Version Spaces Without Boundary Sets

Haym Hirsh
hirsh@cs.rutgers.edu
Computer Science Department
Rutgers University
New Brunswick, NJ 08903

Abstract

This paper shows that it is not necessary to main-
tain boundary sets to reason using version spaces.
Rather, most of the operations typically performed
on version spaces for a concept class can be tractably
executed directly on the training data, as long as it
is tractable to solve the consistency problem for that
concept class — to determine whether there exists any
concept in the concept class that correctly classifies
the data. The equivalence of version-space learning to
the consistency problem bridges a gap between empir-
ical and theoretical approaches to machine learning,
since the consistency problem is already known to be
critical to learning in the PAC (Probably Approxi-
mately Correct) sense. By exhibiting this link to the
consistency problem, we broaden the class of problems
to which version spaces can be applied to include con-
cept classes where boundary sets can have exponential
or infinite size and cases where boundary sets are not
even well defined.

1 Introduction

The problem of inductive learning is to extrapolate
from a collection of training data — a set of examples,
each labeled as either positive or negative by some un-
known target concept — a concept definition that ac-
curately labels future, unlabeled data. Most inductive
learning algorithms operate over some concept class —
the set of concepts that the learner can potentially gen-
erate over all possible sets of training data. Mitchell’s
(1982) introduction of the notion of a version space
provided a useful conceptual tool for inductive learn-
ing. Given a concept class ', the version space for a
set of examples is simply the set of concepts in C' that
are consistent with the data. To represent a version
space, Mitchell proposed maintaining only the set of
maximally general (G) and maximally specific (S) con-
sistent concepts,called boundary sets, since they bound
the set of all concepts in the version space. However,
although 1t is more efficient than explicitly maintain-
ing all elements of the version space, this representa-
tion has a number of serious limitations. For example,

Copyright (©1997, American Association for Artificial Intelligence
(www.aaal.org). All rights reserved.

Nina Mishra
nmishra@uiuc.edu
Computer Science Department
University of Illinois at Urbana

Urbana, IL 61801

Leonard Pitt
pitt@cs.uiuc.edu
Computer Science Department
University of Illinois at Urbana

Urbana, IL 61801

Haussler (1988) showed that even for the concept class
of positive-monotone monomials over n variables (i.e.,
simple conjunctions of subsets of n unnegated Boolean
attributes) there are cases where after a number of
examples linear in n, the boundary set (G has size ex-
ponential in n. Further, for infinite concept classes,
boundary sets can have potentially infinite size, and in
some cases (for inadmissible concept classes (Mitchell
1982)) it is not even possible to represent a version
space by its boundary sets. Section 5 presents version
spaces exhibiting such pathologies.

A number of papers have proposed alternative repre-
sentations for version spaces to overcome some of these
limitations. Particularly relevant to this work, Van-
Lehn and Ball (1987) proposed maintaining an approx-
imate and overgeneral GG set plus the set N of all nega-
tive examples (which need not any longer be reflected
in the new G set) as a way of tractably but approxi-
mately learning restricted classes of context-free gram-
mars. (Interestingly, VanLehn and Ball also totally do
away with the S boundary set, maintaining solely the
set P of positive examples instead. However, this was
only due to the fact that, for the langauges they learn,
the S set is the trivial concept that classifies only the
given positive examples as positive and all else nega-
tive, and thus P and S are trivially equivalent.) Smith
and Rosenbloom (1990) showed that a similar idea —
maintaining the S and G boundary sets for all the pos-
itive data plus only a selected subset of the negative
data, along with the set N of unprocessed negative ex-
amples — was sufficient to guarantee tractable version-
space learning for a constrained class of conjunctive
languages. Subsequent work (Hirsh 1992) took this
further, doing away with the set (G altogether, and
instead using an [S, N] representation that maintains
only the boundary set S together with the set NV of all
negative examples, and showing that for many com-
mon concept classes, most of what could be done with

!Version spaces also face difficulties in their limited ca-
pacity to handle noisy data or concept classes that do not
contain the target concept (Utgoff 1986; Hirsh 1994), but
we concern ourselves in this paper solely with the represen-
tational difficulties faced even when these are not at issue.

the [S, G] representation could be accomplished with
the [S, N] representation, only with tractability guar-
antees due to its more modest representational require-
ment of maintaining a single (non-exponentially-large)
boundary set.

Unfortunately, there are also cases where both
boundary sets can be prohibitively large. Haus-
sler (1989) gives one such example, for conjunctions of
existentially quantified predicates, and in Section 5 we
show that a similar situation can occur for the proposi-
tional language of 1-decision lists (1-DLs). The [S, V]
representation is inadequate in these cases, in that it
still must maintain one of the two exponentially large
boundary sets.

In this paper we show that focusing on the represen-
tation of a version space — understanding the behavior
of boundary sets, exploring other version-space repre-
sentations, etc. — is not the key issue for effective
version-space learning for a concept class C'. Rather,
the focus should be on finding efficient algorithms for
the consistency problem for C' — the problem of deter-
mining if any concept in C' exists that correctly classi-
fies a given set of positive and negative examples. We
demonstrate that almost all operations performed on
version spaces for any concept class C' can be efficiently
executed if and only if there 1s an efficient solution to
the consistency problem for C'. In version-space ter-
minology, almost all version-space operations can be
efficiently executed if and only if there is an efficient
way of determining whether a version space has col-
lapsed, 1.e., i1s empty.

Our “representation” of a version space is thus not
much of a representation at all — we simply store the
postive (P) and negative (N) examples, and tractably
perform version-space operations directly on these two
sets.? Note that it is impossible to show that the [P, N]
representation can grow faster than its input because
the input is its representation. Thus infinite and in-
admissible concept classes do not pose a problem for
this representation. The question simply becomes one
concerning the tractability of ezecuting version-space
operations on this representation. For those concept
classes where operations on the standard boundary-set
representation are provably tractable (i.e., can be exe-
cuted in time polynomial in relevant problem parame-
ters), the [P, N] representation is also guaranteed to be
tractable, even if only by first computing the boundary
sets. In the other direction, however, there are cases
(such as 1-decision lists) where the [P, N] representa-
tion is tractable (because there is an efficient solution
to the consistency problem) and, yet, the boundary-set
representation is not.

It is particularly nice that the tractability of the
consistency problem plays a key role for version-space
learning, given the importance it plays in the compu-
tational learning theory literature and the study this

2Thus our results can be viewed as providing a lazy
learning algorithm for version spaces (Aha 1997).

problem has received there. For example, if there
exists an algorithm for a concept class C' that out-
puts a consistent hypothesis of “small” size, then ('
is PAC learnable (Blumer et «l. 1987). As an-
other example, if the VC-dimension of a concept class
C' grows polynomially and if there exists an algo-
rithm that outputs a consistent hypothesis from C,
then C' is PAC-learnable (Blumer et al. 1989). A
partial converse is also known (Pitt & Valiant 1988;
Blumer et al. 1989).

One of the main insights and sources of power con-
cerning version spaces is that they provide a way to
classify future, unseen examples even when insufficient
data have been obtained to identify the unique identity
of the target concept. We show with a simple argument
that doing such classification of future examples is ex-
actly as hard as solving the consistency problem. The
way the consistency problem can be used to classify an
example & according to a version space induced by pos-
itives P and negatives N is actually quite simple. We
run the consistency algorithm twice. The first time,
we run the algorithm assuming x is a positive example
(i.e., with positives P U {#} and negatives N). If no
consistent concept exists (alternatively, if the version
space collapses), then every consistent concept must
classify x negative. Otherwise, we run the consistency
algorithm assuming x is a negative example (i.e., with
positives P and negatives NU{x}). Similarly,if no con-
sistent concept exists, then every consistent concept
must classify x positive. If neither case holds, there
must be at least one consistent concept that classifies
z positive and at least one that classifies x negative —
the label of # is not determined by the version space,
and, consequently, z is labeled “7”.

We begin by proving that classifying an example in
a manner consistent with a version space is exactly
the consistency problem (Section 3). Next, we show
that almost all of the standard operations on version
spaces can be performed using an efficient solution to
the consistency problem (Section 4). We conclude
with applications of the main result (Section 5).

