C is trivially version-space
predictable. In particular, since every Boolean function can be represented as a DNF, for any example x
that is not in P ∪ N , half of the concepts in CP,N classify x as positive, and half classify x as negative4.
Consequently, CP,N (x) =?. Note also that learning is impossible under such circumstances without additional
assumptions, e.g., the choice of a restricted space of hypotheses given by bounding the size of the DNF, or
by other syntactic or semantic constraints. The choice of restriction is more commonly called the bias of the
learning algorithm [Mit97].

The consistency problem for C can be summarized as the problem of determining if there is a concept in
C that correctly labels a given set of positive and negative examples. More formally stated,

Definition 2.2 The consistency problem for C is: Given a set P of positive examples and a set N of
negative examples, is CP,N 6= ∅?

Notice that the consistency problem is exactly the question of whether a version space induced by P and
N has not collapsed.

We’ll say that the consistency problem for C is efficiently computable if there is an algorithm for the
consistency problem for C that runs in time polynomial in |P | and |N |. The definition of the consistency
problem and its efficient computability is not as general as the one given in [AHHP98], but is sufficient for
our purposes.

In many references [BEHW89, PV88, AHHP98], the consistency-problem definition requires that a con-
sistent hypothesis be explicitly output if one exists. While our main results do not require that a hypothesis
be output, all of the algorithms we exhibit in Section 5 actually output consistent hypotheses.

Other questions that we address in later sections include whether one version space is a subset of another,
and whether two version spaces are equivalent.

Definition 2.3 The version space for a concept class C is subset-testable if there exists an algorithm that,
given two sets of positive examples, P1 and P2, and two sets of negative examples, N1 and N2, determines
in time polynomial in |P1|, |P2|, |N1|, and |N2|, whether CP1,N1 ⊆ CP2,N2 .

Definition 2.4 The version space for a concept class C is equivalence-testable if there exists an algorithm
that, given two sets of positive examples, P1 and P2, and two sets of negative examples, N1 and N2, deter-
mines in time polynomial in |P1|, |P2|, |N1|, and |N2|, whether CP1,N1 = CP2,N2 .

Throughout the paper, “efficient” computation means “deterministic polynomial-time” in the relevant
parameters.

Finally, we define the set of maximally general and maximally specific concepts. These sets have tradi-
tionally been the tools used to represent version spaces.

Definition 2.5 For a concept class C, positive examples P , and negative examples N :

• A concept c ∈ C is maximally specific if c is consistent with P and N and if for each c′ ∈ C such that
c′ is more specific than c, c′ is not consistent with P and N . The maximally specific set (S) refers to
the set of all maximally specific concepts.

4Note that since X = {0, 1}m and since there are 22
m

different Boolean functions, the number of functions that classify a
particular example x positive is 22

m−1. Thus exactly half of the consistent functions classify x as positive. Similarly if x is
classified as negative.

5

• A concept c ∈ C is maximally general if c is consistent with P and N and if for each c′ ∈ C such that
c′ is more general than c, c′ is not consistent with P and N . The maximally general set (G) refers to
the set of all maximally general concepts.

The maximally specific set and maximally general set are commonly referred to as the boundary sets.

3 Boundary Set Pathologies

Whether various version space operations from boundary sets S and G can be tractably performed depends
on the structure and representation of S and G. There are many circumstances where manipulating one or
both of these sets is problematic. For example, the number of elements in both S and G can grow large
quickly, S and/or G may have only one element but the representation of that element may be exponentially
large, and S and/or G may not be well-defined. In addition, testing whether a given set of concepts C′ is
equal to G or S (induced from known P and N) can be hard. In some cases simply determining how many
elements are in G or S can be hard.

In this section we concretely demonstrate such situations. The reader already convinced may skip this
section. More specifically, we’ll exhibit the following pathologies.

• For the class of 1-decision lists we give a set of O(n) examples for which the corresponding sets G and
S have size Ω(n!2n).

• For the subclass of monotone depth-two formulas we’ll give a set of O(n) examples for which |G| =
|S| = 1, but the size of the single element in each case is exponentially large.

• For the class of monotone terms we show that determining whether a given set of monotone terms
F is equivalent to G is as hard as a well-known problem for which the best known running time is
quasi-polynomial.

• For the class of monotone terms, we show that just determining |G| is #P-complete5 via a reduction
from the problem of counting minimal vertex covers.

• We give some examples of ill-defined (“inadmissible”) boundary sets.

Later in Section 5 we’ll see that even though the classes discussed in this section are not version space
predictable using boundary sets, all are (efficiently) version space predictable via efficient algorithms for the
consistency problem.

Large Boundary Sets: 1-Decision Lists. Haussler [Hau88] showed for the class of terms that one
boundary set can grow large very quickly. Single-sided boundary set representations of the type described
in the introduction, where only one of the boundary sets is maintained, can be used to effectively deal with
this problem. In addition, Haussler showed that both boundary sets can quickly grow large for a relational
concept class. We show that both boundary sets can grow large even for a simple propositional class, 1-DLs.
We next demonstrate that both G and S can grow to size at least n!2n after O(n) examples. Thus, even
single-sided boundary set representations like [S, N] are not in general tractable to maintain.

Rivest [Riv87] proposed k-decision lists as an interesting class of Boolean functions that properly contains
DNF (and CNF) formulas where each term (respectively, clause) has no more than k variables. The class
of 1-Decision Lists (1-DLs) generalizes terms and clauses of (single) variables: A conjunction of literals
`1 ∧ `2 ∧ . . . ∧ `s can be represented as the 1-DL (`1, 0), (`1, 0), . . . , (`s, 0), 1, and a disjunction of literals
`1 ∨ `2 ∨ . . . ∨ `s can be represented as the 1-DL (`1, 1), (`2, 1), . . . , (`s, 1), 0.

To describe the positive and negative examples, we introduce some notation. Let ~1 (resp, ~0) be a
vector of length 2n such that every bit position is 1 (resp, 0). Let ~1i (resp, ~0i) be a vector of length

5A formal definition of #P-complete can be found in [GJ79]. Intuitively, #P is the counting analog of NP. For example,
while the decision problem of determining whether a given graph has a vertex cover of size k is NP-complete, the problem of
counting the number of minimal vertex covers is #P-complete.

