
Version Spaces Without Boundary Sets

Haym Hirsh
hirsh�cs�rutgers�edu

Computer Science Department
Rutgers University

New Brunswick� NJ �����

Nina Mishra
nmishra�uiuc�edu

Computer Science Department
University of Illinois at Urbana

Urbana� IL �����

Leonard Pitt
pitt�cs�uiuc�edu

Computer Science Department
University of Illinois at Urbana

Urbana� IL �����

Abstract

This paper shows that it is not necessary to main�
tain boundary sets to reason using version spaces�
Rather� most of the operations typically performed
on version spaces for a concept class can be tractably
executed directly on the training data� as long as it
is tractable to solve the consistency problem for that
concept class � to determine whether there exists any
concept in the concept class that correctly classi�es
the data� The equivalence of version�space learning to
the consistency problem bridges a gap between empir�
ical and theoretical approaches to machine learning�
since the consistency problem is already known to be
critical to learning in the PAC �Probably Approxi�
mately Correct� sense� By exhibiting this link to the
consistency problem� we broaden the class of problems
to which version spaces can be applied to include con�
cept classes where boundary sets can have exponential
or in�nite size and cases where boundary sets are not
even well de�ned�

� Introduction
The problem of inductive learning is to extrapolate
from a collection of training data 	 a set of examples�
each labeled as either positive or negative by some un

known target concept 	 a concept de�nition that ac

curately labels future� unlabeled data� Most inductive
learning algorithms operate over some concept class 	
the set of concepts that the learner can potentially gen

erate over all possible sets of training data� Mitchell�s
����� introduction of the notion of a version space
provided a useful conceptual tool for inductive learn

ing� Given a concept class C� the version space for a
set of examples is simply the set of concepts in C that
are consistent with the data� To represent a version
space� Mitchell proposed maintaining only the set of
maximally general G� and maximally speci�c S� con

sistent concepts�called boundary sets� since they bound
the set of all concepts in the version space� However�
although it is more e�cient than explicitly maintain

ing all elements of the version space� this representa

tion has a number of serious limitations� For example�

Copyright c������ American Association for Arti�cial Intelligence
�www�aaai�org�� All rights reserved�

Haussler ����� showed that even for the concept class
of positive
monotone monomials over n variables i�e��
simple conjunctions of subsets of n unnegated Boolean
attributes� there are cases where after a number of
examples linear in n� the boundary set G has size ex

ponential in n� Further� for in�nite concept classes�
boundary sets can have potentially in�nite size� and in
some cases for inadmissible concept classes Mitchell
������ it is not even possible to represent a version
space by its boundary sets� Section � presents version
spaces exhibiting such pathologies��

A number of papers have proposed alternative repre

sentations for version spaces to overcome some of these
limitations� Particularly relevant to this work� Van

Lehn and Ball ����� proposed maintaining an approx

imate and overgeneral G set plus the set N of all nega

tive examples which need not any longer be re�ected
in the new G set� as a way of tractably but approxi

mately learning restricted classes of context
free gram

mars� Interestingly� VanLehn and Ball also totally do
away with the S boundary set� maintaining solely the
set P of positive examples instead� However� this was
only due to the fact that� for the langauges they learn�
the S set is the trivial concept that classi�es only the
given positive examples as positive and all else nega

tive� and thus P and S are trivially equivalent�� Smith
and Rosenbloom ����� showed that a similar idea 	
maintaining the S and G boundary sets for all the pos

itive data plus only a selected subset of the negative
data� along with the set N of unprocessed negative ex

amples 	 was su�cient to guarantee tractable version

space learning for a constrained class of conjunctive
languages� Subsequent work Hirsh ����� took this
further� doing away with the set G altogether� and
instead using an �S�N � representation that maintains
only the boundary set S together with the set N of all
negative examples� and showing that for many com

mon concept classes� most of what could be done with

�Version spaces also face di�culties in their limited ca�
pacity to handle noisy data or concept classes that do not
contain the target concept �Utgo� 	
�� Hirsh 	

