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A Multicommodity Flow Example

Specify:

network
edge costs and capacities
peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA–Dallas 35 calls
LA–NYC 80 calls

Dallas–NYC 70 calls

30 calls
$3 per call

80
ca

lls
$1

pe
r

ca
ll

100 calls

$1 per call

LA
Dallas

NYC
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Previous Work

Simplex-Based Linear Programming:

Kennington 1977
Castro and Nabona 1996

Polynomial-Time Linear Programming:

Vaidya 1989
Kamath and Palmon 1995

Combinatorial Approximations:

Leighton et al. 1995
Leong et al. 1993
Grigoriadis and Khachiyan 1995
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Simplex Framework

Size: Problem specification: space

Linear programs: variables
inequalities

is the number of nodes.
is the number of edges.

is the number of commodities.

CPLEX solution time:

experimentally quadratic in
experimentally quadratic in network size
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Combinatorial Approximation
Framework

-approximation:

flow uses at most edge capacity
flow cost at most minimum cost

Main idea:

reduce to single-commodity problems
relate commodities using potential function

Theoretical advantage:

time: (time for min-cost flow)
space:

Practical advantages:

trade off time for accuracy
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The Potential Function

Problem:
Several objectives:

minimize total cost
capacity constraints for every edge

Not smooth!

Solution:
Aggregate into smooth potential function

flow’s cost

desired cost
edges

flow

capacity

small good solution
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Outline of the Algorithm

Goal: Reduce potential function .

Main ideas:

Move in direction .
Maintain flow satisfying demands.

Until -optimal solution found:

1. Choose a commodity to improve.

2. Compute .

3. Use as edge costs.

4. Compute single-commodity minimum-cost flow .

5. Improvement step: .
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Implementing the Algorithm

Direct implementation runs much slower than CPLEX.

Problem:

pessimistic parameters which
guarantee progress but not practical progress

Solution:
Use theory to yield practical modifications:

Dynamically adjust the step size .
Dynamically adjust .
Compute lower bound to determine when
solution is -optimal.
Restart MCF routine using previous flow.
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Choosing the Step Size

Improvement step:

Theory:

fixed step size

Practice:

Compute to minimize potential function.
Use Newton-Raphson method.
Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)
time (seconds)

instance Newton theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100 0.01 3 95
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Choosing

Constant in potential function:

flow’s cost

desired cost
arcs

flow

capacity

Theory:

fixed (large) value guarantee progress
progress inversely proportional to

Practice:

Choose (smaller) value guaranteeing progress.
Compute occasionally—expensive.

Result: (Sun Enterprise 3000)
time (seconds)

instance adaptive theoretical
rmfgen-d-7-10-020 0.01 56 161
rmfgen-d-7-10-240 0.03 238 738

multigrid-032-128-0080 0.01 42 47
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Updating MCF Routine

Theory:

Use any minimum-cost flow routine.

Practice:

Costs and capacities do not vary much.
Simplex MCF can update from feasible flow.
Use commodity’s current flow.

Result: (Sun UltraSPARC-2)
time (seconds)

instance updating no updating
rmfgen-d-7-10-020 0.01 87 180
rmfgen-d-7-10-240 0.01 454 835

multigrid-032-128-0080 0.01 21 37
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Small Incremental Flow Change

Theory:

Flow can change on all arcs.

Practice:

Flow changes on few arcs.
Routines for use only nonzero differences.

Result: (Sun UltraSPARC-2)
time (seconds)

instance use nonzero use all
rmfgen-d-7-10-020 0.01 87 203
rmfgen-d-7-10-240 0.01 454 972

multigrid-032-128-0080 0.01 21 33
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Termination Criteria

Stop algorithm when have -optimal solution.

Theory:

small -optimal

Practice:

Compute a lower bound using LP dual.
Compute occasionally— MCF computations.
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Comparisons with Linear Programming

MCMCF

-approximation:
Flow uses at most edge capacity
Flow cost at most minimum cost

CPLEX

dual simplex:
exact solutions

primal simplex
permits stopping to yield -approximation
experimentally 10x slower than dual

Comparisons performed on a Sun UltraSparc-2.
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Dependence on

CPLEX

MCMCF (1%)

Number of Commodities (log scale)

Multigrid Instances
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Dependence on (cont’d)

CPLEX

MCMCF (1%)

Number of Commodities (log scale)
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Dependence on Problem Size

CPLEX

MCMCF (2%)

Number of Vertices (log scale)

Tripartite Instances
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Dependence on the Approximation

The dependence is asymptotically .

(log scale)
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Conclusions

theoretical algorithm

theoretically fast
practically slower than LP

practical modifications

guided by theory

resulting advantages

yield fast, provably correct implementation
solve large problems
fast approximations
trade time for accuracy
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