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Abstract
Generalized network flow problems generalize normal
network flow problems by specifying a flow multi-
plier for each arc . For every unit of flow entering
the arc, units of flow exit. Flow multipliers permit
modelling transforming one type into another and mod-
ification of the amount of flow. For example, currency
exchange and water evaporation from canals can be mod-
elled.


We present a strongly polynomial algorithm for a
single-source generalized shortest paths problem, also
called the restricted generalized uncapacitated transship-
ment problem. We present a left-distributive closed
semiring which permits use of the Bellman-Ford algo-
rithm to solve this problem given a guess for the value
of the optimal solution. Using Megiddo’s parametric
search scheme, we can compute the optimal value in
strongly polynomial time. The algorithm’s running time


matches the previously best known, but the
algorithm is simpler, is based on the well-known theory of
closed semirings, and directly works with the given graph.
All previous polynomial-time algorithms were based on
interior-point methods or directly solved the dual problem
and translated the solution back to the primal problem.


Using this generalized shortest paths algorithm, we
present fully polynomial-time approximation schemes
for the generalized versions of the maximum flow, the
nonnegative-cost minimum-cost flow, the concurrent flow,
the multicommodity maximum-flow, and the multicom-
modity nonnegative-cost minimum-cost flow problems.
For all of these problems except the maximum flow vari-
ant, these combinatorial algorithm schemes are the first
polynomial-time algorithms not based on interior point
methods. All running times are independent of the size
of the flow multipliers’ representation. Also, the general-
ized ¡concurrent flow and the generalized multicommod-
ity maximum flow approximation schemes are the first
known strongly polynomial algorithms.


1 Introduction
Ordinary network flow models require flow conser-
vation on all arcs: The amount of flow entering an arc
equals the amount of flow leaving the arc. General-
ized network flow models modify this conservation
by associating a flow multiplier with each
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arc . For each unit of flow sent from vertex
along the arc, units of flow arrive at . Us-
ing flow multipliers permits two types of modelling
not possible with canonical models. Flow multipli-
ers can represent transformations from one type of
object to another. For example, Hong Kong dollars
can be converted into South African rands, and trees
can be converted into reams of paper. Multipliers
can also modify the amount of flow. Thus, one can
model evaporation from a network of water canals
and breakage caused during transport through a de-
livery network.


The generalized flow model has been stud-
ied [Dan63, Jew62] since the publication of Ford
and Fulkerson’s network flows book [FF62] defined
flows as an area of research, but the only pre-
viously known combinatorial polynomial-time al-
gorithms solved the generalized versions of short-
est paths and maximum flows. In this paper, we
present a Bellman-Ford approach [Bel58, For56] for
solving the single-source generalized shortest path
problem (GSP), also called the restricted general-
ized uncapacitated transshipment problem. Previous
approaches [AC91, CM94, HN94] solved the dual
problem as a linear program with two variables per
inequality and then converted the solution back to the
original problem. Our approach has exactly the same
running time but is simpler, directly uses the given
graph, avoids the dual-to-primal conversion, and re-
quires less space.


Using the GSP algorithm as a subroutine in
the Cohen-Megiddo, Garg-Könemann, Grigoriadis-
-Khachiyan frameworks [CM94, GK98, GK96],
we obtain fully polynomial-time approximation
schemes for all variants of generalized network flow
problems with nonnegative costs. Excepting the gen-
eralized maximum-flow problem [GPT91, Rad93,
TW98], these are the first combinatorial polynomial-
time algorithms known to the authors. Furthermore,
the generalized concurrent flow and the generalized
multicommodity maximum-flow flow algorithms ex-
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single-source generalized shortest paths (GSP)
[CR66, WF99] ( only) Dijkstra
Hochbaum and Naor [HN94] Fourier-Motzkin [AC91]
this paper Bellman-Ford [Meg79]


generalized maximum flow
Tardos and Wayne [TW98]