��� but
we concern ourselves in this paper solely with the represen�
tational di�culties faced even when these are not at issue�



the �S�G� representation could be accomplished with
the �S�N � representation� only with tractability guar

antees due to its more modest representational require

ment of maintaining a single non
exponentially
large�
boundary set�

Unfortunately� there are also cases where both
boundary sets can be prohibitively large� Haus

sler ����� gives one such example� for conjunctions of
existentially quanti�ed predicates� and in Section � we
show that a similar situation can occur for the proposi

tional language of �
decision lists �
DLs�� The �S�N �
representation is inadequate in these cases� in that it
still must maintain one of the two exponentially large
boundary sets�

In this paper we show that focusing on the represen

tation of a version space 	 understanding the behavior
of boundary sets� exploring other version
space repre

sentations� etc� 	 is not the key issue for e�ective
version
space learning for a concept class C� Rather�
the focus should be on �nding e�cient algorithms for
the consistency problem for C 	 the problem of deter

mining if any concept in C exists that correctly classi

�es a given set of positive and negative examples� We
demonstrate that almost all operations performed on
version spaces for any concept class C can be e�ciently
executed if and only if there is an e�cient solution to
the consistency problem for C� In version
space ter

minology� almost all version
space operations can be
e�ciently executed if and only if there is an e�cient
way of determining whether a version space has col�
lapsed� i�e�� is empty�

Our �representation� of a version space is thus not
much of a representation at all 	 we simply store the
postive P � and negative N � examples� and tractably
perform version
space operations directly on these two
sets�� Note that it is impossible to show that the �P�N �
representation can grow faster than its input because
the input is its representation� Thus in�nite and in

admissible concept classes do not pose a problem for
this representation� The question simply becomes one
concerning the tractability of executing version
space
operations on this representation� For those concept
classes where operations on the standard boundary
set
representation are provably tractable i�e�� can be exe

cuted in time polynomial in relevant problem parame

ters�� the �P�N � representation is also guaranteed to be
tractable� even if only by �rst computing the boundary
sets� In the other direction� however� there are cases
such as �
decision lists� where the �P�N � representa

tion is tractable because there is an e�cient solution
to the consistency problem� and� yet� the boundary
set
representation is not�

It is particularly nice that the tractability of the
consistency problem plays a key role for version
space
learning� given the importance it plays in the compu

tational learning theory literature and the study this

�Thus our results can be viewed as providing a lazy
learning algorithm for version spaces �Aha 	

���

problem has received there� For example� if there
exists an algorithm for a concept class C that out

puts a consistent hypothesis of �small� size� then C
is PAC learnable Blumer et al� ������ As an

other example� if the VC
dimension of a concept class
C grows polynomially and if there exists an algo

rithm that outputs a consistent hypothesis from C�
then C is PAC
learnable Blumer et al� ������ A
partial converse is also known Pitt � Valiant �����
Blumer et al� ������

One of the main insights and sources of power con

cerning version spaces is that they provide a way to
classify future� unseen examples even when insu�cient
data have been obtained to identify the unique identity
of the target concept� We show with a simple argument
that doing such classi�cation of future examples is ex

actly as hard as solving the consistency problem� The
way the consistency problem can be used to classify an
example x according to a version space induced by pos

itives P and negatives N is actually quite simple� We
run the consistency algorithm twice� The �rst time�
we run the algorithm assuming x is a positive example
i�e�� with positives P � fxg and negatives N �� If no
consistent concept exists alternatively� if the version
space collapses�� then every consistent concept must
classify x negative� Otherwise� we run the consistency
algorithm assuming x is a negative example i�e�� with
positives P and negatives N�fxg�� Similarly� if no con

sistent concept exists� then every consistent concept
must classify x positive� If neither case holds� there
must be at least one consistent concept that classi�es
x positive and at least one that classi�es x negative 	
the label of x is not determined by the version space�
and� consequently� x is labeled ����

We begin by proving that classifying an example in
a manner consistent with a version space is exactly
the consistency problem Section ��� Next� we show
that almost all of the standard operations on version
spaces can be performed using an e�cient solution to
the consistency problem Section ��� We conclude
with applications of the main result Section ���

� De�nitions and Notation

A concept c is a subset c � X of a space X of exam�
ples� An example x � X is a said to be labeled positive
by c if x � c� and negative otherwise� A concept class�
C � �X � is a collection of concepts� For a set of posi

tive examples� P � negative examples� N � and a concept
class� C� the version space is the set of all concepts in
C consistent with P and N Mitchell ������ We use
CP�N to denote the version space induced by P and N �
Speci�cally� CP�N � fc � C � P � c� and N � c � �g�
If CP�N is empty we say that the version space has col�
lapsed� if it contains a single concept we say that the
version space has converged�

If every element of a version space labels an exam

ple the same way� then that example can be unambigu

ously labeled even if the version space contains multiple



concepts� since no matter which one was the �correct�
one� they all agree on how to label the given example�
A version space CP�N can therefore be viewed as induc

ing a function� classifyCP�N �� that� given an example�
outputs a label that re�ects the consensus of concepts
in CP�N �

classifyCP�N �x� �

���
��

��� if CP�N is empty
��� if x � c for all c � CP�N

��� if x �� c for all c � CP�N

��� otherwise

We sometimes abuse notation and use CP�N x� instead�
The tractable computation of the classify function is

one of the key questions that we study here�

De�nition ��� A concept class C is �e�ciently�
version
space predictable if there exists an algorithm
that� given a set of positive examples� P � a set of nega�
tive examples� N � and an example� x� outputs CP�N x�
in time polynomial in jP j� jN j� and jxj�

Note that we are really only interested in concept
classes C that are �missing� some concepts� i�e�� C ��
�X � Otherwise� if C � �X e�g�� if C is the class of
DNF formulas� then it is easy to see that C is trivially
version
space predictable�

Finally� the consistency problem for C can be sum

marized as the problem of determining if there is a
concept in C that correctly labels a given set of posi

tive and negative examples� More formally stated�

De�nition ��� The consistency problem for C is�
Given a set of positive examples� P � and negative ex�
amples� N � is CP�N �� ��	

The above de�nition is equivalent to� Has the version
space induced by P and N collapsed� We�ll say that
the consistency problem for C is e�ciently computable
if there is an algorithm for the consistency problem for
C that runs in time polynomial in jP j and jN j�

� Consistency and Version�Space

Predictability

A key result of this paper is that version
space pre

dictability is equivalent to the consistency problem�
We begin with a simple proposition�

Proposition ��� For all x in X�

�� CP�fxg�N � �� � x �� c for every c � CP�N �

	� CP�N�fxg � �� � x � c for every c � CP�N �

Proof� We show part �� the proof of part � is analo

gous� For arbitrary x� if x �� c for every c � CP�N �
then clearly CP�fxg�N � �� Conversely� if x � c

�In many references �Blumer et al� 	
�
 Pitt � Valiant
	
�� Aizenstein et al� 	

��� the consistency�problem def�
inition requires that a consistent hypothesis be explicitly
output if one exists� While our main results do not re�
quire that a hypothesis be output� all of the algorithms we
exhibit in Section � actually output consistent hypotheses�

for some concept c � CP�N � then c � CP�fxg�N � and
CP�fxg�N �� ��

We can use an algorithm for the consistency prob

lem for C to predict the label of x according to the
version space induced by �P�N � by simply running the
consistency algorithm twice 	 once with x in P and
another time with x in N � If either is empty� the pre

ceding proposition gives the basis for classifying x�

Theorem ��� C is e�ciently version�space pre�
dictable � the consistency problem for C is e�ciently
computable�

Proof� � Note that CP�N is empty i� both CP�fxg�N

and CP�N�fxg are empty� Assume CP�N �� �� By def

inition� CP�N x� � ��� if and only if x � c for all
c � CP�N By the second part of Proposition ���� this
holds if and only if CP�N�fxg is empty� Similarly� by
de�nition� CP�N x� � ��� if and only if x �� c for all
c � CP�N � which� by Proposition ��� part �� holds if
and only if CP�fxg�N is empty� And� if neither hold�
then� the classi�cation is by de�nition ����

It now follows immediately that an algorithm for the
consistency problem can be used to solve the version
space classi�cation problem� run the consistency al

gorithm on inputs P � fxg� N and then again on P �
N � fxg� If only the �rst one succeeds then x must be
in every concept in the version space� and the version

space algorithm should predict ���� Dually if only
the second one succeeds�� If both succeed� then x must
be in some concepts in the version space and not in
others� and thus� the version space algorithm should
predict ���� If both fail� then the algorithm should
predict ����

Observe that if the consistency algorithm is e�cient�
i�e�� runs in time pjP j� jN j�� where p is some polyno

mial� then the version
space prediction algorithm runs
in time pjP �fxgj� jN j��pjP j� jN�fxgj�� and is also
e�cient�
	 If C is version
space predictable then� by de�ni


tion� the consistency problem is e�ciently computable�
To determine if there is a concept in C consistent
with �P�N �� use the version
space prediction algorithm
to classify CP�N x� for an arbitrary example x in X�
There is no concept consistent with �P�N � if and only
if the version
space prediction algorithm outputs ����
i�e�� if the version space has collapsed�

� Other Version�Space Operations

We now discuss the tractability of other version
space
operations using the �P�N � representation�

Collapse� A version space has collapsed i� there is
no consistent concept� and thus version
space collapse
is trivially testable with an e�cient consistency algo

rithm�

Concept Membership� Given a version space
CP�N � one may want to determine if a given concept



c is in CP�N � The tractability of this operation using
the �P�N � representation only relies on the tractability
of labeling an example with a concept� c is in the ver

sion space CP�N if and only if p � c and n �� c� for all
p � P and n � N � The tractability of this operation
under the �P�N � representation is independent of the
tractability of the consistency problem and the equiva

lent concept
class properties discussed in the previous
section� As long as it is tractable to classify an example
with a concept� it is tractable to test whether a concept
is in a version space under the �P�N � representation�
This is an interesting contrast to the requirements nec

essary for the tractability of this operation for the
boundary
set representation 	 that it be tractable to
determine whether c� � c� for all c�� c� � C�

Update and Retraction� If generating the repre

sentation of a version space for a collection of data
requires signi�cant computation one must consider the
tractability of updating this representation as new data
are obtained� For boundary sets� this requires generat

ing new boundary sets that re�ect all past data sum

marized by the current boundary sets� plus the new
data� For the �P�N � representation this update opera

tion is trivial� add the example to P if the example is
positive� and add it to N if it is negative�

Retracting data is likewise trivial� simply remove the
example from the set in which it occurs� P or N � This
operation is not often considered with version spaces
primarily due to the fact that it is di�cult to retract
an example once it is re�ected in the current version

space representation although retraction is important
in handling noisy data with version spaces Idestam

Almquist �������

Intersection� Previous work Hirsh ����� showed
that version
space intersection could form the basis
for an alternative approach to learning with version
spaces� The intersection of version spaces CP��N�

and
CP��N�

� denoted CP��N�
�CP��N�

� is the set of concepts
that contain all the examples in both P� and P� and do
not contain any examples in N� and N�� The question
becomes whether one can e�ciently compute the rep

resentation of the version space for CP��N�

�CP��N�
�

CP��P��N��N�
given the representations for CP��N�

and
CP��N�

� As with the preceding Update operation� this
is trivial 	 the P set for the new version space is just
P� � P� and the new N set is just N� �N��

Subset Testability and Equality� Version spaces
are simply sets� and thus one can ask whether the ver

sion space for one set of data is a subset of the version
space for a second set of data� At �rst this may ap

pear to be a problem that is harder than the consis

tency problem 	 for example� one version space may
be a subset of a second even if they are based on dis

joint sets of training data� Initially it may seem that it
would be necessary to enumerate the elements in both
version spaces� or at least their boundary sets� to do

subset
testing� However� not only is subset testing no
harder than the consistency problem� the two problems
are equivalent� as we now show�

De�nition ��� A concept class C is subset
testable
if there exists an algorithm that� given two sets of pos�
itive examples� P� and P�� and two sets of negative
examples� N� and N�� determines in time polynomial
in jP�j� jP�j� jN�j� and jN�j� whether CP��N�

� CP��N�
�

To show that subset
testability is equivalent to the
e�cient computation of the consistency problem� we
show how a tractable solution to either e�ciently solves
the other�

Theorem ��� C is subset�testable if and only if the
consistency problem for C is e�ciently computable�

Proof� Note that if CP��N�
� CP��N�

� every element
p � P� must be classi�ed as ��� by CP��N�

and every
element n � N� must be classi�ed as ��� by CP��N�

�
This can be tested using an e�cient procedure for the
consistency problem by returning true if CP��N��fpg �
� for each p � P� and CP��fng�N�

� � for each n � N��
and otherwise return false�

To use an e�cient test for CP��N�
� CP��N�

as the
basis for e�ciently solving the consistency problem�
note that CP�N � � if and only if CP�N � Cfxg�fxg for
any x � X�

To test Equality� observe that two version spaces
CP��N�

and CP��N�
are equal if and only if both

CP��N�
� CP��N�

and CP��N�

 CP��N�

	 which by
Theorem ��� can be e�ciently determined when the
consistency problem for C admits an e�cient algo

rithm�

Union and Di�erence� Since version spaces are
simply sets� in addition to intersection one can con

sider the union and set di�erence of two sets� Unfor

tunately� although these two operations can be useful
in learning with version spaces Hirsh ������ version
spaces are not closed under either union or set di�er

ence 	 there may be no set of examples that gives
a version space that is equal to the union or di�er

ence of two given version spaces� Thus� we do not
o�er here a way to compute the union or di�erence of
version spaces whereas in some cases the boundary

set representation can still apply Gunter et al� �����
Hirsh �������

Convergence� A version space CP�N is said to have
converged if there is exactly one concept in C consistent
with P and N � i�e�� if jCP�N j � �� Observe that the
existence of an e�cient algorithm for the consistency
problem for C does not necessarily imply the existence
of an e�cient algorithm for the convergence problem
for C� Intuitively� it is �harder� to determine if there is
exactly one consistent concept i�e�� convergence� than
determine if there is any consistent concept�

To instantiate this intuition� we note that for the
class C of monotone formulas� the consistency problem



is e�ciently computable� Simply check if any posi

tive example falls �below�� in the Boolean hypercube�
a negative� and vice versa�� However� it is possible to
show that the convergence problem is equivalent to de

termining if a monotone DNF formula is equivalent to a
monotone CNF formula� While there are e�cient solu

tions to restricted versions of the equivalence of mono

tone DNF and CNF problem Eiter � Gottlob �����
Johnson� Papadimitriou� � Yannakakis ����� Lawler�
Lenstra� � Rinnooy Kan ����� Mishra � Pitt ������
the best known algorithm for the general problem
runs in superpolynomial time Fredman � Khachiyan
������ So while there is a polynomial
time algorithm
for the consistency problem for monotone formulas� the
convergence problem would appear to be harder�

This apparent hardness does not disturb us greatly�
since the convergence operation does not play as im

portant a role in learning with version spaces as it
initially appeared to in Mitchell�s work� In partic

ular� convergence usually requires a very large num

ber of examples� the smaller an unconverged version
space is� the longer the wait for a random example
that can distinguish them Haussler ������ Haussler
also showed that under the PAC learning criteria� it is
not necessary to generate a converged version space�
since any element of a version space for some num

ber of randomly chosen examples will do compara

bly well on future data� It is thus unusual to wait
until a version space becomes singleton� as opposed
to� say� selecting a random element of the version
space for classi�cation purposes Norton � Hirsh �����
������

� Example Concept Classes

We now study the tractability of version
space learn

ing for a number of concept classes� In each case we
explore the tractability of the consistency problem� as
well as� in some cases� the in�tractability of boundary

set
based version spaces for that class�

One Boundary Set Large� Although Haus

sler ����� showed that it is possible to have one
boundary set grow large when learning monomials� an
even more surprising case of this 	 where our approach
to version spaces now makes learning tractable 	 is for
the concept class of propositional Horn sentences con

