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A Multicommodity Flow Example


Specify:


network
edge costs and capacities
peak call demand


Goal: Satisfy peak demand with minimum cost.


Peak Demands


LA–Dallas 35 calls
LA–NYC 80 calls


Dallas–NYC 70 calls


30 calls
$3 per call


80
ca


lls
$1


pe
r


ca
ll


100 calls


$1 per call


LA
Dallas


NYC
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Previous Work


Simplex-Based Linear Programming:


Kennington 1977
Castro and Nabona 1996


Polynomial-Time Linear Programming:


Vaidya 1989
Kamath and Palmon 1995


Combinatorial Approximations:


Leighton et al. 1995
Leong et al. 1993
Grigoriadis and Khachiyan 1995
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Simplex Framework


Size: Problem specification: space


Linear programs: variables
inequalities


is the number of nodes.
is the number of edges.


is the number of commodities.


CPLEX solution time:


experimentally quadratic in
experimentally quadratic in network size


Jeffrey D. Oldham (oldham@cs.stanford.edu) 3







Combinatorial Approximation
Framework


-approximation:


flow uses at most edge capacity
flow cost at most minimum cost


Main idea:


reduce to single-commodity problems
relate commodities using potential function


Theoretical advantage:


time: (time for min-cost flow)
space:


Practical advantages:


trade off time for accuracy
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The Potential Function


Problem:
Several objectives:


minimize total cost
capacity constraints for every edge


Not smooth!


Solution:
Aggregate into smooth potential function


flow’s cost


desired cost
edges


flow


capacity


small good solution
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Outline of the Algorithm


Goal: Reduce potential function .


Main ideas:


Move in direction .
Maintain flow satisfying demands.


Until -optimal solution found:


1. Choose a commodity to improve.


2. Compute .


3. Use as edge costs.


4. Compute single-commodity minimum-cost flow .


5. Improvement step: .
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Implementing the Algorithm


Direct implementation runs much slower than CPLEX.


Problem:


pessimistic parameters which
guarantee progress but not practical progress


Solution:
Use theory to yield practical modifications:


Dynamically adjust the step size .
Dynamically adjust .
Compute lower bound to determine when
solution is -optimal.
Restart MCF routine using previous flow.
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Choosing the Step Size


Improvement step:


Theory:


fixed step size


Practice:


Compute to minimize potential function.
Use Newton-Raphson method.
Newton requires first and second derivatives.


Result: (Sun Enterprise 3000)
time (seconds)


instance Newton theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203


multigrid-008-016-0100 0.01 3 95
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Choosing


Constant in potential function:


flow’s cost


desired cost
arcs


flow


capacity


Theory:


fixed (large) value guarantee progress
progress inversely proportional to


Practice:


Choose (smaller) value guaranteeing progress.
Compute occasionally—expensive.


Result: (Sun Enterprise 3000)
time (seconds)


instance adaptive theoretical
rmfgen-d-7-10-020 0.01 56 161
rmfgen-d-7-10-240 0.03 238 738


multigrid-032-128-0080 0.01 42 47
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Updating MCF Routine


Theory:


Use any minimum-cost flow routine.


Practice:


Costs and capacities do not vary much.
Simplex MCF can update from feasible flow.
Use commodity’s current flow.


Result: (Sun UltraSPARC-2)
time (seconds)


instance updating no updating
rmfgen-d-7-10-020 0.01 87 180
rmfgen-d-7-10-240 0.01 454 835


multigrid-032-128-0080 0.01 21 37
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Small Incremental Flow Change


Theory:


Flow can change on all arcs.


Practice:


Flow changes on few arcs.
Routines for use only nonzero differences.


Result: (Sun UltraSPARC-2)
time (seconds)


instance use nonzero use all
rmfgen-d-7-10-020 0.01 87 203
rmfgen-d-7-10-240 0.01 454 972


multigrid-032-128-0080 0.01 21 33
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Termination Criteria


Stop algorithm when have -optimal solution.


Theory:


small -optimal


Practice:


Compute a lower bound using LP dual.
Compute occasionally— MCF computations.
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Comparisons with Linear Programming


MCMCF


-approximation:
Flow uses at most edge capacity
Flow cost at most minimum cost


CPLEX


dual simplex:
exact solutions


primal simplex
permits stopping to yield -approximation
experimentally 10x slower than dual


Comparisons performed on a Sun UltraSparc-2.
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Dependence on (cont’d)
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Dependence on Problem Size
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Dependence on the Approximation


The dependence is asymptotically .
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Conclusions


theoretical algorithm


theoretically fast
practically slower than LP


practical modifications


guided by theory


resulting advantages


yield fast, provably correct implementation
solve large problems
fast approximations
trade time for accuracy
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