6

2n with all bit positions set on (resp, off) except for i and i + 1. Let pi = 02i
~1 and ni = ~012i over the

variables u1, v1, . . . un, vn, x1, y1, . . . , xn, yn. The positive and negative examples that result in excessively
large boundary sets are P = {pi : i = 1, . . . , n} and N = {ni : i = 1, . . . , n}. We show in the appendix that
for P and N as given that both boundary sets have size exponential in n.

Theorem 3.1 For the concept class of 1-DLs and for P, N as given above, the size of both G and S is
Ω(n!2n).

Large Singleton Boundary Sets: Monotone Depth-two Formulas. Even boundary sets with only
one element can exhibit pathologies if that single concept has only exponentially large representations. We
demonstrate this for the class of depth-two monotone formulas. Depth-two formulas are those whose tree
representation has depth at most two, hence are identical to the class of CNF ∪ DNF. With the same set
of training data given for the 1-decision list case, the boundary set S (respectively, G) contains only the
monotone depth-two formula representing the Boolean function

fS = ((u1 ∧ v1) ∨ (u2 ∧ v2) ∨ · · · ∨ (un ∧ vn)) ∧ (x1 ∧ y1 ∧ · · · ∧ xn ∧ yn)

(respectively, fG = (u1 ∨ v1 ∨ · · · ∨ un ∨ vn) ∨ (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn)).

As described, both fS and fG have polynomial-sized depth-three representations. In order to represent
fS (respectively, fG) as a depth-two formula, i.e., in its unique reduced CNF (respectively DNF) form, the
size of the representation will exponentially increase to O(2n).

Notice also that since the CNF and DNF for a function both provide lower bounds on the size of the
smallest decision tree (the branches from the root to the “1” leaves give the DNF of a function) a lower
bound of Ω(2n) follows also for decision trees capturing these functions.

Testing Equivalence. Testing whether a given set of concepts F is equivalent to G may be important for
algorithms that generate elements of the G set incrementally. Such a test may form the basis for algorithm
termination.

However, determining whether F is equivalent to G can be problematic even for simple classes – we
illustrate this difficulty for the class of monotone terms. We show that determining equivalence with G is
as hard as determining if a given monotone CNF and DNF are equivalent. While the general complex-
ity of the DNF/CNF equivalence problem is not known, it is unlikely to be NP-hard given Fredman and
Khachyian’s [FK96] quasi-polynomial time algorithm, i.e., runs in time O(`o(log `)) where ` = |terms in
DNF|+ |clauses in CNF|.

Theorem 3.2 Let C denote the class of monotone terms. Let N be a set of negative examples and GN be
the corresponding maximally general set. Given N and a set of terms F , determining if F = GN is as hard
as determining if a given monotone CNF and monotone DNF are equivalent.

Proof: We show how an algorithm for solving F = GN can be used to solve the CNF/DNF equivalence
problem. Let C (respectively D) be the monotone CNF/DNF formulas that we want to test for functional
equivalence. We transform C into a collection of negative examples as follows: for each clause c in C, create
a negative example with 0s wherever there is a variable in c and 1s everywhere else. We transform D into G
in the expected way, namely G is the set of terms in D.

We now show that GN corresponds to the DNF description of C. By definition, the maximally general
terms GN for a set of negative examples N are those terms t for which t is consistent with N and for
which any generalization of t is not consistent with N . (A term is made more general by dropping one or
more literals.) Also, the reduced DNF description DC of C (or any monotone function) can be obtained by
identifying those terms t for which t → C and t′ 6→ C for any generalization t′ of t. It is evident then that
if we choose N to be the maximally negative examples of C that t is a term in DC if and only if t ∈ GN :
Since t→ C, every negative example of C is also a negative example of t. Thus, if t is a term in DC then by
definition t is consistent with N . Further, if t is a term in DC , then any generalization of t is not consistent

7

with N , since such a generalization t′ of t consistent with N would imply that t′ → C, contradicting the
assumption that t′ is in DC . The proof that if t ∈ GN then t is a term in DC is similar.

Since F is essentially D and we’ve shown that GN is essentially the DNF description of C, it follows that
F = GN if and only if C = D: If F = GN then since GN is the DNF description of C, then F must also
equal the DNF description of C and since F is essentially D, we have that C = D. In the case that F 6= GN ,
we know that the DNF description of C is not equivalent to F (D), and thus C 6= D. �

Cardinality of G. If the cardinality of G is very large, it may not be worth constructing since it will take
too long to generate. Thus in some circumstances, having an algorithm that can determine the cardinality
of G may save wasteful computation time.

However, beyond identifying G or determining if we have G, simply determining the cardinality of G can
be problematic. We show that determining |G| is #P-hard for the class of monotone terms via a reduction
from counting the number of minimal vertex covers [GJ79] in a graph. The latter problem is known to be
#P-hard [Val79].

Theorem 3.3 Determining |G| is #P-hard for the class of monotone terms.

Proof: Given a graph (V, E), we construct a set of negative examples N such that the set of maximally
general conjunctive concepts (i.e., the set G) has a one to one correspondence with the set of minimal vertex
covers, thus showing that determining the cardinality of |G| is #P-hard.

For each vertex i of the graph we create a Boolean variable xi. For each edge (i, j) in the edge set E of the
graph, let nij be the assignment with bits i and j off and the remaining bits on. Let N = {nij : (i, j) ∈ E}
be all such negative examples. We show that c is a monotone conjunctive concept consistent with N if and
only if Vc = {i : xi appears in c} is a vertex cover of the graph. If c is consistent with N then for each point
ni,j ∈ N , c contains either xi or xj (recall c is monotone). So, by construction, for each edge (i, j) ∈ E, Vc

contains either vertex i or j, and thus Vc is a vertex cover. Conversely, if V ′ ⊆ V is a vertex cover, then the
term c = ∧v∈V ′v does not cover any element of N since to avoid covering some nij , c contains either xi or
xj .

In the construction, the variables of a consistent term correspond to the vertices in a vertex cover.
Consequently, the variables in a maximally general term correspond to vertices in a minimal vertex cover.
So counting the minimal vertex covers is exactly the problem of determining |G|. �

This theorem provides an interesting contrast to the results of Smith and Rosenbloom [SR90]. Their
results imply that, when learning monotone terms, G must be a singleton set if learning from a set of data
where every negative example is a “near miss” (each has only one negated literal and the rest are positive).
Instead, if we call data where every negative example has exactly two negated literals and the rest positive
“almost near misses”, then even in the restricted case of learning monotone terms with only almost near
misses, not only is the G set no longer singleton, computing G may require time exponential in |P | + |N |
(by the construction above, since the number of minimal vertex covers can be exponential in the size of the
input), and, as just shown, even simply determining G’s size is #P-hard.