capacity scaling
Goldfarb, Jin, and Orlin [GZO97] augmented paths
Vaidya [Vai89] interior point
Radzik [Rad93] capacity scaling
this paper GSP [GK98]


generalized minimum-cost flow
Vaidya [Vai89] interior point
Tseng and Bertsekas [TB96] exponential in input size Lagrangian relaxation
this paper (nonnegative costs) GSP [GK96]


generalized concurrent flow
Vaidya [Vai89] interior point
Kamath and Palmon [KP95a]


interior point
this paper [CM94] commodities


[CM94] commodities
generalized multicommodity maximum flow
interior point algorithms same as for generalized concurrent flow
this paper GSP [GK98]


generalized multicommodity minimum-cost flow
interior point algorithms same as for generalized concurrent flow
this paper (nonnegative costs) GSP [GK96]


Table 1: The best running times for exact and approximate generalized flow algorithms. To the right of each running
times is a short description of the algorithm. is the largest integer used to represent the input assuming the arc
capacities and vertex supplies/demands are integral and assuming flow multipliers are ratios of integers. and


represent the absolute value of the largest arc cost and capacity, respectively.


tend the class of problems for which strongly poly-
nomial algorithms (assuming a fixed approximation
factor) are known.


In the single-source generalized shortest paths
problem, one is given a directed graph with arc costs,
arc multipliers, and a source vertex . The objec-
tive is to find a minimum-cost augmented path con-
suming one unit of flow starting at . An aug-
mented path is a path connected to a lossy cycle,
i.e., a cycle with flow multiplier less than one. If
one unit of flow enters a lossy cycle, traversing the
cycle will yield less than one unit of flow.We show
that the vertex potentials of the dual problem form
a left-distributive, but not right-distributive, closed
semiring. Fully-distributive closed semirings are al-
gebraic structures underlying path algorithms, e.g.,
the Floyd-Warshall algorithm, in directed graphs.
However, the Bellman-Ford algorithm requires only
left-distributivity. Given an initial value for the


source’s vertex potential, one Bellman-Ford compu-
tation will indicate whether the potential was smaller
than, equal to, or greater than the problem’s op-
timal value. Thus, we can perform binary search
to solve the problem. Using this comparison rou-
tine and binary search, we can solve the GSP in


time, where and are the
largest arc cost and arc multiplier, respectively.


To obtain a strongly polynomial
running time, we use Megiddo’s parametric search
technique [Meg79] to compute the optimal value. In-
stead of representing the vertex potentials as num-
bers, we use lines that are a function of the source
vertex’s potential. Throughout the algorithm, each
iteration narrows the possible range for the optimal
value and consists of one Bellman-Ford iteration.
An iteration may invoke the comparison subroutine,
which narrows the range for the optimal value. At the
algorithm’s termination, the instance’s optimal value
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is the smallest one in the possible range of optimal
values.


Three recent frameworks [CM94, GK98, GK96]
permit us to use the GSP algorithm to produce fully
polynomial approximation schemes for all other gen-
eralized flow problems with nonnegative costs: gen-
eralized maximum flow, generalized nonnegative-
cost minimum-cost flow, generalized concurrent
flow, generalized multicommodity maximum flow,
and generalized multicommodity nonnegative-cost
minimum-cost flow. (Table 1 contains the schemes’
running times.) The frameworks permit comput-
ing approximate solutions by repeatedly solving GSP
problems with different arc costs. These arc costs
reflect the current violation of the problem’s capac-
ity and cost constraints. The Cohen-Megiddo frame-
work [CM94] repeatedly computes a GSP in the
residual graph with respect to arc costs that reflect
the flow’s use of arc capacities. The Garg-Könemann
framework [GK98] uses a greedy approach. Each
iteration yields an augmented path routing as much
flow as the path’s capacity constraints permit. The
arc costs are exponentially related to the ratio of their
flow to capacity. The Grigoriadis-Khachiyan frame-
work [GK96] repeatedly reroutes flow until it is -
optimal. A potential function, which is closely re-
lated to the sum of the capacity and cost constraints’
dual variables, yields the arc costs for a GSP iter-
ation. The current flow is replaced by its convex
combination with the GSP flow scaled to satisfy the
source vertex’s supply. Similar frameworks [KP95b,
PST95] have proven practical [GOPS98] giving a
good indication these frameworks will yield practi-
cal algorithms.


Running times for the approximation schemes
and the best extant generalized flow algorithms are
listed in Table 1. Both exact and approximation al-
gorithms are presented. All the interior point and
several combinatorial algorithms depend on the size
of the input numbers. is the largest integer in the
problem’s input assuming the arc capacities and ver-
tex supplies/demands are represented as integers and
the flow multipliers are ratios of integers. and


represent the largest arc cost and capacity, respec-
tively. Excepting generalized maximum flow, this
paper’s algorithms have the smallest running time for
certain parameter values.


The running times of strongly polynomial al-
gorithms depend only on the size of the instance’s
underlying structure, not the size of the input data.
Tardos [Tar86] presented a strongly polynomial al-


gorithm for a large class of combinatorial linear
programs with bounded constraint matrix entries.
Generalized flow problems can have arbitrary size
flow multipliers so Tardos’s algorithm does not solve
these problems, but they are among the next natu-
ral set of problems to consider. In 1994, Cohen and
Megiddo [CM94] presented a strongly polynomial
approximation scheme for the generalized maximum
flow problem to which we add the generalized con-
current flow and generalized multicommodity maxi-
mum flow problems.


In the next section, we formally define the
single-source generalized shortest paths problem and
prove its solution consists of an augmented path. In
3, the problem’s dual variables are shown to be lin-


ear functions of the source vertex’s dual value. We
define generalized reduced costs and prove a set of
linear functions form a left-distributive closed semir-
ing. Subsequently, we present a Bellman-Ford com-
parison subroutine indicating whether the source ver-
tex’s initial potential is smaller than, equal to, or
larger than the problem instance’s optimal value. Us-
ing the Bellman-Ford subroutine, a binary-search al-
gorithm can solve the GSP problem. In 5, this
algorithm is modified to use Megiddo’s parametric
search technique to yield a strongly polynomial-time
algorithm. Using this algorithm, we derive approxi-
mation algorithms for all the other generalized flow
problems.


2 Single-Source Generalized Shortest Paths
Problem


The single-source generalized shortest paths prob-
lem (GSP) is to find a minimum-cost flow function
obeying flow conservation, obeying the arc multipli-
ers, and starting at a source vertex. The input con-
sists of a directed graph , an arc multi-
plier function , an arc cost function


, and a source vertex . The result-
ing flow function must obey flow
conservation at the vertices, the multiplier function,
remove one unit of flow from , and minimize the
flow’s cost.


Min


s.t. for all vertices


[ ] (2.1)


arcs
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The constraints’ equalities ensures flow is conserved
at vertices, but the flow multipliers change the
flow along arcs. (We use Iverson notation [pred-
icate] which is if predicate is true and other-
wise [Knu92].) Without loss of generality, the cost
of a flow on an arc is the product of the arc’s cost
and the flow entering the arc.


The GSP has no sink vertices (vertices with de-
mands) and exactly one source vertex with unit
supply. Conceptually, sink vertices can be eliminated
by adding a zero-cost lossy self-looping arc so re-
stricting the generalized problem does not limit our
ability to model problems. Thus, any flow reach-
ing the sink will be consumed by the arc. If multi-
ple source vertices are present, the problem can be
solved for each source and then the solutions can be
combined. We can assume, without loss of general-
ity, a unit supply at the source because any solution
can be scaled by a positive scalar and still remain a
solution. Also, without loss of generality, we assume
all vertices are reachable from .


Flow multipliers and costs can be defined for
any walk. The flow multiplier of a walk
is the product of its arcs’ flow multipliers. The
definition ensures flow conservation at the vertices.
A lossy cycle has flow multiplier less than
one. Breakeven and gainy cycles have multipliers
equal to and greater than one, respectively. The
cost of a walk is the cost of sending a unit of flow
along the walk starting at its initial vertex. For
example, the cost of the path is


. The multiplier
and cost of an empty walk is and , respectively.


An augmented path is a
nonempty path with an extra arc


forming a lossy cycle . An
augmented path is a solution to the GSP because its
path transports the source’s unit supply to a lossy
cycle which “consumes” the flow reaching it.


LEMMA 2.1. For any path and any initial flow
supply at the path’s initial vertex, the flow on each
of the path’s arcs is determined, and the supply at the
path’s terminus is .


COROLLARY 2.1. The flow on each arc of an aug-
mented path is a scalar multiple of
the supply at the path’s initial vertex.


COROLLARY 2.2. The cost of an augmented path is
a scalar multiple of the supply .


Augmented paths are the only solutions to the
GSP.


LEMMA 2.2. All solutions of the single-source gen-
eralized shortest paths problem are augmented
paths.


3 The Dual Variables and Left-Distributive
Closed Semirings


In this section, we present the GSP’s dual linear pro-
gram, which has two variables per inequality. After
defining reduced costs using the vertices’ dual vari-
ables, we will show these variables’ values are linear
functions of a path’s origin’s value. Using this fact,
we can determine whether the source vertex’s value
is less than, equal to, or greater than an augmented
path’s flow cost. We conclude with a left-distributive
closed semiring for these dual variables. The semir-
ing is isomorphic to lines with positive slope in the
Cartesian plane. The Bellman-Ford algorithm of 4
uses the closed semiring, while the parametric algo-
rithm of 5 uses its linear form.


The GSP dual linear program is


max


s.t.


where represents ’s dual variable and can
attain any real value. The objective function is so
simple because the flow is conserved at all vertices
except the source vertex . By the duality theorem
of linear programming, equals the cost of the
minimum-cost augmented path. Thus, determining
the maximum value of yields the cost of the
minimum-cost augmented path.


Just as for ordinary shortest paths, we define the
reduced cost of an arc as


. The dual program’s
constraints can be written as requiring nonnegative
reduced costs for all arcs. Complementary slackness
implies flow on an arc is positive only if its reduced
cost is zero.


The vertex potentials along any path of arcs
with zero reduced cost are linear functions of the
initial vertex’s potential. The same is also true for
augmented paths having only arcs with zero reduced
cost except possibly the extra arc.


LEMMA 3.1. Given any path having only
arcs with zero reduced cost and vertex potential


, the vertex potential for vertex
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on the path is


The lemma shows vertex potentials are lin-
ear functions of a path’s initial vertex’s potential .
Thus, we can view them as lines in Cartesian
plane. Furthermore, the omitted proof indicates how
to calculate one vertex’s potential from its predeces-
sor’s potential and the arc’s cost and multiplier. To
form a left-distributive closed semiring, we only ad-
ditional tool we need is an operator, e.g., maximum,
to compare vertex potentials.


Closed semirings are an algebraic structure for
solving path problems in directed graphs. For exam-
ple, the Floyd-Warshall algorithm [Flo62, War62],
transitive closure algorithms, and the Bellman-Ford
algorithm [Bel58, For56] are all based on these
structures. (Algorithms based on semirings usu-
ally use algebraic techniques. For example, the
Bellman-Ford algorithm is based on the Jacobi it-
eration method [Jac45].) See [CLR90, 26.4] or
[AHU74, 5.6] for details. A semiring consists of
a domain, a summary operator , an extension oper-
ator , and identities for these operators. The defini-
tion of closed semirings requires both left and right
distributivity:


left :
right : ,


but the closed semiring for generalized flow will
be only left-distributive, which is sufficient for the
Bellman-Ford algorithm.


