

An Implementation of a Combinatorial
Approximation Algorithm for Minimum-Cost


Multicommodity Flow


Andrew Goldberg1 Jeffrey D. Oldham2 Serge Plotkin3


Cliff Stein4


1997 December 15


1NEC Research Institute, Inc., Princeton, NJ 08540, avg@research.nj.nec.-
com.


2Department of Computer Science, Stanford University, Stanford, CA 94305-9045,
oldham@cs.stanford.edu. Research partially supported by a National Science
Foundation Graduate Research Fellowship, ARO Grant DAAH04-95-1-0121, and NSF
Grants CCR-9304971 and CCR-9307045.


3Department of Computer Science, Stanford University, Stanford, CA 94305-9045,
plotkin@cs.stanford.edu. Research supported by Research supported by ARO
Grant DAAH04-95-1-0121, NSF Grants CCR-9304971 and CCR-9307045, and a Terman
Fellowship.


4Department of Computer Science, Dartmouth College, Hanover, NH 03755,
cliff@cs.dartmouth.edu. Research partly supported by NSF Award CCR-
9308701 and NSF Career Award CCR-9624828. Some of this work was done while this
author was visiting Stanford University.







Abstract


The minimum-cost multicommodity flow problem involves simultaneously ship-
ping multiple commodities through a single network so that the total flow obeys arc
capacity constraints and has minimum cost.


Multicommodity flow problems can be expressed as linear programs, and most
theoretical and practical algorithms use linear-programming algorithms specialized
for the problems’ structures. Combinatorial approximation algorithms in [GK95,
KP95b, PST95] yield flows with costs slightly larger than the minimum cost and
use capacities slightly larger than the given capacities. Theoretically, the running
times of these algorithms are much less than that of linear-programming-based
algorithms.


We combine and modify the theoretical ideas in these approximation algo-
rithms to yield a fast, practical implementation solving the minimum-cost mul-
ticommodity flow problem. Experimentally, the algorithm solved our problem in-
stances (to 1% accuracy) two to three orders of magnitude faster than the linear-
programming package CPLEX [CPL95] and the linear-programming based multi-
commodity flow program PPRN [CN96].







1 Introduction


The minimum-cost multicommodity flow problem involves simultaneously ship-
ping multiple commodities through a single network so the total flow obeys the
arc capacity constraints and has minimum cost. The problem occurs in many con-
texts where different items share the same resource, e.g., communication networks,
transportation, and scheduling problems [AMO93, HL96, HO96].


Traditional methods for solving minimum-cost and no-cost multicommodity
flow problems are linear-programming based [AMO93, Ass78, CN96, KH80]. Us-
ing the ellipsoid [Kha80] or the interior-point [Kar84] methods, linear-program-
ming problems can be solved in polynomial time. Theoretically, the fastest al-
gorithms for solving the minimum-cost multicommodity flow problem [KP95a,
KV86, Vai89] exactly use the problem structure to speed up the interior-point
method.


In practice, solutions to within, say 1%, often suffice. More precisely, we say
that a flow is -optimal if it overflows the capacities by at most factor and has
cost that is within of the optimum. Algorithms for computing approximate so-
lutions to the multicommodity flow problem were developed in [LMP 95] (no-cost
case) and [GK95, KP95b, PST95] (minimum-cost case). Theoretically, these algo-
rithms are much faster than interior-point method based algorithms for constant .
The algorithm in [LMP 95] was implemented [LSS93] and was shown that indeed
it often outperforms the more traditional approaches. Prior to our work, it was not
known whether the combinatorial approximation algorithms for the minimum-cost
case can be implemented to run fast.


In this paper we describe MCMCF, our implementation of a combinatorial ap-
proximation algorithm for the minimum-cost multicommodity flow problem. A
direct implementation of [KP95b] yielded a correct but practically slow imple-
mentation. Much experimentation helped us select among the different theoretical
insights of [KP95b, LMP 95, LSS93, PST95, Rad95] to achieve good practical
performance.


We compare our implementation with CPLEX [CPL95] and PPRN [CN96].
(Several other efficient minimum-cost multicommodity flow implementations, e.g.,
[ARVK89], are proprietary so we were unable to use these programs in our study.)
Both are based on the simplex method [Dan63] and both find exact solutions.
CPLEX is a state-of-the-art commercial linear programming package, and PPRN
uses a primal partitioning technique to take advantage of the multicommodity flow
problem structure.


Our results indicate that the theoretical advantages of approximation algo-
rithms over linear-programming-based algorithms can be translated into practice.
On the examples we studied, MCMCF was several orders of magnitude faster than


2







CPLEX and PPRN. For example, for 1% accuracy, it was up to three orders of
magnitude faster. Our implementation’s dependence on the number of commodi-
ties and the network size is also smaller, and hence we are able to solve larger
problems.


We would like to compare MCMCF’s running times with modified CPLEX and
PPRN programs that yield approximate solutions, but it is not clear how to make the
modifications. Even if we could make the modifications, we would probably need
to use CPLEX’s primal simplex to obtain a feasible flow before an exact solution
is found. Since its primal simplex is an order of magnitude slower than its dual
simplex for the problem instances we tested, the approximate code would probably
not be any faster than computing an exact solution using dual simplex.


To find an -optimal multicommodity flow, MCMCF repeatedly chooses a com-
modity and then computes a single-commodity minimum-cost flow in an auxiliary
graph. The arc costs in this auxiliary graph are exponential functions of the cur-
rent flow. The base of the exponent depends on a parameter , which our imple-
mentation chooses. A fraction of the commodity’s flow is then rerouted to the
corresponding minimum-cost flow. Each rerouting decreases a certain potential
function. The algorithm iterates this process until it finds an -optimal flow.


As we have mentioned above, a direct implementation of [KP95b], while the-
oretically fast, is very slow in practice. Several issues are crucial for achieving an
efficient implementation:


Exponential Costs: The value of the parameter , which defines the base of the
exponent, must be chosen carefully: Using a value that is too small will
not guarantee any progress, and using a value that is too large will lead to
very slow progress. Our adaptive scheme for choosing leads to signifi-
cantly better performance than using the theoretical value. Importantly, this
heuristic does not invalidate the worst-case performance guarantees proved
for algorithms using fixed .


Stopping Condition: Theoretically, the algorithm yields an -optimal flow when
the potential function becomes sufficiently small [KP95b]. Alternative al-
gorithms, e.g., [PST95], explicitly compute lower bounds. Although these
stopping conditions lead to the same asymptotic running time, the latter one
leads to much better performance in our experiments.


Step Size: Theory specifies the rerouting fraction as a fixed function of . Com-
puting that maximizes the exponential potential function reduction de-
creases the running time. We show that is it possible to use the Newton-
Raphson method [Rap90] to quickly find a near-optimal value of for ev-


3







ery rerouting. Additionally, a commodity’s flow usually differs from its
minimum-cost flow on only a few arcs. We use this fact to speed up these
computations.


Minimum-Cost Flow Subroutine: Minimum-cost flow computations dominate
the algorithm’s running time both in theory and in practice. The arc costs
and capacities do not change much between consecutive minimum-cost flow
computations for a particular commodity. Furthermore, the problem size is
moderate by minimum-cost flow standards. This led us to decide to use the
primal network simplex method. We use the current flow and a basis from a
previous minimum-cost flow to “warm-start” each minimum-cost flow com-
putation. Excepting the warm-start idea, our primal simplex code is similar
to that of Grigoriadis [Gri86].


In the rest of this paper, we first introduce the theoretical ideas behind the im-
plementation. After introducing the problem instances we used to test our imple-
mentation, we discuss the various choices in translating the theoretical ideas into
practical performance. Then, we present experimental data showing that MCMCF’s
running time’s dependence on the accuracy is smaller than theoretically predicted
and its dependence on the number of commodities is close to what is predicted.
We conclude by showing that the combinatorial-based implementation solves our
instances two to three orders of magnitude faster than two simplex-based imple-
mentations. In the future work, we will also show that a slightly modified MCMCF
solves the concurrent flow problem, i.e., the optimization version of the no-cost
multicommodity flow problem, two to twenty times faster than Leong et al.’s ap-
proximation implementation [LSS93].


2 Theoretical Background


2.1 Definitions


The minimum-cost multicommodity flow problem consists of a directed network
, a positive arc capacity function , a nonnegative arc cost function ,


and a specification for each commodity , . Nodes
and are the source and the sink of commodity , and a positive number is its
demand.


A flow is a nonnegative arc function . A flow of commodity is a flow
obeying conservation constraints and satisfying its demand . We define the total
flow on arc by . Depending on context,
the symbol represents both the (multi)flow and the total flow


4







, summed arc-wise. The cost of a flow is the dot product
.


Given a problem, a flow , and a budget , the congestion of arc is
, and the congestion of the flow is . The cost congestion


is , and the total congestion is . A feasible problem
instance has a flow with .


Our implementation approximately solves the minimum-cost multicommodity
flow problem. Given an accuracy and a feasible multicommodity flow prob-
lem instance, the algorithm finds an -optimal flow with -optimal congestion,
i.e., , and -optimal cost, i.e., if is the minimum cost of any feasi-
ble flow, ’s cost is at most . Because we can choose arbitrarily small,
we can find a solution arbitrarily close to the optimal.


We combine commodities with the same source nodes to form commodities
with one source and (possibly) many sinks (see [LSS93, Sch91]). Thus, the num-
ber of commodity groups may be smaller than the number of simple com-
modities in the input.


2.2 The Algorithmic Framework


Our algorithm is mostly based on [KP95b]. Roughly speaking, the approach in that
paper is as follows. The algorithm first finds an initial flow satisfying demands but
which may violate capacities and may be too expensive. The algorithm repeatedly
modifies the flow until it becomes -optimal. Each iteration, the algorithm first
computes the theoretical values for the constant and the step size . It then
computes the dual variables , where ranges over the arcs and the
arc cost function , and a potential function . The algorithm chooses
a commodity to reroute in a round robin order, as in Radzik [Rad95]. It computes,
for that commodity, a minimum-cost flow in a graph with arc costs related the
gradient of the potential function and arc capacities . The commodity’s
flow is changed to the convex combination . An appropriate
choice of values for and lead to running time. Grigoriadis and
Khachiyan [GK95] decreased the dependence on to .


Since these minimum-cost algorithms compute a multiflow having arc cost at
most a budget bound , we use binary search on to determine an -optimal
cost. The arc cost of the initial flow gives the initial lower bound because the
flow is the union of minimum-cost single-commodity flows with respect to the arc
cost function and arc capacities . Lower bound computations (see Section 4.1)
increase the lower bound and the algorithm decreases the congestion and cost until
an -optimal flow is found.


5







3 The Problem Instances


To test the MCMCF implementation, we modified single-commodity maximum-flow
and minimum-cost flow problem generators to produce minimum-cost multicom-
modity flow problems. We also wrote a new problem generator. Different algo-
rithms may find solving different problem families’ instances harder or easier. All
instances’ demands are scaled to have maximum arc congestions of 0.60.


The problem generator MULTIRMFGEN (abbreviated RMFGEN and based on
[Bad91]) produces two-dimensional frames (grids) with arcs connecting a ran-
dom permutation of nodes in adjacent frames. The intraframe arcs have capac-
ities of 6400, while the interframe arcs have uniformly random capacity from
the range . All arc costs are uniformly randomly sampled from the range


. Commodities’ sources and sinks are randomly chosen.
The generator MULTIGRIDGEN (abbreviated MULTIGRID and based on [LO91])


produces two-dimensional grids with a limited number of additional arcs connect-
ing randomly chosen nodes. The additional arcs have higher costs uniformly cho-
sen from the range and fixed capacities of 2000 units versus the
cost range and capacity range for the grid arcs. Commodities’ sources and
sinks are randomly chosen.


We wrote TRIPARTITE to produce difficult-to-solve graphs to test MCMCF’s de-
pendence on the network’s size. Problem instances have a given number of layers,
each consisting of a tripartite graph . Complete bipartite graphs connect


with and with , while a node permutation connects adjacent layers. All
arcs have random costs in the range . Commodities’ sources and sinks are
at opposite ends of the graph.


The real-world GTE problem instance has 49 nodes, 260 arcs, and 585 com-
modities.


All data obtained using a Sun UltraSparc-2 except where otherwise indicated.


4 Translating Theory into Practice


The algorithmic framework described in the previous section is theoretically ef-
ficient, but a direct implementation requires orders of magnitude larger running
time than commercial linear-programming packages [CPL95]. Guided by the the-
oretical ideas of [KP95b, LMP 95, PST95], we converted the theoretically correct
but practically slow implementation to a theoretically correct and practically fast
implementation. In some cases, we differentiated between theoretically equivalent
implementation choices that differ in practicality, e.g, see Section 4.1. In other
cases, we used the theory to create heuristics that, in practice, greatly reduce the


6







running time, but, in the worst case, do not have an effect on the theoretical running
time, e.g., see Section 4.3.


4.1 The Termination Condition


Theoretically, a small potential function value and a sufficiently large value of the
constant indicates the flow is -optimal [KP95b], but this pessimistic indicator
leads to poor performance. Instead, we periodically compute the lower bound on
the optimal congestion found in [LMP 95, PST95]. Since the problem instance
is assumed to be feasible, the computation indicates when the current guess for the
minimum flow cost is too low.


The weak duality inequalities yield a lower bound. Using the notation from
[PST95],


comm. comm.


(1)


For commodity , represents the cost of the current flow with respect to
arc capacities and the cost function , where is a -by- matrix.
The first rows implement the arc capacity constraints while the last row imple-
ments the arc cost function . is the minimum-cost flow. For all choices of
dual variables and , . Thus,
this ratio serves as a lower bound on the optimal congestion .


4.2 Computing the Step Size


While, as suggested by the theory, using a fixed step size to form the convex com-
bination suffices to reduce the potential function, our algorithm
computes to maximize the potential function reduction. Brent’s method and sim-
ilar strategies, e.g., see [LSS93], are natural strategies to maximize the function’s
reduction. We implemented Brent’s method [PFTV88], but the special structure of
the potential function allows us to compute the function’s first and second deriva-
tives. Thus, we can use the Newton-Raphson method [PFTV88, Rap90], which is
faster.


Given the current flow and the minimum-cost flow for commodity , the
potential function is a convex function (with positive second derivative) of
the step size . Over the range of possible choices of , the potential
function’s minimum occurs either at the endpoints or at one interior point. Since
the function is a sum of exponentials, the first and second derivatives and


are easy to compute.


7







time (seconds) number of MCFs
problem Newton fixed ratio Newton fixed ratio
rmfgen1 0.12 0.7 7.9 11.5 238 4789 20.1
rmfgen1 0.06 0.9 45.4 52.2 294 28534 97.1
rmfgen1 0.03 2.5 180.6 70.8 878 114390 130.3
rmfgen1 0.01 11.2 1334.2 119.4 4102 879963 214.5
rmfgen2 0.01 63.9 3842.7 60.1 13261 1361037 102.6
rmfgen3 0.01 257.5 15202.9 59.0 17781 1683061 94.7


multigrid1 0.01 3.0 95.3 31.6 1375 77936 56.7


Table 1: Computing an (almost) optimal step size reduces the running time and
number of minimum-cost flow (MCF) computations by two orders of magnitude.
Data obtained on a Sun Enterprise 3000.


Using the Newton-Raphson method reduces the running time by two orders of
magnitude compared with using a fixed step size. (See Table 1.) As the accuracy
increases, the reduction in running time for the Newton-Raphson method increases.
As expected, the decrease in the number of minimum-cost flow computations was
even greater.


4.3 Choosing


The algorithm’s performance depends on the value of . The larger its value, the
more running time the algorithm requires. Unfortunately, must be large enough
to produce an -optimal flow. Thus, we developed heuristics for slowly increasing
its value. There are two different theoretical explanations for than can be used to
develop two different heuristics.


Karger and Plotkin [KP95b] choose so that, when the potential function is
less than a constant factor of its minimum, the flow is -optimal. The heuristic of
starting with a small and increasing it when the potential function’s value is too
small experimentally failed to decrease significantly the running time.


Plotkin, Shmoys, and Tardos [PST95] use the weak duality inequalities (Eq. 1
of Section 4.1) upon which we base a different heuristic. The product of the gaps
bounds the distance between the potential function and optimal flows. The algo-
rithm’s improvement is proportional to the size of the right gap, and increasing
decreases the left gap’s size. Choosing too large, however, can impede progress
because progress is proportional to the step size which itself depends on how
closely the potential function’s linearization approximates its value. Thus, larger
reduces the step size.


8







number of MCFs time (seconds)
problem adaptive fixed ratio adaptive fixed ratio


GTE 0.01 2559 15804 6.17 3.63 22.50 6.20
rmfgen3 0.01 3659 9999 2.73 55.71 160.75 2.89
rmfgen4 0.10 7998 4575 1.75 114.05 59.24 1.93
rmfgen4 0.05 6884 25144 3.65 91.94 343.30 3.73
rmfgen4 0.03 18483 56511 3.06 238.04 738.48 3.10
rmfgen5 0.03 17125 65069 3.80 353.75 1341.10 3.79


multigrid2 0.01 1659 1266 0.76 41.61 47.22 1.13


Table 2: Adaptively choosing requires fewer minimum-cost flow (MCF) com-
putations than using the theoretical, fixed value of . Data obtained on a Sun
Enterprise 3000.


Our heuristic attempts to balance the left and right gaps. More precisely, it
chooses dynamically to ensure the ratio of inequalities


comm.


comm. comm.


remains balanced. We increase by factor if the ratio is larger than 0.5 and
otherwise decrease it by . After limited experimentation, we decided to use the
golden ratio for both and . The values are frequently much lower than
those from [PST95]. Using this heuristic rather than using the theoretical value
of [KP95b] usually decreases the running time by a factor of between
two and six. See Table 2.


4.4 “Restarting” The Minimum-Cost Flow Subroutine


Theoretically, MCMCF can use any minimum-cost flow subroutine. In practice,
the repeated evaluation of single-commodity problems with similar arc costs and
capacities favor an implementation that can take advantage of restarting from a
previous solution. We show that using a primal network simplex implementation
allows restarting and thereby reduces the running time by one-third to one-half.


To solve a single-commodity problem, the primal simplex algorithm repeatedly
pivots arcs into and out of a spanning tree until the tree has minimum cost. Each
pivot maintains the flow’s feasibility and can decrease its cost. The simplex algo-
rithm can start with any feasible flow and any spanning tree. Since the cost and
capacity functions do not vary much between MCF calls for the same commodity,
we can speed up the computation, using the previously-computed spanning tree.


9







Figure 1: The cumulative number of pivots as a function of the number of MCF
calls for three different commodities in two problem instances.


Using the previously-found minimum-cost flow requires additional stor-
age. Moreover, it is frequently unusable because it is infeasible with respect to the
capacity constraints than using the current flow. In contrast, using the current flow
requires no additional storage, this flow is known to be feasible, and starting from
this flow experimentally requires a very small number of pivots.


Fairly quickly, the number of pivots per MCF iteration becomes very small.
See Figure 1. For the 2121-arc rmfgen-d-7-10-040 instance, the average number
of pivots are 27, 13, and 7 for the three commodities shown. Less than two percent
of arcs served as pivots. For the 260-arc GTE problem, the average numbers are 8,
3, and 1, i.e., at most three percent of the arcs.


Instead of using a commodity’s current flow and its previous spanning tree, a
minimum-cost flow computation could start from an arbitrary spanning tree and
flow. On the problem instances we tried, warm-starting reduces the running time
by a factor of about 1.3 to 2. See Table 3. Because optimal flows are not unique,
the number of MCF computations differ, but the difference of usually less than five
percent.


5 Experimental Results


5.1 Dependence on the Approximation Factor


The approximation algorithm MCMCF yields an -optimal flow. Plotkin, Shmoys,
and Tardos [PST95] solve the minimum-cost multicommodity flow problem us-


10







restarting no restarting
problem instance time (sec) time (sec) ratio


rmfgen-d-7-10-020 0.01 464 744 1.60
rmfgen-d-7-10-240 0.01 2130 3152 1.47
rmfgen-d-7-12-240 0.01 2990 4839 1.61
rmfgen-d-7-14-020 0.01 1060 1564 1.47
rmfgen-d-7-14-040 0.01 1694 2521 1.48
rmfgen-d-7-14-080 0.01 3823 5145 1.34
rmfgen-d-7-14-160 0.01 3958 5319 1.34
rmfgen-d-7-14-240 0.01 4496 6172 1.37
rmfgen-d-7-14-320 0.01 4514 6491 1.43
rmfgen-d-7-16-240 0.01 6779 9821 1.44


multigrid-032-032-128-0080 0.01 89 148 1.67
multigrid-064-064-128-0160 0.01 906 2108 2.32


Table 3: Restarting the minimum-cost flow computations from the current flow and
the previous spanning tree reduces the running time by at least 25%. Data obtained
on a Pentium Pro.


ing shortest-paths as a basic subroutine. Karger and Plotkin [KP95b] decreased
the running time by using minimum-cost flow subroutines and adding a
linear-cost term to the gradient to ensure each flow’s arc cost is bounded. This
change increases the -dependence of [PST95] by to . Grigoriadis and
Khachiyan [GK95] improved the [KP95b] technique, reducing the -dependence
back to . MCMCF implements the linear-cost term, but experimentation showed
the minimum-cost flows’ arc costs were bounded even without using the linear-cost
term. Furthermore, the running time usually decreases when omitting the term.


The implementation exhibits smaller dependence than the worst-case no-cost
multicommodity flow dependence of . We believe the implementation’s
searching for an almost-optimal step size and its regularly computing lower bounds
decreases the dependence. Figure 2 shows the number of minimum-cost flow com-
putations as a function of the desired accuracy . Each line represents a problem
instance solved with various accuracies. On the log-log scale, a line’s slope rep-
resents the power of . For the RMFGEN problem instances, the dependence is
about . For most MULTIGRID instances, we solved to a maximum ac-
curacy of 1% but for five instances, we solved to an accuracy of 0.2%. These
instances depend very little on the accuracy; MCMCF yields the same flows for sev-
eral different accuracies. Intuitively, the grid networks permit so many different
routes to satisfy a commodity that very few commodities need to share the same


11







Figure 2: The number of minimum-cost flow computations as a function of for
RMFGEN instances is and for MULTIGRID instances.


arcs. MCMCF is able to take advantage of these many different routes, while, as we
will see in Section 6, some linear-programming based implementations have more
difficulty.


5.2 Dependence on the Number of Commodity Groups


The experimental number of minimum-cost flow computations and the running
time of the implementation match the theoretical upper bounds. Theoretically,
the algorithm performs minimum-cost flow computations, as described
in Section 2.2. These upper bounds (ignoring the dependence and logarithmic
dependences) match the natural lower bound where the joint capacity constraints
are ignored and the problem can be solved using single-commodity minimum-
cost flow problems. In practice, the implementation requires at most a linear (in )
number of minimum-cost flows.


Figure 3 shows the number of minimum-cost flow computations as a function
of the number of commodity groups. Each line represents a fixed network with
various numbers of commodity groups. The MULTIGRID figure shows a depen-
dence of approximately for two networks. For the RMFGEN instances, the
dependence is initially linear but flattens and even decreases. As the number of
commodity groups increases, the average demand per commodity decreases be-
cause the demands are scaled so the instances are feasible in a graph with 60%
of the arc capacities. Furthermore, the randomly distributed sources and sinks are
more distributed throughout the graph reducing contention for the most congested


12







Figure 3: The number of minimum-cost flow computations as a function of the
number of commodity groups for RMFGEN and MULTIGRID instances.


arcs. The number of minimum-cost flows depends more on the network’s conges-
tion than on the instance’s size so the lines flatten.


6 Comparisons with Other Implementations


6.1 The Other Implementations: CPLEX and PPRN


We compared MCMCF (solving to 1% accuracy) with a commercial linear-program-
ming package CPLEX [CPL95] and the primal partitioning multicommodity flow
implementation PPRN [CN96].


CPLEX (version 4.0.9) yields exact solutions to multicommodity flow linear
programs. When forming the linear programs, we group the commodities since
MCMCF computes these groups at run-time. CPLEX’s dual simplex method yields
a feasible solution only upon completion, while the primal method, in principle,
could be stopped to yield an approximation. Despite this fact, we compared MCMCF
with CPLEX’s dual simplex method because it is an order of magnitude faster than
its primal simplex for the problems we tested.


PPRN [CN96] specializes the primal partitioning linear programming tech-
nique to solve multicommodity problems. The primal partitioning method splits
the instance’s basis into bases for the commodities and another basis for the joint
capacity constraints. Network simplex methods then solve each commodity’s sub-
problem. More general linear-programming matrix computations applied to the
joint capacity basis combine these subproblems’ solutions to solve the problem.


13







Figure 4: The running time in minutes as a function of the number of commod-
ity groups for two different RMFGEN networks with twelve and fourteen frames.
CPLEX’s and PPRN’s dependences are larger than MCMCF’s.


6.2 Dependence on the Number of Commodity Groups


The combinatorial algorithm MCMCF solves our problem instances two to three
orders of magnitude faster than the linear-programming-based implementations
CPLEX and PPRN. Furthermore, its running time depends mostly on the network
structure and much less on the arc costs’ magnitude.


We solved several different RMFGEN networks (see Figure 4) with various
numbers of commodities and two different arc cost schemes. Even for instances
having as few as fifty commodities, MCMCF required less running time. Further-
more, its dependence on the number of commodities was much smaller. For the
left half of Figure 4, the arc costs were randomly chosen from the range .
For these problems, CPLEX’s running time is roughly quadratic in , while MCMCF’s
is roughly linear. Although for problems with few commodities, CPLEX is some-
what faster, for larger problems MCMCF is faster by an order of magnitude. PPRN
is about five times slower than CPLEX for these problems. Changing the cost of
interframe arcs significantly changes CPLEX’s running time. (See the right half of
Figure 4.) Both MCMCF’s and PPRN’s running times decrease slightly. The running
times’ dependences on do not change appreciably.


MCMCF solves MULTIGRID networks two to three orders of magnitude faster
than CPLEX and PPRN. Figure 5 shows MCMCF’s running time using a log-log
scale for two different networks: the smaller one having 1025 nodes and 3072 arcs
and the larger one having 4097 nodes and 9152 arcs. CPLEX and PPRN required
several days to solve the smaller network instances so we omitted solving the larger


14







Figure 5. The running time in min-
utes as a function of the number of
commodity groups for MULTIGRID


problem instances.


Figure 6. The running time in minutes
as a function of the number of frames
for TRIPARTITE problem instances.


instances. Even for the smallest problem instance, MCMCF is eighty times faster
than CPLEX, and its dependence on the number of commodities is much smaller.
PPRN is two to three times slower than CPLEX so we solved only very small prob-
lem instances using PPRN.


6.3 Dependence on the Network Size


To test the implementations’ dependences on the problem size, we used TRIPAR-
TITE problem instances with increasing numbers of frames. Each frame has fixed
size so the number of nodes and arcs is linearly related to the number of frames. For
these instances, MCMCF’s almost linear dependence on problem size is much less
than CPLEX’s and PPRN’s dependences. See Figure 6. (MCMCF solved the problem
instances to two-percent accuracy.) As described in Section 4.4, the minimum-cost
flow routine needs only a few pivots before a solution is found. CPLEX’s and
PPRN’s dependences are much higher. (For the sixty-four frame problem, PPRN
required 2890 minutes so it was omitted from the figure.)


7 Concluding Remarks


For the problem classes we studied, MCMCF solved minimum-cost multicommodity
flow problems significantly faster than state-of-the-art linear-programming-based


15







programs. This is strong evidence that the approximate problem is simpler, and that
combinatorial-based methods, appropriately implemented, should be considered
for this problem. We believe many of these techniques can be extended to other
problems solved using the fractional packing and covering framework of [PST95].


We conclude with two unanswered questions. Since our implementation never
needs to use the linear-cost term [KP95b], it is interesting to prove whether the
term is indeed unnecessary. Also, it is interesting to try to prove the experimental


dependence of Section 5.1.


References


[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood
Cliffs, NJ, 1993.


[ARVK89] Ilan Adler, Mauricio G. C. Resende, Geraldo Veiga, and Narendra Kar-
markar. An implementation of Karmarkar’s algorithm for linear pro-
gramming. Mathematical Programming A, 44(3):297–335, 1989.


[Ass78] A. A. Assad. Multicommodity network flows—a survey. Networks,
8(1):37–91, Spring 1978.


[Bad91] Tamas Badics. GENRMF. ftp://dimacs.rutgers.edu/pub/-
netflow/generators/network/genrmf/, 1991.