Finally, since the overall size of the version space is an upper bound on the size of G, one might instead
try determining the number of concept definitions in the overall version space. If this number is small, so,
too, is the size of G. Unfortunately, counting the total number of all vertex covers (whether minimal or not)
is also #P-hard, and thus the construction in the proof above also demonstrates that counting the number
of elements in a version space is #P-hard.

Ill-Defined Boundary Sets: Halfspaces. The preceding concept classes had finite cardinality, hence
infinite boundary sets were not an issue. Consider the concept class of (open or closed) halfspaces over two
real-valued variables x and y. Initially, G is the halfspace that includes the whole space (representable by
x <∞) and S is the empty halfspace (representable by x ≥ ∞).

Suppose one positive and one negative example are given, e.g., P = {(0, 0)} and N = {(1, 0)}. The S
set for this data would have an infinite number of concepts, since there are an infinite number of (closed)
halfspaces that are incomparable but pass through (0, 0) and exclude (1, 0) (each is of the form y ≥ mx

8

for some m > 0 or y ≤ mx for some m < 0). A similar argument shows that there are an infinite number
of concepts in G, since there are an infinite number of (open) halfspaces that are incomparable that pass
through (1,0) that include (0,0) (namely, for every b 6= 0 the open halfspace that goes through (1, 0) and
(0, b) with the orientation of the half space including (0, 0)).

The preceding examples gave cases where boundary sets would have an infinite number of concepts. The
same argument yields cases where boundary sets need not even be well-defined. If the concept class was
solely open halfspaces then S is undefined and if the concept class was closed halfspaces then G is undefined
— these are examples of inadmissible concept classes [Mit82].

4 Consistency is Key

In this section we prove one of the main results of the paper - that the consistency problem is equivalent to
a variety of other version-space problems (defined in Section 2).

Theorem 4.1 For concept class C, the following are equivalent:

(i) The consistency problem for C is efficiently computable.

(ii) There is an efficient algorithm for testing whether the version space for C collapses.

(iii) C is efficiently version-space predictable.

(iv) The version space for C is efficiently subset-testable.

(v) The version space for C is efficiently equivalence-testable.

Proof: We show that the consistency problem is equivalent to each of the others.
(i) iff (ii) Determining whether there exists a concept c ∈ C consistent with P and N is exactly the problem
of determining whether the version space CP,N has not yet collapsed.

(i) iff (iii) An algorithm for the consistency problem can be used to solve the version space prediction
problem, i.e. to predict CP,N (x) as follows:

1. Run the consistency algorithm on inputs P ∪ {x}, N and then again on P, N ∪ {x}.

2. If (a) Both fail then output ∅ (b) Only the first succeeds then output “+” (c) Only the second succeeds
then output “-” (d) Both succeed output “?”.

To see why this works note that: (a) If both fail then no concept consistent with P and N classifies x positive,
since CP∪{x},N = ∅. Further, no concept consistent with P and N classifies x negative, since CP,N∪{x} = ∅.
This can only happen if there are no consistent concepts, i.e., if CP,N is itself empty. (b) If only the first
succeeds then since the second failed, that is CP,N∪{x} = ∅, we know that no concept in CP,N classifies x
negative. As a result, every concept in CP,N must classify x positive. Thus CP,N (x) = “+′′. (c) Similar to
part b. (d) If both succeed then there is a concept in CP,N that classifies x positive and another concept in
CP,N that classifies x negative. Thus CP,N (x) = “?′′.

Observe that if the consistency algorithm is efficient, i.e., runs in time p(|P |, |N |), where p is some
polynomial, then the version-space prediction algorithm runs in time p(|P ∪ {x}|, |N |) + p(|P |, |N ∪ {x}|),
and is also efficient.

Conversely, if C is version-space predictable then, by definition, the consistency problem is efficiently
computable. To determine if there is a concept in C consistent with P and N , use the version-space
prediction algorithm to classify CP,N (x) for an arbitrary example x in X . There is no concept consistent
with P and N if and only if the version-space prediction algorithm outputs “∅”, i.e., if the version space has
collapsed.

(i) iff (iv) Suppose we have an efficient consistency-testing algorithm. Given (P1, N1) and (P2, N2), we show
how to test whether CP1,N1 ⊆ CP2,N2 . First, test if CP1,N1 = ∅. If so, then CP1,N1 ⊆ CP2,N2 . Otherwise,

9

check that for every p ∈ P2 CP1,N1(p) = “+”, and for every n ∈ N2, CP1,N1(n) = “−”. (Such a check can be
performed since we have just shown (i) iff (iii).) If all of these hold, then every concept in CP1,N1 classifies
P2 and N2 correctly, and CP1,N1 ⊆ CP2,N2 . If one of these tests fails, then for some p ∈ P2, CP1,N1(p) =
“−”or “?”, or, for some n ∈ N2, CP1,N1(n) = “+”or “?”. In the first case (second case similar), either all
c ∈ CP1,N1 have c(p) = “−”, or for some c and c′ in CP1,N1 , c(p) = “−”and c′(p) = “+”. Regardless, some
c ∈ CP1,N1 classifies p ∈ P2 incorrectly, and CP1,N1 is not a subset of CP2,N2 .

Conversely, to use an efficient test for CP1,N1 ⊆ CP2,N2 as the basis for efficiently solving the consistency
problem, note that CP,N = ∅ if and only if for arbitrary x ∈ X , CP,N ⊆ C{x},{x} since C{x},{x} is an empty
version space.

(i) iff (v)
To see that (i) implies (v), observe that two version spaces CP1,N1 and CP2,N2 are equal if and only if

both CP1,N1 ⊆ CP2,N2 and CP1,N1 ⊇ CP2,N2 , which by part (iv) can be efficiently decided if the consistency
problem admits an efficient algorithm.

To see that (v) implies (i), note that there is a concept in C consistent with P and N if and only if, for
an arbitrarily chosen x, CP,N is not equivalent to C{x},{x} (which is an empty version space). �

The subset testing problem and the equivalence testing problems have applications in incremental version
space merging. Version spaces are simply sets, and thus one can ask whether the version space for one set
of data is a subset of, or is equal to, the version space for a second set of data. At first this may appear
to be a problem that is harder than the consistency problem — for example, one version space may be a
subset of a second even if they are based on disjoint sets of training data. Initially it may seem necessary
to enumerate the elements in both version spaces, or at least their boundary sets, to do subset-testing or
equivalence testing. Theorem 4.1 shows that this is not so, and that consistency testing suffices.