junctions of Horn clauses�� It is possible to show with
a small training sample that the size of one boundary
set can grow exponentially large Aizenstein � Pitt
������ Nonetheless� the consistency problem for Horn
sentences is e�ciently computable� We demonstrate
how to construct a Horn sentence� H� consistent with
a given P and N whenever one exists� The idea is to
construct for each negative example n a set of clauses
that falsify n� and then remove from this set the clauses
that also falsify examples in P � After this removal�
the Horn sentence will necessarily be consistent with
P � and� if it is not consistent with N � then it can be

shown that no Horn sentence exists that can satisfy P
and falsify N �

For an example n� let ones�n� be the conjunction of
all �
bits of n and zeros�n� be the set of all �
bits of n�
By convention� False � zeros�n�� If n is a negative ex

ample� then the following is a Horn sentence which ex

cludes n� clausesn� �

V
z�zeros�n�onesn� � z� For

example� if n � ������ then clauses�n�� x�x�x
 �
x	� � x�x�x
 � x�� � x�x�x
 � False��

Consider the Horn sentence H obtained by conjoin

ing clauses�n� for each n in N � and then removing
any �bad� clauses that exclude points in P � H �V
�n�N �l� clauses�n� and P�l l� Clearly if H is consistent

with P and N then there is a Horn sentence consis

tent with P and N � If H is not consistent� then it can
be shown that some negative example n of N is not
classi�ed negative and� further� no Horn clause exists
that can simultaneously classify n negative and all the
examples in P positive�

Both Boundary Sets Large� Haussler ����� gives
an example over the class of simple conjunctions �

CNF formulas� where jGj grows exponentially in the
size of the training sample� A dual statement can be
made for the class of simple disjunctions �
DNF for

mulas� 	 namely� that jSj can grow large� Further� it
is possible to show for the concept class of conjunctions
or disjunctions �
DNF � �
CNF�� that both jGj and
jSj can be large� As this concept class is not exactly
natural� we investigate a class that has been previously
studied by� for example Rivest ������ that properly
includes �
DNF � �
CNF� namely �
decision lists es

sentially a maximally unbalanced decision tree�� Note
that since both boundary sets can be large after a small
number of examples� one
sided boundary set represen

tations like the �S�N � and �G�P � representation Hirsh
����� are ine�ective for this concept class�

Consider the class of �
decision lists over the �n vari

ables u�� v�� � � � � un� vn� x�� y�� � � � � xn� yn� Let �� be the
length �n example in which every bit position is �
analgously for ���� Also� let ���i ���i� be the length �n
example with bits �i and �i�� set o� on� and the re


maining bits sets on o��� If P � f��i �� � i � �� � � � � ng

and N � f�� ��i � i � �� � � � � ng then it can be shown
that jGj and jSj are both at least n �n�� However� al

though maintaining even one boundary set in this case
requires exponential space� the consistency problem for
�
decision lists is e�ciently solvable Rivest �������

Ill�De�ned Boundary Sets� In a continuous do

main� e�g�� the Euclidean plane� it is a simple exer

cise to exhibit situations where both G and S are in�

nite� yet the consistency problem is e�ciently solvable�

�This is in contrast to Haussler�s �	
�
� example of con�
junctions of existentially quanti�ed predicates for which
both jGj and jSj grow exponentially� yet the consistency
problem is NP�complete�



In particular� the reader will enjoy demonstrating this
fact when the concept class is the set of open or closed
halfspaces over two real
valued variables� Two exam

ples are su�cient to force both G and S to be in�nite�
Letting the concept class consist solely of open halfs

paces� for example� gives a stronger result that the set
S is not even well
de�ned�� The e�ciency of the con

sistency problem can be seen by using any polynomial

time algorithm for linear programming�

When Consistency is NP�hard� By applying
Theorem ��� in the other direction� we have that if
the consistency problem for C is NP
hard� then C is
not version
space predictable� unless P � NP � For
example� since results of Pitt and Valiant ����� show
that the consistency problem for k
term DNF formulas
is NP
hard� this class is not version
space predictable�
unless P � NP � However as their work goes on to
suggest�� we can still use version spaces for this con

cept class if we use the richer knowledge representation
class of k
CNF formulas since it includes k
term DNF
formulas and there is a tractable solution to the con

sistency problem for k
CNF formulas�

References

Aha� D� ����� Special issue on lazy learning� Arti
cial
Intelligence Review� To appear ���!���

Aizenstein� H�� and Pitt� L� ����� On the learnability
of disjunctive normal form formulas� Machine Learn�
ing ��������!����

Aizenstein� H�� Hegedus� T�� Hellerstein� L�� and Pitt�
L� ����� Complexity theoretic hardness results for
query learning� Computational Complexity� To ap�
pear�

Blumer� A�� Ehrenfeucht� A�� Haussler� D�� and War

muth� M� K� ����� Occam�s razor� Inform� Proc�
Lett� ������!����

Blumer� A�� Ehrenfeucht� A�� Haussler� D�� and War

muth� M� K� ����� Learnability and the Vapnik

Chervonenkis dimension� J� ACM ��������!����

Eiter� T�� and Gottlob� G� ����� Identifying the min

imal transversals of a hypergraph and related prob

lems� SIAM Journal on Computing ���������!�����

Fredman� M� L�� and Khachiyan� L� ����� On the
complexity of dualization of monotone disjunctive
normal forms� Journal of Algorithms ��������!����

Gunter� C� A�� Ngair� T�
H�� Panangaden� P�� and
Subramanian� D� ����� The common order
theoretic
structure of version spaces and ATMS�s extended ab

stract�� In Proceedings of the National Conference on
Arti
cial Intelligence� ���!����

Haussler� D� ����� Quantifying inductive bias� AI
learning algorithms and Valiant�s learning framework�
Arti
cial Intelligence ������!����

Haussler� D� ����� Learning conjunctive concepts in
structural domains� Machine Learning �����!���

Hirsh� H� ����� Theoretical underpinnings of version
spaces� In Proceedings of the Twelfth Joint Interna�
tional Conference on Arti
cial Intelligence� ���!����
San Mateo� CA� Morgan Kaufmann�

Hirsh� H� ����� Polynomial time learning with version
spaces� In Proceedings of AAAI��	�

Hirsh� H� ����� Generalizing version spaces� Machine
Learning ������!���

Idestam
Almquist� P� ����� Demand networks� An
alternative representation of version spaces� SYSLAB
Report ��� Department of Computer and Systems Sci

ences� The Royal Institue of Technology and Stock

holm University�

Johnson� D� S�� Papadimitriou� C� H�� and Yan

nakakis� M� ����� On generating all maximal indepen

dent sets� Information Processing Letters ��������!
����

Lawler� E� L�� Lenstra� J� K�� and Rinooy Kan�
A� H� G� ����� Generating all maximal independent
sets� NP
hardness and polynomial
time algorithms�
SIAM Journal on Computing�

Mishra� N�� and Pitt� L� ����� Transversal
of bounded
degree hypergraphs with membership
queries� In Proc� ��th Annu� ACM Workshop on
Comput� Learning Theory� To appear� ACM Press�
New York� NY�

Mitchell� T� ����� Generalization as search� Art� Int�
������!����

Norton� S� W�� and Hirsh� H� ����� Classi�er learning
from noisy data as reasoning under uncertainty� In
Proceedings of the National Conference on Arti
cial
Intelligence� Menlo Park� CA� AAAI Press�

Norton� S� W� and Hirsh� H� ����� Learning DNF
via probabilistic evidence combination� In Machine
Learning� Proceedings of the Seventh International
Conference� �����

Pitt� L�� and Valiant� L� ����� Computational limita

tions on learning from examples� J� ACM ������!����

Rivest� R� L� ����� Learning decision lists� Machine
Learning �������!����

Smith� B� D�� and Rosenbloom� P� S� ����� Incre

mental non
backtracking focusing� A polynomially
bounded generalization algorithm for version spaces�
In Proceedings of the National Conference on Arti
�
cial Intelligence� ���!����

Subramanian� D�� and Feigenbaum� J� ����� Fac

torization in experiment generation� In Proceedings
of the National Conference on Arti
cial Intelligence�
���!����

Utgo�� P� E� ����� Machine Learning of Inductive
Bias� Boston� MA� Kluwer�

VanLehn� K�� and Ball� W� ����� A version space
approach to learning context
free grammars� Machine
Learning ������!���


