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A Multicommodity Flow Example

Specify:

e network

e edge costs and capacities

e peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA—Dallas
LA-NYC
Dallas—NYC

35 calls
80 calls
70 calls

LA

30 calls Dallas
$3 per call



Previous Work

Simplex-Based Linear Programming:

e Kennington 1977
e Castro and Nabona 1996

Polynomial-Time Linear Programming:
e Vaidya 1989
e Kamath and Palmon 1995

Combinatorial Approximations:

e Leighton et al. 1995
e Leong et al. 1993
e Grigoriadis and Khachiyan 1995
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Simplex Framework

Size:  Problem specification: O(k + m) space
Linear programs: O(km) variables
O(kn + m) inequalities

e 1 IS the number of nodes.
e m IS the number of edges.
e L IS the number of commodities.

CPLEX solution time:

e experimentally quadratic in k
e experimentally quadratic in network size
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Combinatorial Approximation Framework

e-approximation:

e flow uses at most (1 + ¢) edge capacity
e flow cost at most (1 + ¢) minimum cost

Main idea:

e reduce to single-commodity problems
e relate commodities using potential function

Theoretical advantage:

e time: O(e—3k)(time for min-cost flow)
e space: O(k(n+m))

Practical advantages:

e trade off time for accuracy
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The Potential Function

Problem:
Several objectives:
e Minimize total cost

e capacity constraints for every edge
Not smooth!

Solution:
Aggregate into smooth potential function ¢

B flow’s cost flow(e)
7= oxp AQ Aamm_ao_ oomﬁvv v e AQ Aomcmo_imvvv

edges e

small ¢ = good solution
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Outline of the Algorithm

Goal: Reduce potential function ¢.

Main ideas:

e Move in direction (—V¢).

e Maintain flow satisfying demands.
Until e-optimal solution found:

1. Choose a commodity to improve.
Compute V.
Use V¢ as edge costs.

Compute single-commaodity minimum-cost flow f*.

o &~ W D

Improvement step: (1 —o)f + of*.
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Implementing the Algorithm

Direct implementation runs much slower than CPLEX.

Problem:

e pessimistic parameters which
guarantee progress but not practical progress

Solution:
Use theory to yield practical modifications:

e Dynamically adjust the step size o.

e Dynamically adjust «.

e Compute lower bound to determine when solution is e-optimal.
e Restart MCF routine using previous flow.
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Choosing the Step Size o
Improvement step: (1 —o)f +of*

Theory:

o fixed step size 0 = O(e77)
Practice:

e Compute ¢ to minimize potential function.

e Use Newton-Raphson method.

e Newton requires first and second derivatives.
Result: (Sun Enterprise 3000)

time (seconds)

Instance € Newton | theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100  0.01 3 95
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Choosing «
Constant «. occurs in the potential function.

Theory:
e fixed (large) value = guarantee progress
e progress inversely proportional to «
Practice:
e Choose (smaller) value guaranteeing progress.
e Compute occasionally—expensive.
Result: (Sun Enterprise 3000)

time (seconds)

Instance ¢ | adaptive | theoretical
rmfgen-d-7-10-020 0.01 56 161
rmfgen-d-7-10-240  0.03 238 738

multigrid-032-128-0080  0.01 42 47
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Updating MCF Routine

Theory:

e Use any minimum-cost flow routine.
Practice:

e Costs and capacities do not vary much.
e Simplex MCF can update from feasible flow.

e Use commodity’s current flow.
Result: (Sun UltraSPARC-2)

time (seconds)

Instance ¢ | updating | no updating
rmfgen-d-7-10-020  0.01 87 180
rmfgen-d-7-10-240  0.01 454 835

multigrid-032-128-0080  0.01 21 37
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Small Incremental Flow Change

Theory:

e Flow can change on all arcs.

Practice:

e Flow changes on few arcs.

e Routines for ¢ use only nonzero differences.

Result: (Sun UltraSPARC-2)

time (seconds)

Instance € use nonzero | use all
rmfgen-d-7-10-020  0.01 87 203
rmfgen-d-7-10-240 0.01 454 972

multigrid-032-128-0080  0.01 21 33
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Termination Criteria

Stop algorithm when have e-optimal solution.

Theory:

e sSmall¢ =  e-optimal

Practice:

e Compute a lower bound using LP dual.
e Compute occasionally—k MCF computations.
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Comparisons with Linear Programming

MCMCF

e-approximation:
e Flow uses at most (1 + ¢) edge capacity
e Flow cost at most (1 4 €) minimum cost

CPLEX

dual simplex:
e exact solutions

primal simplex
e permits stopping to yield e-approximation
e experimentally 10x slower than dual

Comparisons performed on a Sun UltraSparc-2.
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Dependence on k&
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Running Time (min) (log scale)

Dependence on £ (cont’d)
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Dependence on Problem Size

Tripartite Instances
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Dependence on the Approximation e

The dependence is approximately O(e~1-°).
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Conclusions

theoretical algorithm

e theoretically fast

e practically slower than LP
practical modifications

e guided by theory

resulting advantages

e Yyield fast, provably correct implementation
e solve large problems

e fast approximations

e trade time for accuracy
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