
An Implementation of a
Combinatorial Approximation
Algorithm for Minimum-Cost

Multicommodity Flows

Jeffrey D. Oldham
Department of Computer Science

Stanford University
oldham@cs.stanford.edu

1998 June 24

Joint work with Andrew Goldberg,
Serge Plotkin, and Cliff Stein.

A Multicommodity Flow Example

Specify:

network
edge costs and capacities
peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA–Dallas 35 calls
LA–NYC 80 calls

Dallas–NYC 70 calls

30 calls
$3 per call

80
ca

lls
$1

pe
r

ca
ll

100 calls

$1 per call

LA
Dallas

NYC

Jeffrey D. Oldham (oldham@cs.stanford.edu) 1

Previous Work

Simplex-Based Linear Programming:

Kennington 1977
Castro and Nabona 1996

Polynomial-Time Linear Programming:

Vaidya 1989
Kamath and Palmon 1995

Combinatorial Approximations:

Leighton et al. 1995
Leong et al. 1993
Grigoriadis and Khachiyan 1995

Jeffrey D. Oldham (oldham@cs.stanford.edu) 2

Simplex Framework

Size: Problem specification: space

Linear programs: variables
inequalities

is the number of nodes.
is the number of edges.

is the number of commodities.

CPLEX solution time:

experimentally quadratic in
experimentally quadratic in network size

Jeffrey D. Oldham (oldham@cs.stanford.edu) 3

Combinatorial Approximation
Framework

-approximation:

flow uses at most edge capacity
flow cost at most minimum cost

Main idea:

reduce to single-commodity problems
relate commodities using potential function

Theoretical advantage:

time: (time for min-cost flow)
space:

Practical advantages:

trade off time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu) 4

The Potential Function

Problem:
Several objectives:

minimize total cost
capacity constraints for every edge

Not smooth!

Solution:
Aggregate into smooth potential function

flow’s cost

desired cost
edges

flow

capacity

small good solution

Jeffrey D. Oldham (oldham@cs.stanford.edu) 5

Outline of the Algorithm

Goal: Reduce potential function .

Main ideas:

Move in direction .
Maintain flow satisfying demands.

Until -optimal solution found:

1. Choose a commodity to improve.

2. Compute .

3. Use as edge costs.

4. Compute single-commodity minimum-cost flow .

5. Improvement step: .

Jeffrey D. Oldham (oldham@cs.stanford.edu) 6

Implementing the Algorithm

Direct implementation runs much slower than CPLEX.

Problem:

pessimistic parameters which
guarantee progress but not practical progress

Solution:
Use theory to yield practical modifications:

Dynamically adjust the step size .
Dynamically adjust .
Compute lower bound to determine when
solution is -optimal.
Restart MCF routine using previous flow.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 7

Choosing the Step Size

Improvement step:

Theory:

fixed step size

Practice:

Compute to minimize potential function.
Use Newton-Raphson method.
Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)
time (seconds)

instance Newton theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100 0.01 3 95

Jeffrey D. Oldham (oldham@cs.stanford.edu) 8

Choosing

Constant in potential function:

flow’s cost

desired cost
arcs

flow

capacity

Theory:

fixed (large) value guarantee progress
progress inversely proportional to

Practice:

Choose (smaller) value guaranteeing progress.
Compute occasionally—expensive.

Result: (Sun Enterprise 3000)
time (seconds)

instance adaptive theoretical
rmfgen-d-7-10-020 0.01 56 161
rmfgen-d-7-10-240 0.03 238 738

multigrid-032-128-0080 0.01 42 47

Jeffrey D. Oldham (oldham@cs.stanford.edu) 9

Updating MCF Routine

Theory:

Use any minimum-cost flow routine.

Practice:

Costs and capacities do not vary much.
Simplex MCF can update from feasible flow.
Use commodity’s current flow.

Result: (Sun UltraSPARC-2)
time (seconds)

instance updating no updating
rmfgen-d-7-10-020 0.01 87 180
rmfgen-d-7-10-240 0.01 454 835

multigrid-032-128-0080 0.01 21 37

Jeffrey D. Oldham (oldham@cs.stanford.edu) 10

Small Incremental Flow Change

Theory:

Flow can change on all arcs.

Practice:

Flow changes on few arcs.
Routines for use only nonzero differences.

Result: (Sun UltraSPARC-2)
time (seconds)

instance use nonzero use all
rmfgen-d-7-10-020 0.01 87 203
rmfgen-d-7-10-240 0.01 454 972

multigrid-032-128-0080 0.01 21 33

Jeffrey D. Oldham (oldham@cs.stanford.edu) 11

Termination Criteria

Stop algorithm when have -optimal solution.

Theory:

small -optimal

Practice:

Compute a lower bound using LP dual.
Compute occasionally— MCF computations.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 12

Comparisons with Linear Programming

MCMCF

-approximation:
Flow uses at most edge capacity
Flow cost at most minimum cost

CPLEX

dual simplex:
exact solutions

primal simplex
permits stopping to yield -approximation
experimentally 10x slower than dual

Comparisons performed on a Sun UltraSparc-2.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 13

Dependence on

CPLEX

MCMCF (1%)

Number of Commodities (log scale)

Multigrid Instances

R
un

ni
ng

T
im

e
(m

in
)

(lo
g

sc
al

e)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 14

Dependence on (cont’d)

CPLEX

MCMCF (1%)

Number of Commodities (log scale)

Rmfgen Instances

R
un

ni
ng

T
im

e
(m

in
)

(lo
g

sc
al

e)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 15

Dependence on Problem Size

CPLEX

MCMCF (2%)

Number of Vertices (log scale)

Tripartite Instances

R
un

ni
ng

T
im

e
(m

in
)

(lo
g

sc
al

e)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 16

Dependence on the Approximation

The dependence is asymptotically .

(log scale)

Rmfgen Instances

N
um

be
r

of
M

C
F

C
om

pu
ta

tio
ns

(lo
g

sc
al

e)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 17

Conclusions

theoretical algorithm

theoretically fast
practically slower than LP

practical modifications

guided by theory

resulting advantages

yield fast, provably correct implementation
solve large problems
fast approximations
trade time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu) 18