2 Definitions and Notation

A concept ¢ is a subset ¢ C X of a space X of exam-
ples. An example # € X 1s a said to be labeled positive
by ¢ if # € ¢, and negative otherwise. A concept class,
C C 2% is a collection of concepts. For a set of posi-
tive examples, P, negative examples, V, and a concept
class, C', the version space is the set of all concepts in
C' consistent with P and N (Mitchell 1982). We use
Cp v to denote the version space induced by P and V.
Specifically, Cpn ={c € C : P C ¢, and NNe = 0}.
If Cp n is empty we say that the version space has col-
lapsed; if 1t contains a single concept we say that the
version space has converged.

If every element of a version space labels an exam-
ple the same way, then that example can be unambigu-
ously labeled even if the version space contains multiple

concepts, since no matter which one was the “correct”
one, they all agree on how to label the given example.
A version space C'p iy can therefore be viewed as induc-
ing a function, classify(Cp y), that, given an example,
outputs a label that reflects the consensus of concepts
n CP,N3

“97 if C'pwv is empty
. “+ ifxeccforallceC
classify(Cp y) () = “ ifrdcforallce C'ix

“7”7 otherwise

We sometimes abuse notation and use C'p y () instead.
The tractable computation of the classify function is
one of the key questions that we study here:

Definition 2.1 A concept class C is (efficiently)
version-space predictable if there exists an algorithm
that, given a set of posttive examples, P, a set of nega-
tive examples, N, and an example, x, outputs Cp y(2)
in time polynomial in |P|, |[N|, and |z|.

Note that we are really only interested in concept
classes C' that are “missing” some concepts, i.e., C' #
2X. Otherwise, if C = 2% (e.g., if C is the class of
DNF formulas) then it is easy to see that C is trivially
version-space predictable.

Finally, the consistency problem for C' can be sum-
marized as the problem of determining if there is a
concept in C' that correctly labels a given set of posi-
tive and negative examples. More formally stated,

Definition 2.2 The consistency problem for C is:
Given a set of positive ezamples, P, and negative ex-
amples, N, is Cpny 07

The above definition is equivalent to: Has the version
space induced by P and N collapsed? We’ll say that
the consistency problem for C'1s efficiently computable
if there is an algorithm for the consistency problem for
C' that runs in time polynomial in |P| and |N|.

3 Consistency and Version-Space
Predictability

A key result of this paper is that version-space pre-
dictability 1s equivalent to the consistency problem.
We begin with a simple proposition.

Proposition 3.1 For all z in X,
1. (Cpugey, N =0) & (x & cfor every ¢ € Cp n)
2. (Cpnufay =0) & (x € cfor every ¢ € Cp n)

Proof: We show part 1, the proof of part 2 is analo-
gous. For arbitrary z, if © ¢ ¢ for every ¢ € Cpy,
then clearly Cpyuieyn = @. Conversely, if x € ¢

®In many references (Blumer et al. 1989; Pitt & Valiant
1988; Aizenstein et al. 1997), the consistency-problem def-
inition requires that a consistent hypothesis be explicitly
output if one exists. While our main results do not re-
quire that a hypothesis be output, all of the algorithms we
exhibit in Section 5 actually output consistent hypotheses.

for some concept ¢ € Cpn, then ¢ € Cpyyey,n, and
Cpufzy,n # 0.

We can use an algorithm for the consistency prob-
lem for C' to predict the label of z according to the
version space induced by [P, N] by simply running the
consistency algorithm twice — once with z in P and
another time with x in N. If either is empty, the pre-
ceding proposition gives the basis for classifying .

Theorem 3.1 C' s efficiently wversion-space pre-
dictable < the consistency problem for C' is efficiently
computable.

Proof: Note that Cp y is empty iff both Cpyrsy, N
and Cp nyuie) are empty. Assume Cpy # ¢. By def-
inition, Cpny(z) = “4” if and only if z € ¢ for all
¢ € Cpn By the second part of Proposition 3.1, this
holds if and only if C'p yufey 1s empty. Similarly, by
definition, Cp n(2) = “=” if and only if & ¢ for all
¢ € Cpn, which, by Proposition 3.1 part 1, holds if
and only if Cpyyzy,n is empty. And, if neither hold,
then, the classification is by definition “7”.