[CN96] J. Castro and N. Nabona. An implementation of linear and nonlinear
multicommodity network flows. European Journal of Operational Re-
search, 92(1):37–53, July 1996.


[CPL95] CPLEX Optimization, Inc. Using the CPLEX callable library. Software
Manual, 1995.


[Dan63] George Bernard Dantzig. Linear Programming and Extensions. Prince-
ton University Press, Princeton, NJ, 1963.


[GK95] Michael D. Grigoriadis and Leonid G. Khachiyan. Approximate
minimum-cost multicommodity flows in time. Technical
Report 95-13, Rutgers University, May 1995.


[Gri86] M.D. Grigoriadis. An efficient implementation of the network simplex
method. Mathematical Programming Study, 26:83–111, 1986.


16







[HL96] Randolph W. Hall and David Lotspeich. Optimized lane assignment on
an automated highway. Transportation Research—C, 4C(4):211–229,
August 1996.


[HO96] Ali Haghani and Sei-Chang Oh. Formulation and solution of a multi-
commodity, multi-modal network flow model for disaster relief opera-
tions. Transportation Research—A, 30A(3):231–250, May 1996.


[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984.


[KH80] Jeff L. Kennington and Richard V. Helgason. Algorithms for Network
Programming. John Wiley & Sons, New York, 1980.


[Kha80] L. G. Khachiyan. Polynomial algorithms in linear programming. Zhur-
nal Vychislitel’noi Matematiki i Matematicheskoi Fiziki (Journal of
Computational Mathematics and Mathematical Physics), 20(1):51–68,
January–February 1980.


[KP95a] Anil Kamath and Omri Palmon. Improved interior point algorithms for
exact and approximate solution of multicommodity flow problems. In
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, volume 6, pages 502–511. Association for Computing Machin-
ery, January 1995.


[KP95b] David Karger and Serge Plotkin. Adding multiple cost constraints to
combinatorial optimization problems, with applications to multicom-
modity flows. In Symposium on the Theory of Computing, volume 27,
pages 18–25. Association for Computing Machinery, ACM Press, May
1995.


[KV86] Sanjiv Kapoor and Pravin M. Vaidya. Fast algorithms for convex
quadratic programming and multicommodity flows. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, volume 18,
pages 147–159. Association for Computing Machinery, 1986.


[LMP 95] Tom Leighton, Fillia Makedon, Serge Plotkin, Clifford Stein, Éva Tar-
dos, and Spyros Tragoudas. Fast approximation algorithms for multi-
commodity flow problems. Journal of Computer and System Sciences,
50(2):228–243, April 1995.


[LO91] Y. Lee and J. Orlin. GRIDGEN. ftp://dimacs.rutgers.edu/-
pub/netflow/generators/network/gridgen/, 1991.


17







[LSS93] Tishya Leong, Peter Shor, and Clifford Stein. Implementation of a
combinatorial multicommodity flow algorithm. In David S. Johnson
and Catherine C. McGeoch, editors, Network Flows and Matching, vol-
ume 12 of Series in Discrete Mathematics and Theoretical Computer
Science, pages 387–405. American Mathematical Society, 1993.


[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cambridge University Press, Cam-
bridge, 1988.


[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation
algorithms for fractional packing and covering problems. Mathematics
of Operations Research, 20(2):257–301, May 1995.


[Rad95] Tomasz Radzik. Fast deterministic approximation for the multicommod-
ity flow problem. In Symposium on Discrete Algorithms, volume 6, pages
486–492. Association for Computing Machinery and Society for Indus-
trial and Applied Mathematics, January 1995.


[Rap90] Joseph Raphson. Analysis Æquationum Universalis, seu, Ad Æquationes
Algebraicas Resolvendas Methodus Generalis, et Expedita. Prostant ve-
nales apud Abelem Swalle, London, 1690.


[Sch91] R. Schneur. Scaling Algorithms for Multicommodity Flow Problems and
Network Flow Problems with Side Constraints. PhD thesis, MIT, Cam-
bridge, MA, February 1991.


[Vai89] Pravin M. Vaidya. Speeding up linear programming using fast matrix
multiplication. In Proceedings of the 30th Annual Symposium on Foun-
dations of Computer Science, volume 30, pages 332–337. IEEE Com-
puter Society Press, 1989.


18