5 New Tractable Classes

In this section we give classes that are version-space predictable. These classes are problematic for traditional
version space approaches, as the sets G and/or S become too large to deal with efficiently. We skirt these
issues entirely by ignoring representation of G and S, and instead “represent” them only implicitly with the
data P and N . Giving efficient consistency algorithms then demonstrates the version-space predictability of
the classes.

We’ll begin with two classes, conjunctions of variables and conjunctions of Horn clauses, that are trouble-
some for the [S, G] representation, although not for single-sided representations. Then we’ll revisit the three
classes, 1-Decision Lists, monotone decision trees and halfspaces, that we saw exhibited various pathologies
(even in the single-sided case) in Section 3.

Conjunctions of Variables (Terms). The consistency problem for conjunctions of variables (or terms)
is easily solvable via the naive algorithm of finding the term c that most specifically covers P [KV94]. If no
negative example satisfies c then c is consistent with P and N . If some example in N does satisfy c , then
it can be easily shown that no term is consistent with P and N . The procedure takes time linear in |P | and
|N |.

Conjunctions of Horn clauses. For conjunctions of Horn clauses (Horn sentences), it is possible to
show with a small training sample that the size of one boundary set can grow exponentially large [AP95].
Nonetheless, the consistency problem for Horn sentences is efficiently computable. We demonstrate how to
construct a Horn sentence H consistent with a given P and N whenever one exists. The idea is to construct
for each negative example q a set of clauses that falsify q, and then remove from this set the clauses that also
falsify examples in P . After this removal, the Horn sentence will necessarily be consistent with P , and, if it
is not consistent with N , then it can be shown that no Horn sentence exists that can satisfy P and falsify
N .

10

For an example q let q(xi) denote the value that q assigns variable xi, that is, 1 if the ith bit of q is 1,
and 0 otherwise. Then define ones(q) = {∧xi : q(xi) = 1}. Define zeros(q) = {xi : q(xi) = 0} ∪ {False}.

If q is a negative example, then the following is a Horn sentence that excludes q:

clauses(q) =
∧

z∈zeros(q)

(ones(q)→ z)

For example, if q = 11001, then clauses(q)= ((x1∧x2∧x5)→ x3)∧((x1∧x2∧x5)→ x4)∧((x1∧x2∧x5)→
False). Consider the Horn sentence H obtained by conjoining clauses(q) for each q in N , and then removing
any “bad” clauses that exclude points in P :

H =
∧

{α : (∃q ∈ N) α ∈ clauses(q) and (∀p ∈ P) p satisfies α}.

We show that H is consistent with P and N if and only if there exists H ′ consistent with P and N . One
direction is easy: clearly if H is consistent with P and N then there exists H ′ consistent since H is such
a Horn representation. In the other direction, we show that if H is not consistent with P and N , then no
Horn sentence is. By definition of H , every p ∈ P is consistent with H . Suppose that some q ∈ N was not
consistent with H , i.e., q satisfies all clauses in H . Since q violates every clause of clauses(q), it must be the
case that every clause of clauses(q) is violated by some p ∈ P , otherwise a clause that q violates would be in
H and q would be properly classified as negative.

Any Horn sentence H ′ consistent with P and N must call q negative, hence must contain a clause β → γ,
where β ⊆ ones(q) and γ ∈ zeros(q). But the clause ones(q) → γ is in clauses(q), and is thus violated by
some p ∈ P as described just above. But if p violates ones(q)→ γ, then it also violates β → γ, contradicting
the consistency of H ′.

The above procedure thus constructs a Horn sentence consistent with P and N if and only if there is a
Horn sentence consistent with P and N . The running time is O(|N ||P |`), where ` is the number of variables.

1-Decision Lists, Monotone Depth-Two Formulas, Halfspaces. For the remaining three classes, we
briefly describe solutions to the consistency problem.

Given a set of positive P and negative N examples, the following algorithm checks for 1-decision list
consistency, and also outputs a consistent concept if one exists. Let xi (or xi) be such that the points that
satisfy xi are either completely contained in P or completely contained in N . If no such literal exists, then
there is no consistent concept and the algorithm stops. If such a literal exists, then an appropriate statement
is added to the decision list, i.e., if the variable xi satisfies examples only in P (respectively N) then add
the statement (xi, 1) (respectively, (xi, 0)). Similarly for xi. The algorithm repeats with newly covered
points removed from P (respectively, N). For further details, refer to Kearns and Vazirani’s book [KV94] or
Rivest’s original paper on learning k-decision lists [Riv87].

Any monotone function can be represented as a monotone depth-two formula since monotone depth-
two formulas contain the class of monotone DNF formulas. Thus, a pair of sets of examples P and N are
consistent with some monotone depth-two formula iff P and N are consistent with some monotone function.
This is accomplished in time O(|P ||N |) by verifying that there is no positive in P that falls below a negative
in N on the hypercube.

For halfspaces, the consistency problem is efficiently solvable via an algorithm that checks if a given linear
program possesses a feasible solution. Each positive and negative example essentially forms a constraint in
the linear program. In two dimensions, for example, we want to determine if there exists coefficients A and B
such that for each positive example p = (px, py), py ≥ A ·px +B and for each negative example n = (nx, ny),
ny < A · nx + B. A feasible solution exists for such a linear program if and only if there exists a halfspace
consistent with P and N .

6 Other Version-Space Operations

The previous section showed the equivalence of key version-space reasoning operations: consistency/collapse,
predictability, subset testing, and equivalence testing. The results imply that all these operations can be

11

tractably performed using a version space “representation” that consists of simply the sets P and N , as long
as one has a tractable algorithm for consistency. Moreover, this representation permits the tractable use
of these operations in a superset of cases than was possible using the original boundary-set representation.
If we consider maintaining solely the P and N sets as a “minimalist” representation of a version space, it
becomes possible to discuss the tractability of a range of other operations that are relevant to reasoning with
version spaces.

Concept Membership: Given a version space CP,N and a concept c, determine if c ∈ CP,N . This is
trivially computed from the P, N representation by using c to classify each element of P and N
and checking whether c is consistent. Notice that this, too, broadens the tractable usage of version
spaces, in that performing this operation with boundary sets requires reasoning about the relative
generality of concepts,6 which can be intractable, whereas here it again simply reduces to the question
of consistency. (Consider, for example, the case of context-free languages [VB87], in which computing
relative generality is undecidable.)