It now follows immediately that an algorithm for the
consistency problem can be used to solve the version
space classification problem: run the consistency al-
gorithm on inputs P U {2}, N and then again on P,
N U {z}. If only the first one succeeds then z must be
in every concept in the version space, and the version-
space algorithm should predict “+”. (Dually if only
the second one succeeds.) If both succeed, then # must
be in some concepts in the version space and not in
others, and thus, the version space algorithm should
predict “?”. If both fail, then the algorithm should
predict “@”.

Observe that if the consistency algorithm is efficient,
i.e., runs in time p(|P|,|N|), where p is some polyno-
mial, then the version-space prediction algorithm runs
in time p(|PU{z}|, |N|)+p(|P], |NU{x}|), and is also
efficient.

If C' 1s version-space predictable then, by defini-
tion, the consistency problem is efficiently computable.
To determine if there is a concept in ' consistent
with [P, N], use the version-space prediction algorithm
to classify Cp y(2) for an arbitrary example « in X.
There is no concept consistent with [P, N if and only
if the version-space prediction algorithm outputs “0”,
1.e., if the version space has collapsed.

4 Other Version-Space Operations

We now discuss the tractability of other version-space
operations using the [P, N] representation.

Collapse: A version space has collapsed iff there 1s
no consistent concept, and thus version-space collapse
is trivially testable with an efficient consistency algo-
rithm.

Concept Membership: Given a version space
Cp n, one may want to determine if a given concept

cisin Cp . The tractability of this operation using
the [P, N] representation only relies on the tractability
of labeling an example with a concept: ¢ is in the ver-
sion space Cpy if and only if p € ¢ and n & ¢, for all
p € P and n € N. The tractability of this operation
under the [P, N] representation is independent of the
tractability of the consistency problem and the equiva-
lent concept-class properties discussed in the previous
section. As long as it 1s tractable to classify an example
with a concept, it 1s tractable to test whether a concept
is in a version space under the [P, N] representation.
This is an interesting contrast to the requirements nec-
essary for the tractability of this operation for the
boundary-set representation — that it be tractable to
determine whether ¢; C ¢ for all ¢1,c9 € C'.

Update and Retraction: If generating the repre-
sentation of a version space for a collection of data
requires significant computation one must consider the
tractability of updating this representation as new data
are obtained. For boundary sets, this requires generat-
ing new boundary sets that reflect all past data (sum-
marized by the current boundary sets) plus the new
data. For the [P, N] representation this update opera-
tion is trivial: add the example to P if the example is
positive, and add it to N if it 1s negative.

Retracting data is likewise trivial: simply remove the
example from the set in which it occurs, P or N. This
operation is not often considered with version spaces
primarily due to the fact that 1t is difficult to retract
an example once it is reflected in the current version-
space representation (although retraction is important
in handling noisy data with version spaces (Idestam-

Almquist 1989)).

Intersection: Previous work (Hirsh 1994) showed
that version-space intersection could form the basis
for an alternative approach to learning with version
spaces. The intersection of version spaces Cp, n, and
Cp,,N,, denoted C'p, v, NCp, n,, is the set of concepts
that contain all the examplesin both P; and P> and do
not contain any examples in N; and N,. The question
becomes whether one can efficiently compute the rep-
resentation of the version space for Cp, v, NCp, N, =
Cpup,, N uN, given the representations for Cp, y, and
Cp, N,. As with the preceding Update operation, this
is trivial — the P set for the new version space is just
P; U P; and the new N set is just N3 U Ns.

Subset Testability and Equality: Version spaces
are simply sets, and thus one can ask whether the ver-
sion space for one set of data is a subset of the version
space for a second set of data. At first this may ap-
pear to be a problem that is harder than the consis-
tency problem — for example, one version space may
be a subset of a second even if they are based on dis-
joint sets of training data. Initially it may seem that it
would be necessary to enumerate the elements in both
version spaces, or at least their boundary sets, to do

subset-testing. However, not only is subset testing no
harder than the consistency problem, the two problems
are equivalent, as we now show.

Definition 4.1 A concept class C' 1is subset-testable
iof there exists an algorithm that, given two sets of pos-
itive examples, Py and Ps, and two sets of negative

examples, N1 and No, determines in time polynomaial
in |P1|7 |P2|7 |N1|7 and |N2|7 whether CP1,N1 g CPz,N2’

To show that subset-testability is equivalent to the
efficient computation of the consistency problem, we
show how a tractable solution to either efficiently solves
the other.

Theorem 4.1 C' is subset-testable if and only if the
consistency problem for C s efficiently computable.

Proof: Note that if Cp, n, C Cp, n,, every element
p € P, must be classified as “4+” by Cp, n, and every
element n € N2 must be classified as “=” by Cp, w,.
This can be tested using an efficient procedure for the
consistency problem by returning true if Cp, n,ufp} =
0 for each p € Py and Cp,uqny,n, = 0 for each n € Ny,
and otherwise return false.

To use an efficient test for Cp, v, € Cp, n, as the
basis for efficiently solving the consistency problem,
note that C'p v = 0 if and only if Cpn C Cyy {4} for
any ¢ € X. |

To test Equality, observe that two version spaces
Cp,, v, and Cp, n, are equal if and only if both
Cp,,N; € Cp, v, and Cp, v, 2 Cp, n, — which by
Theorem 4.1 can be efficiently determined when the
consistency problem for ' admits an efficient algo-
rithm.

Union and Difference: Since version spaces are
simply sets, in addition to intersection one can con-
sider the union and set difference of two sets. Unfor-
tunately, although these two operations can be useful
in learning with version spaces (Hirsh 1994), version
spaces are not closed under either union or set differ-
ence — there may be no set of examples that gives
a version space that is equal to the union or differ-
ence of two given version spaces. Thus, we do not
offer here a way to compute the union or difference of
version spaces (whereas in some cases the boundary-
set representation can still apply (Gunter et al. 1991;
Hirsh 1991)).

Convergence: A version space Cp v is said to have
converged if there is exactly one concept in C' consistent
with P and N, ie., if |Cpy| = 1. Observe that the
existence of an efficient algorithm for the consistency
problem for C' does not necessarily imply the existence
of an efficient algorithm for the convergence problem
for C'. Intuitively, it is “harder” to determine if there is
exactly one consistent concept (i.e., convergence) than
determine if there is any consistent concept.

To instantiate this intuition, we note that for the
class C' of monotone formulas, the consistency problem

is efficiently computable. (Simply check if any posi-
tive example falls “below”, in the Boolean hypercube,
a negative, and vice versa.) However, it is possible to
show that the convergence problem is equivalent to de-
termining if a monotone DNF formulais equivalent to a
monotone CNF formula. While there are efficient solu-
tions to restricted versions of the equivalence of mono-
tone DNF and CNF problem (Eiter & Gottlob 1995;
Johnson, Papadimitriou, & Yannakakis 1988; Lawler,
Lenstra, & Rinnooy Kan 1980; Mishra & Pitt 1997),
the best known algorithm for the general problem
runs in superpolynomial time (Fredman & Khachiyan
1996). So while there is a polynomial-time algorithm
for the consistency problem for monotone formulas, the
convergence problem would appear to be harder.

This apparent hardness does not disturb us greatly,
since the convergence operation does not play as im-
portant a role in learning with version spaces as it
initially appeared to in Mitchell’s work. In partic-
ular; convergence usually requires a very large num-
ber of examples: the smaller an unconverged version
space is, the longer the wait for a random example
that can distinguish them (Haussler 1988). Haussler
also showed that under the PAC learning criteria, it is
not necessary to generate a converged version space,
since any element of a version space for some num-
ber of randomly chosen examples will do compara-
bly well on future data. It is thus unusual to wait
until a version space becomes singleton, as opposed
to, say, selecting a random element of the version
space for classification purposes (Norton & Hirsh 1992;
1993).

5 Example Concept Classes

We now study the tractability of version-space learn-
ing for a number of concept classes. In each case we
explore the tractability of the consistency problem, as
well as, in some cases, the (in)tractability of boundary-
set-based version spaces for that class.

One Boundary Set Large: Although Haus-
sler (1988) showed that it is possible to have one
boundary set grow large when learning monomials, an
even more surprising case of this — where our approach
to version spaces now makes learning tractable — 1s for
the concept class of propositional Horn sentences (con-
junctions of Horn clauses). Tt is possible to show with
a small training sample that the size of one boundary
set can grow exponentially large (Aizenstein & Pitt
1995). Nonetheless, the consistency problem for Horn
sentences is efficiently computable. We demonstrate
how to construct a Horn sentence, H, consistent with
a given P and N whenever one exists. The i1dea is to
construct for each negative example n a set of clauses
that falsify n, and then remove from this set the clauses
that also falsify examples in P. After this removal,
the Horn sentence will necessarily be consistent with
P, and, if it is not consistent with N, then it can be

shown that no Horn sentence exists that can satisfy P
and falsify N.

For an example n, let ones(n) be the conjunction of
all 1-bits of n and zeros(n) be the set of all 0-bits of n.
By convention, False € zeros(n). If n is a negative ex-
ample, then the following is a Horn sentence which ex-

cludes n: clauses(n) = /\Zezeros(n)(ones(n) — z) For

example, if n = 11001, then clauses(n)= (r1x225 —
23) A (212205 — 24) A (212005 — False).

Consider the Horn sentence H obtained by conjoin-
ing clauses(n) for each n in N, and then removing
any “bad” clauses that exclude points in P: H =
Aanenie clauses(n) and PCI . Clearly if H is consistent
with P and N then there is a Horn sentence consis-
tent with P and N. If H is not consistent, then it can
be shown that some negative example n of N is not
classified negative and, further, no Horn clause exists
that can simultaneously classify n negative and all the
examples in P positive.

Both Boundary Sets Large: (Haussler 1988) gives
an example over the class of simple conjunctions (1-
CNF formulas) where |G| grows exponentially in the
size of the training sample. A dual statement can be
made for the class of simple disjunctions (1-DNF for-
mulas) — namely, that |S| can grow large. Further, it
1s possible to show for the concept class of conjunctions
or digjunctions (1-DNF U 1-CNF), that both |G| and
|S| can be large. As this concept class is not exactly
natural, we investigate a class that has been previously
studied by, for example Rivest (1987), that properly
includes 1-DNF U 1-CNF, namely 1-decision lists (es-
sentially a maximally unbalanced decision tree). Note
that since both boundary sets can be large after a small
number of examples, one-sided boundary set represen-
tations like the [S, N] and [G, P] representation (Hirsh
1992) are ineffective for this concept class.

Consider the class of 1-decision lists over the 4n vari-
ables uy,v1, ..., Up, Un, ®1, Y1, ., Tn, Yn. Let 1 be the
length 2n example in which every bit position is 1
(analgously for 6) Also, let Ta (622) be the length 2n
example with bits 2¢ and 2i+ 1 set off (on) and the re-
maining bits sets on (off). If P = {0y 1:4=1,...,n}
and N = {0 1y : i = 1,...,n} then it can be shown
that |G| and |S| are both at least (n!2"). However, al-
though maintaining even one boundary set in this case

requires exponential space, the consistency problem for
1-decision lists is efficiently solvable (Rivest 1987).4

Ill-Defined Boundary Sets: In a continuous do-
main, e.g., the Euclidean plane, it is a simple exer-
cise to exhibit situations where both G and S are infi-
nite, yet the consistency problem is efficiently solvable.

*This is in contrast to Haussler’s (1989) example of con-
junctions of existentially quantified predicates for which
both |G| and |S| grow exponentially, yet the consistency
problem is NP-complete.

In particular, the reader will enjoy demonstrating this
fact when the concept class is the set of open or closed
halfspaces over two real-valued variables. Two exam-
ples are sufficient to force both G and S to be infinite.
(Letting the concept class consist solely of open halfs-
paces, for example, gives a stronger result that the set
S is not even well-defined.) The efficiency of the con-
sistency problem can be seen by using any polynomial-
time algorithm for linear programming.

When Consistency is NP-hard: By applying
Theorem 3.1 in the other direction, we have that if
the consistency problem for ' is NP-hard, then C' is
not version-space predictable, unless P = NP. For
example, since results of Pitt and Valiant (1988) show
that the consistency problem for k-term DNF formulas
is NP-hard, this class is not version-space predictable,
unless P = NP. However (as their work goes on to
suggest), we can still use version spaces for this con-
cept class if we use the richer knowledge representation
class of k-CNF formulas since it includes k-term DNF
formulas and there is a tractable solution to the con-
sistency problem for k-CNF formulas.

References

Aha, D. 1997. Special issue on lazy learning. Artificial
Intelligence Review, To appear 11(1-5).

Aizenstein, H., and Pitt, L. 1995. On the learnability
of disjunctive normal form formulas. Machine Learn-
ing 19(3):183-208.

Aizenstein, H.; Hegedus, T.; Hellerstein, L.; and Pitt,
L. 1997. Complexity theoretic hardness results for
query learning. Computational Complexity, To ap-
pear.

Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and War-
muth, M. K. 1987. Occam’s razor. Inform. Proc.
Lett. 24:377-380.

Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and War-
muth, M. K. 1989. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM 36(4):929-965.

Eiter, T., and Gottlob, G. 1995. Identifying the min-
imal transversals of a hypergraph and related prob-

lems. STAM Journal on Computing 24(6):1278-1304.

Fredman, M. L., and Khachiyan, L. 1996. On the
complexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms 21(3):618-628.
Gunter, C. A.; Ngair, T.-H.; Panangaden, P.; and
Subramanian, D. 1991. The common order-theoretic
structure of version spaces and ATMS’s (extended ab-
stract). In Proceedings of the National Conference on

Artificial Intelligence, 500-505.

Haussler, D. 1988. Quantifying inductive bias: Al
learning algorithms and Valiant’s learning framework.
Artificial Intelligence 36:177-221.

Haussler, D. 1989. Learning conjunctive concepts in
structural domains. Machine Learning 4(1):7-40.

Hirsh, H. 1991. Theoretical underpinnings of version
spaces. In Proceedings of the Twelfth Joint Interna-
tional Conference on Artificial Intelligence, 665-670.
San Mateo, CA: Morgan Kaufmann.

Hirsh, H. 1992. Polynomial time learning with version
spaces. In Proceedings of AAAI-92.

Hirsh, H. 1994. Generalizing version spaces. Machine
Learning 17(1):5-46.

Idestam-Almquist, P. 1989. Demand networks: An
alternative representation of version spaces. SYSLAB
Report 75, Department of Computer and Systems Sci-
ences, The Royal Institue of Technology and Stock-
holm University.

Johnson, D. S.; Papadimitriou, C. H.; and Yan-
nakakis, M. 1988. On generating all maximal indepen-
dent sets. Information Processing Letters 27(3):119—
123.

Lawler, E. L.; Lenstra, J. K.; and Rinooy Kan,
A. H. G. 1980. Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms.
SIAM Journal on Computing.

Mishra, N., and Pitt, L. 1997. Transversal
of bounded-degree hypergraphs with membership
queries. In Proc. 10th Annu. ACM Workshop on
Comput. Learning Theory, To appear. ACM Press,
New York, NY.

Mitchell, T. 1982. Generalization as search. Art. Int.
18:203-226.

Norton, S. W., and Hirsh, H. 1992. Classifier learning
from noisy data as reasoning under uncertainty. In

Proceedings of the National Conference on Artificial
Intelligence. Menlo Park, CA: AAAI Press.

Norton, S. W. and Hirsh, H. 1993. Learning DNF
via probabilistic evidence combination. In Machine
Learning: Proceedings of the Seventh International

Conference, 1990.

Pitt, L., and Valiant, L. 1988. Computational limita-
tions on learning from examples. J. ACM 35:965-984.

Rivest, R. L. 1987. Learning decision lists. Machine
Learning 2(3):229-246.

Smith, B. D.; and Rosenbloom, P. S. 1990. Incre-
mental non-backtracking focusing: A polynomially
bounded generalization algorithm for version spaces.
In Proceedings of the National Conference on Artifi-
cial Intelligence, 848-853.

Subramanian, D., and Feigenbaum, J. 1986. Fac-
torization in experiment generation. In Proceedings
of the National Conference on Artificial Intelligence,
518-522.

Utgoff, P. E. 1986. Machine Learning of Inductive
Bias. Boston, MA: Kluwer.
VanLehn, K., and Ball, W. 1987. A version space

approach to learning context-free grammars. Machine
Learning 2(1):39-74.