Retraction: Noisy data is a common problem in many learning problems. Once learned, if an example is
found to be incorrectly labeled, it is unclear how one can “retract” the example when a version space
is represented by S and G [IA89]. In contrast, example retraction is trivial when CP,N is represented
by P and N — simply remove the retracted examples from the appropriate set.

Update: To update a version space given new examples, one faces the same simplicity as for retraction
— simply add the example to the appropriate set, P or N . This is in contrast to the more complex
manipulations that must be performed with boundary sets (the “candidate elimination algorithm”
[Mit82]).

Intersection: Intersecting two version spaces is also easy with the P, N representation since CP1,N1 ∩
CP2,N2 = CP1∪P2,N1∪N2 . The new P and N are thus simply the unions of the individual P and N
sets.7

Minimality: Finally, although the size of the representation of CP,N is exactly just the (relatively modest)
size of maintaining all training data, our results suggests a way to reduce these space requirements in some
cases. If for some p ∈ P , CP−{p},N (p) = + then p can be removed from P . Similarly, if for some n ∈ N ,
CP,N−{n}(n) = −, then n can be removed from N . In other words, if the example is classified correctly by
the version space that resulted from the removal of this example, the example provides no new information
and can be deleted. Thus, a greedy algorithm maintains a minimal pair of sets P ′ ⊆ P and N ′ ⊆ N and
ignores any training example x as it is processed unless CP,N (x) = “?′′.

There are concept classes C and sets P and N such that finding a minimum (in total cardinality)
pair P ′ and N ′ is NP-hard. Suppose we have an algorithm that given P and N , can find a P ′, N ′ where
CP,N = CP ′,N ′ and |P ′| + |N ′| is minimized. If CP,N is empty, i.e., there are no consistent concepts, then
when P ′ = N ′ = {x} for any instance x, |P ′|+ |N ′| is minimized. Thus, if we had an algorithm that could
output the minimum |P ′| + |N ′| we could use that algorithm to solve the consistency problem for k-term
DNF: run the minimum P ′, N ′ algorithm on input P, N and if P ′ = N ′ = {x} for some instance x, then

6You must test whether c is above every element of S and below every element of G.
7Version spaces are simply sets, and thus in addition to intersection one can also consider the union and set difference of

two sets. Unfortunately, although these two operations can be useful in learning with version spaces [Hir94], version spaces are
not closed under either union or set difference — there may be no set of examples that gives a version space that is equal to
the union or difference of two given version spaces.

However, it is worth noting in passing that one can consider storing both (P1, N1) and (P2, N2) as a “disjunc-
tive representation” in such cases. To test consistency, note that there is a concept consistent with some pair from
(P1, N1), (P2, N2), . . . , (Pn, Nn), if and only if there is one consistent with some (Pi, Ni). Prediction is handled via the fol-
lowing rules: If every CPi,Ni

predicts “∅”, then predict ∅. If any predict “?”, or if some CPi,Ni
predicts “+”and another

predicts “−”, then predict “?”(because there are two concepts in the union that disagree). Otherwise, either all predict “−”or
∅, in which case we predict “−”, or all predict “+”or ∅, in which case we predict “+”. However, testing subset and equality
appears more difficult.

12

there are no consistent concepts. Otherwise, there must be at least one consistent concept. Since finding a
consistent k-term DNF is NP-hard [PV88], so is the problem of finding P ′, N ′ where |P ′|+ |N ′| is minimized.

The notion of minimality also has applications to function testing. For example, suppose our goal is to
manufacture circuitry for a partially specified Boolean function. The specification is partial because there
are many “don’t care” input combinations for which the output is irrelevant. A good test suite P, N for
the partial function is a pair such that CP,N contains all and only extensions of the function. The choice
of a small test suite is a difficult one (typically NP-hard). Our results suggest some heuristics: Say that
(P1, N1) dominates (P2, N2) as a test set if CP1,N1 ⊂ CP2,N2. As we showed above, this can be tested when
consistency is tractable. A reasonable greedy approach to finding good test suites would be to search for
minimal P, N pairs, and among them, discard any that are dominated by any other pair.

7 Beyond Consistency

While the approach demonstrated in this paper is of broad use, not everything boils down to the consistency
problem. For example, while it is easy to determine if a version space has converged with boundary sets,
there is no obvious way to determine convergence with a consistency algorithm. In addition, we have no
way of working with concept classes where solving the consistency problem is hard – although, by our
observations, such classes are not version space predictable. We now explore what happens when we move
beyond consistency.

Convergence. Recall that a version space CP,N is said to have converged if there is exactly one concept
in C consistent with P and N , i.e., if |CP,N | = 1. Observe that the existence of an efficient algorithm
for the consistency problem for C does not necessarily imply the existence of an efficient algorithm for the
convergence problem for C. Intuitively, it is “harder” to determine if there is exactly one consistent concept
(i.e., convergence) than determine if there is any consistent concept.

To instantiate this intuition, we note that for the class C of monotone formulas, the consistency problem
is efficiently computable. (Simply check if any positive example falls “below”, in the Boolean hypercube,
a negative, and vice versa.) However, it is possible to show that the convergence problem is equivalent to
determining if a monotone DNF formula is equivalent to a monotone CNF formula. While there are efficient
solutions to restricted versions of the equivalence of monotone DNF and CNF problem [EG95, JPY88, LLK80,
DMP99, EGM03], the best known algorithm for the general problem runs in quasipolynomial time [FK96].
So while there is a polynomial-time algorithm for the consistency problem for monotone formulas, the
convergence problem would appear to be harder.

That convergence appears to be difficult has much less import inasmuch as convergence testing does
not play as important a role in learning with version spaces as it initially appeared to in Mitchell’s work.
In particular, convergence usually requires a very large number of examples: the smaller an unconverged
version space is, the longer the wait for a random example that can distinguish them [Hau88]. Haussler also
showed that under the PAC learning criteria, it is not necessary to generate a converged version space, since
any element of a version space for some number of randomly chosen examples would perform comparably
well on future data. It is thus unusual to wait until a version space becomes singleton, as opposed to, say,
selecting a random element of the version space for classification purposes [NH92].

When Consistency is NP-hard. By applying Theorem 4.1 in the other direction, we have that if the
consistency problem for C is NP-hard, then C is not version-space predictable, unless P = NP . For example,
since results of Pitt and Valiant [PV88] show that the consistency problem for k-term DNF formulas is NP-
hard, this class is not version-space predictable, unless P = NP . However (as their work goes on to suggest),
we can still use version spaces for this concept class if we use the richer knowledge representation class of
k-CNF formulas since it includes k-term DNF formulas and there is a tractable solution to the consistency
problem for k-CNF formulas.

13

8 Final Remarks

Boundary set representations can be difficult to manipulate due to the fact that they can be large, undefined,
infinite, and even hard to test for equality or cardinality. We make the simple but powerful observation that
many of the common version space operations can be performed with a tractable consistency algorithm,
and without boundary sets. We establish key equivalences between the consistency problem, version space
collapse, version space predictability, concept class subset-testability and equivalence testability. We demon-
strate that many new concept classes are version-space predictable due to efficient consistency algorithms, like
1-decision lists, monotone depth-two formulas, and halfspaces — classes that are problematic for boundary
set representations.

One direction for the future is to explore how this work relates to other work on broadening version
spaces. In particular, Lau et al. [LWDW03] consider a compositional approach to version spaces as well as
their use on multi-class problems. It would be interesting to explore whether our insights concerning the
centrality of consistency may also be relevant in their broader notion of version spaces. Also interesting
is the relationship of version-space predictability to query-by-committee [SOS92] and co-training [BM98].
Both methods can be viewed as performing a noisy form of version-space predictability. In the case of
query-by-committee the labels assigned by two randomly selected concepts are used to make a quick check
whether labeling an example is likely to give any leverage in learning, as opposed to the more categorical
assessments version-space prediction makes. In the case of co-training, different “views” of the data lead
to separate learning tasks for the same problem. If an unlabeled example is likely to be labeled with an
unambiguous class by one view’s learning, it is labeled and provided to the other learning view. Version-space
prediction could be used with either view to categorically determine cases where an unlabeled example has
an unambiguous label, to be labeled and provided as labeled data for the other learning view. We leave
these as questions for future work.

References

[AHHP98] H. Aizenstein, T. Hegedus, L. Hellerstein, and L. Pitt. Complexity theoretic hardness results
for query learning. Computational Complexity, 7(1):19–53, 1998.

[AP95] H. Aizenstein and L. Pitt. On the learnability of disjunctive normal form formulas. Machine
Learning, 19(3):183–208, 1995.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM, 36(4):929–965, 1989.

[BM98] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings
of the 11th Annual Conference on Computational Learning Theory (COLT-98), pages 92–100,
New York, July 24–26 1998. ACM Press.

[DMP99] C. Domingo, N. Mishra, and L. Pitt. Efficient read-restricted monotone CNF/DNF dualization
by learning with membership queries. Machine Learning, 37(1):89–110, 1999.

[EG95] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related
problems. SIAM Journal on Computing, 24(6):1278–1304, December 1995.

[EGM03] T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and generating
hypergraph transversals. SIAM Journal on Computing, 32(2):514 – 537, 2003.

[EIM98] T. Eiter, T. Ibaraki, and K. Makino. Decision lists and related boolean functions. IFIG Research
Report 9804, April 1998.

[FK96] M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive normal
forms. Journal of Algorithms, 21(3):618–628, November 1996.

14

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[Hau88] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning frame-
work. Artificial Intelligence, 36:177–221, 1988.

[Hau89] D. Haussler. Learning conjunctive concepts in structural domains. Machine Learning, 4(1):7–40,
1989.

[Hir92] H. Hirsh. Polynomial-time learning with version spaces. In William Swartout, editor, Proceedings
of the 10th National Conference on Artificial Intelligence, pages 117–122, San Jose, CA, July
1992. MIT Press.

[Hir94] H. Hirsh. Generalizing version spaces. Machine Learning, 17(1):5–46, 1994.

[IA89] P. Idestam-Almquist. Demand networks: An alternative representation of version spaces. SYS-
LAB Report 75, Department of Computer and Systems Sciences, The Royal Institue of Tech-
nology and Stockholm University, 1989.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all maximal independent
sets. Information Processing Letters, 27(3):119–123, 1988.

[KV94] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. The MIT
Press, Cambridge, Massachusetts, 1994.

[LLK80] E. Lawler, J. Lenstra, and A. Rinnooy Kan. Generating all maximal independent sets: NP-
hardness and polynomial-time algorithms. SIAM Journal on Computing, 9(3):558–565, 1980.

[LWDW03] T. Lau, S. Wolfman, P. Domingos, and D. Weld. Programming by demonstration using version
space algebra. Machine Learning, 53(1-2):111–156, 2003.

[Mit82] T. M. Mitchell. Generalization as search. Art. Int., 18:203–226, 1982.

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[NH92] S. W. Norton and H. Hirsh. Classifier learning from noisy data as probabilistic evidence combi-
nation. In William Swartout, editor, Proceedings of the 10th National Conference on Artificial
Intelligence, pages 141–146, San Jose, CA, July 1992. MIT Press.

[PV88] L. Pitt and L. Valiant. Computational limitations on learning from examples. J. ACM, 35:965–
984, 1988.

[Riv87] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

[Smi95] B. Smith. Induction as knowledge integration. In Ph.D. thesis. University of Southern California,
Computer Science Department, December 1995.

[SOS92] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In David Haussler, editor,
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 287–
294, Pittsburgh, PA, July 1992. ACM Press.

[SR90] B. D. Smith and P. S. Rosenbloom. Incremental non-backtracking focusing: A polynomially
bounded generalization algorithm for version spaces. In Proceedings of the National Conference
on Artificial Intelligence, pages 848–853, Boston, MA, August 1990.

[Utg86] P. E. Utgoff. Machine Learning of Inductive Bias. Kluwer, Boston, MA, 1986.

[Val79] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

15

[VB87] K. VanLehn and W. Ball. A version space approach to learning context-free grammars. Machine
Learning, 2(1):39–74, 1987.

A Proof of Theorem 3.1

Recall that P = {pi : i = 1, . . . , n} and N = {ni : i = 1, . . . , n}. where pi = 02i
~1 and ni = ~012i over the

variables u1, v1, . . . un, vn, x1, y1, . . . , xn, yn. For example, in the case that n = 3, P and N are:

P =















u1v1 u2v2 u3v3 x1y1 x2y2 x3y3

11 00 00 11 11 11
00 11 00 11 11 11
00 00 11 11 11 11















N =















u1v1 u2v2 u3v3 x1y1 x2y2 x3y3

00 00 00 00 11 11
00 00 00 11 00 11
00 00 00 11 11 00















We will argue that for P and N as given that for each permutation [i1, . . . , in] of [1, . . . , n], the boundary
sets are:

S = (x1, 0), (y1, 0), . . . , (xn, 0), (yn, 0), (ai1 , 1), (bi1 , 0), (ai2 , 1), (bi2 , 0), · · · (ai(n−1)
, 1), (bi(n−1)

, 0), (ain
, 0), (bin

, 0), 1

G = (u1, 1), (v1, 1), . . . , (un, 1), (vn, 1), (ci1 , 0), (di1 , 1), (ci2 , 0), (di2 , 1), · · · , (ci(n−1)
, 0), (di(n−1)

, 1), (cin
, 1), (din

, 1), 0

where aik ∈ {uik, vik} and aik = uik (resp, vik) implies that bik = vik (resp, uik) for k = 1, . . . , n.
Similarly, cik ∈ {xik, yik} and cik = xik (resp, yik) implies that dik = yik (resp, xik). Observe that there are
2n possible 1-decision lists for each permutation of 1, . . . , n. Thus,

S = (x1, 0), (y1, 0), . . . , (xn, 0), (yn, 0), G = (u1, 1), (v1, 1), . . . , (un, 1), (vn, 1),

(ai1 , 1), (bi1 , 0), (ci1 , 0), (di1 , 1),

(ai2 , 1), (bi2 , 0), (ci2 , 0), (di2 , 1),
...

...

(ain−1 , 1), (bin−1 , 0), (cin−1 , 0), (din−1 , 1),

(ain
, 0), (bin

, 0), (cin
, 1), (din

, 1),
1 0

where aik
∈ {uik

, vik
} and aik

= uik
(resp, vik

) implies that bik
= vik

(resp, uik
) for k = 1, . . . , n. Similarly,

cik
∈ {xik

, yik
} and cik

= xik
(resp, yik

) implies that dik
= yik

(resp, xik
). Observe that there are 2n possible

1-decision lists for each permutation of 1, . . . , n. Thus, the number of different functions in both S and G is
at least (n! 2n).

Before explaining why S and G are in fact maximally specific/general, we describe some properties of 1-
DLs that we’ll use in our argument. In particular, since Boolean formula descriptions are easier to manipulate
than 1-DLs, we describe Eiter et al’s [EIM98] observation that the class of 1-DLs is equivalent to the class
of linear read-once formulas. The class of linear read-once formulas FLR1 is defined as follows:

1. >,⊥ ∈ FLR1 and

2. φ ∈ FLR1 and xi is a variable not occurring in φ implies xi ∨ φ, xi ∨ φ, xi ∧ φ or xi ∧ φ ∈ FLR1.

Not every read-once formula is linear, e.g., (x1 ∧ x2)∨ (x3 ∧x4). Note that any linear read-once formula can
be converted into a 1-DL, and vice versa in linear time. For example, for n = 3, one element of the G set

g = (u1, 1), (v1, 1), (u2, 1), (v2, 1)(u3, 1), (v3, 1), (x1, 0), (y1, 1), (x2, 0), (y2, 1), (x3, 1), (y3, 1), 0

can be expressed as the linear read-once formula

g = u1 ∨ v1 ∨ u2 ∨ v2 ∨ u3 ∨ v3 ∨ (x1 ∧ (y1 ∨ (x2 ∧ (y2 ∨ x3 ∨ y3))))

The characterization of 1-DLs as linear read-once formulas yields the following recursive method of
recognizing a 1-DL. Let CLR1 denote the class of linear read-once functions. Let fx←1 denote the projection
of f where the variable x is forced to 1 (similarly for fx←0).

16

Lemma A.1 (EIM) A function f is in C1DL iff (i) Either (a) xj → f (b) xj → f (c)xj → f or (d) xj → f
for some j and (ii) fxj←1 ∈ C1DL holds for all j satisfying (i)(a) and (i)(b), and fxj←0 ∈ C1DL holds for
all j satisfying (i)(c) and (i)(d).

The lemma gives us a way of showing that elements of the G set indicated above are in fact maximally
general (similarly for S). By assuming the existence of a more general formula g′, we show by repeatedly
projecting g and g′ appropriately that a variable x implies g (resp, g) iff x implies g′ (resp, g′). It will follow
that g′ = g, contradicting that g′ is strictly more general than g.

We now proceed to prove the theorem.

Theorem A.1 For the concept class of 1-DLs and for P, N given above, G/S are maximally general/specific.

Proof: We show for one permutation g of [i1, . . . , in], namely [1, . . . , n] and one ci/di assignment that g is
maximally general. A similar argument can be made for any other permutation and ci/di assignment. In
particular let g be:

g = (u1, 1), (v1, 1), . . . , (un, 1), (vn, 1), (x1, 0), (y1, 1), . . . , (xn−1, 0), (yn−1, 1), (xn, 1), (yn, 1), 0

Our strategy for showing that g is maximally general is the following. Assume there exists a linear
read-once formula g′ strictly more general than g and consistent with P and N . We show that a variable
x implies g (resp, g) iff x implies g′ (resp, g′). Suppose there is an x such that x implies g iff x implies g′.
Then for half of the points in the hypercube, namely the ones where the variable x is set on, both g and g′

agree. In particular, both g and g′ classify positive those points with bit x set on. In this case, we project
the bit x off and repeat the argument in the other half of the hypercube, i.e., we show that a variable y
implies gx←0 (resp, gx←0) iff y implies g′x←0 (resp, g′x←0). On the other hand, suppose there is a variable x
such that x implies g iff x implies g′. Thus, again g and g′ agree on the classification of half of the points in
the hypercube, in particular g and g′ classify any point with bit x set on negative. Thus we project the bit
x off in both g and g′ and repeat the argument in the other half of the hypercube. By Lemma A.1, we will
always be able to find such a variable in one of g, g and also one of g′, g′. At the end of our argument, we
will have shown that a variable x implies f (resp, f) iff x implies f ′ (resp, f ′) where f is g and also every
projection of g and likewise for f ′. It will follow that g′ = g, contradicting that g′ is strictly more general
than g.

In order to show that a variable x implies g or g, we make reference to g’s (g’s) DNF (CNF) representation.
By Eiter et al’s [EIM98] linear read-once characterization of 1-DLs, we have that the DNF representation of
g is:

g = u1 ∨ v1 ∨ · · · ∨ un ∨ vn ∨ (x1 ∧ y1) ∨ (x1 ∧ x2 ∧ y2) ∨ · · · ∨ (x1 ∧ · · · ∧ xn−1 ∧ yn−1) ∨

(x1 ∧ · · · ∧ xn) ∨ (x1 ∧ · · · ∧ xn−1 ∧ yn)

Note that a variable x implies a DNF formula f iff f = x ∨ φ where φ is some reduced8 DNF formula. By
DeMorgan’s Law, we have that the CNF representation of g is:

g = (u1) ∧ (v1) ∧ · · · ∧ (un) ∧ (vn) ∧ (x1 → y1) ∧ ((x1 ∧ x2)→ y2) ∧ · · · ∧ ((x1 ∧ · · · ∧ xn−1)→ yn−1) ∧

((x1 ∧ · · · ∧ xn)→ ⊥) ∧ ((x1 ∧ · · · ∧ xn−1 ∧ yn)→ ⊥)

Note that a variable x implies a CNF formula f iff x appears in each conjunct of the reduced9 CNF, i.e.,
f = (x ∨ c1) ∧ (x ∨ c2) ∧ · · · ∧ (x ∨ cj) where ci are disjunctions of variables.

From the DNF description of g, it is clear that the only variables that imply g are ui and vi. To see
why the variables ui and vi imply g′, note that g → g′, thus if any variable implies g it also implies g′. To

8A DNF formula is reduced if no minterm is subsumed by another. It can be shown that any 1-DL has a unate DNF
description and thus there exists a unique reduced DNF description.

9A CNF formula is reduced if no disjunction subsumes another. Since 1-DLs have unate DNF descriptions, their complements
have unate CNF descriptions. Thus the complements of 1-DLs have unique reduced CNF descriptions.

17

see why the remaining variables don’t imply g′ note that if xi, yi implied g′ then g′ would not be consistent
with nj (j 6= i) and further if xi or yi implied g′ then g′ would not be consistent with ni. Further, from the
CNF description of g, it is clear that no variable implies g. It immediately follows that no variable implies
g′ since g → g′ implies that g′ → g. Thus the fact that x 6→ g implies that x 6→ g′.

We now project the variables u1, . . . , un, v1, . . . , vn to 0 in both g and g′ and continue the argument in
the projected space. We can now ignore the half of the hypercube where u1, . . . , un, v1, . . . , vn are set on
since both g and g′ classify all such points positive. Let h = gu1←0,...,un←0,v1←0,...,vn←0 and similarly for h′.
We can project the descriptions of g and g accordingly.

h = (x1 ∧ y1) ∨ (x1 ∧ x2 ∧ y2) ∨ · · · ∨ (x1 ∧ · · · ∧ xn−1 ∧ yn−1) ∨

(x1 ∧ · · · ∧ xn) ∨ (x1 ∧ · · · ∧ xn−1 ∧ yn)

h = (x1 → y1) ∧ ((x1 ∧ x2)→ y2) ∧ · · · ∧ ((x1 ∧ · · · ∧ xn−1)→ yn−1) ∧

((x1 ∧ · · · ∧ xn)→ ⊥) ∧ ((x1 ∧ · · · ∧ xn−1 ∧ yn)→ ⊥)

From the description of h, it is clear that no variable implies h. To see why no variable implies h′ observe
that: If this variable was xi or yi, then h′ would not be consistent with nj , j 6= i. If this variable was xi or
yi then h′ would not be consistent with ni. From the description of h, the only variable that implies h is x1.
Thus, for all other variables x, x 6→ h′ since h′ → h and x 6→ h. Since some variable must imply h′ or h′ in
order for h′ to be representable as a 1-DL and we’ve ruled out all the other variables, x1 must imply h′.

We now project x1 ← 1 in both h and h′ and continue the argument in the projected space. The
descriptions of hx1←1 and hx1←1 are now

hx1←1 = y1 ∨ (x2 ∧ y2) ∨ · · · ∨ (x2 ∧ · · · ∧ xn−1 ∧ yn−1) ∨

(x2 ∧ · · · ∧ xn) ∨ (x2 ∧ · · · ∧ xn−1 ∧ yn)

hx1←1 = (y1) ∧ (x2 → y2) ∧ · · · ∧ ((x2 ∧ · · · ∧ xn−1)→ yn−1) ∧

((x2 ∧ · · · ∧ xn)→ ⊥) ∧ ((x2 ∧ · · · ∧ xn−1 ∧ yn)→ ⊥)

Note that y1 is the only variable that implies hx1←1. y1 therefore also implies h′x1←1 since h′x1←1 is more
general than hx1←1. No other variable implies h′x1←1: if that variable was xi or yi then h′x1←1 would not be
consistent with nj , for j 6= i; if that variable was xi or yi then h′x1←1 would not be consistent with ni. From

the CNF description of hx1←1, no variable implies hx1←1. Thus, since h′x1←1 implies hx1←1, no variable

implies h′x1←1 either.
Let f i = hx1←1,...,xi←1,y1←1,...,yi←1 and (f ′)i = h′x1←1,...,xi←1,y1←1,...,yi←1. The argument given for h and

h′ can be repeated for f i and (f ′)i. In particular, it can be shown that: no variable implies f i or (f ′)i, the
only variable that implies f i is xi+1, and the only variable that implies (f ′)i is xi+1. Further, an argument
similar to the one given for hx1←1 and h′x←1 can be used for f i

xi+1←1 and (f ′)i
xi+1←1, namely that: yi+1

is the only variable that implies f i
xi+1←1, yi+1 is the only variable that implies (f ′)i

xi+1←1, and no variable

implies either f i
xi+1←1, or (f ′)i

xi+1←1.

After the above projections, we have the following DNF/CNF descriptions for fn−1 and fn−1.

fn−1 = xn ∨ yn

fn−1 = (xn → ⊥)(yn → ⊥)

From the DNF description of fn−1, we have that both xn and yn imply fn−1. Thus, since fn−1 → (f ′)n−1

we have that both xn and yn imply (f ′)n−1. No other variable implies (f ′)n−1 since if that variable was xn

or yn, (f ′)n−1 would not be consistent with nn. From the CNF description of fn−1 we have that no variable
implies fn−1. Thus, since (f ′)n−1 implies fn−1, no variable implies (f ′)n−1.

After the above 2n projections, only one point remains, namely the negative example nn. Clearly both
g and g′ must classify this point negative. As a result, we have that g′ = g contradicting that g′ is strictly
more general than g.

The above argument can be suitably modified to show that elements of the S set are indeed maximally
specific. �

18