The domain of the generalized flow left-
distributive closed semiring has or-
dered pairs of costs and flow multipliers for paths.
To translate an ordered pair into a ver-
tex potential, we will use , where


is the vertex potential of the source ver-
tex . The domain


contains all possible path costs
and multipliers augmented by a bottom element


. The summary operator yields the
larger vertex potential when comparing two paths:


equals the operand yielding the
larger of and . If a mul-
tiplier is zero, the division is defined to yield .
This operation is analogous to comparing two lines
in the Cartesian plane at a particular value
of . The extension operator computes the cost
and flow multiplier of the concatenation of two paths:


equals . This
operation is analogous to reversed functional compo-
sition, i.e., the functional composition of the second
operand’s line with the first operand’s line. The sum-
mary identity is the “least” domain ele-
ment according to the summary operator. Extending
a line with the extension identity returns
the same line under reversed functional composition.


LEMMA 3.2. For every value of , there is an
isomorphism between the system and
a system containing the line and lines with
positive slope in the Cartesian plane.
is isomorphic to the line if .


is isomorphic to . The
plane’s operators are maximum value with respect
to fixed and reversed functional composition. Its
identities are the line and the identity line.


LEMMA 3.3. The system is a left-
distributive closed semiring. That is, it is a closed
semiring with only left distributivity, not right dis-
tributivity.


4 The Bellman-Ford Comparison Subroutine
In this section, we present a Bellman-Ford com-


parison subroutine for the GSP using the general-
ized flow left-distributive closed semiring presented
in the previous section. Given an initial vertex poten-
tial for the source vertex , the algorithm indi-
cates whether the guess is smaller than, equal to, or
larger than the cost of the minimum-cost augmented
path, and it also yields the path. Thus, we can per-
form binary search on to obtain a GSP algo-
rithm with running time polynomial in the logarithm
of the largest flow multiplier. In 5, we present a
strongly polynomial algorithm.


Suppose we are given an augmented path with
unit supply at its initial vertex and we guess its
cost (which is uniquely determined by Corol-
lary 2.2). If all arcs except possibly the extra arc have
zero reduced cost, then the extra arc’s reduced cost
indicates where the guess was too small, correct, or
too large.


LEMMA 4.1. Consider an augmented path
having only arcs with zero reduced


cost except possibly the extra arc . Let
denote the path’s cost. If vertex has potential ,
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Input: a guess for the cost of the minimum-cost augmented path with initial vertex
Output: the guess was smaller than, equal to, or larger than the minimum cost
// Initialization


for all vertices do
if
otherwise


// Recurrences
for iterations do


for all vertices do


arcs
// Check for correctness of guess .


if there exists an arc with negative reduced cost then
return “ ”


else if there does not exist an augmented path in the subgraph of zero reduced cost arcs then
return “ ”


else
return “ ”


Subroutine 1: Bellman-Ford Comparison Subroutine for the GSP


then,


The Bellman-Ford comparison subroutine (Sub-
routine 1) indicates whether the source vertex’s po-
tential is smaller than, equal to, or larger than the cost
of the minimum-cost augmented path. The algorithm
works by repeatedly increasing vertex potentials. At
the end of the th iteration, the algorithm has a tree
of arcs with zero reduced cost maximizing the vertex
potentials subject to the tree’s depth being at most .
Since the longest path in the directed graph has
arcs, the algorithm terminates with a tree containing
all the vertices connected by arcs with zero reduced
cost.


The algorithm requires only left-distributivity,
not right-distributivity. This is because the right
operand of the recurrence equation’s extension op-
erator is a single arc, not the summary of more
than one path.


LEMMA 4.2. The Bellman-Ford comparison sub-
routine (Subroutine 1) yields a correct answer.


Proof. The Bellman-Ford subroutine guarantees all
arcs of the minimum-cost augmented path except
possibly the extra arc have zero reduced cost. By the


previous lemma, this extra arc’s reduced cost will be
negative if and only if is too large. If the guess is
too small for the minimum-cost augmented path, it is
too small for all augmented paths. Using the previ-
ous lemma, the subgraph of arcs with zero reduced
cost will be cycle-free. Otherwise, all arcs in the
minimum-cost augmented path have zero reduced
cost, and is the problem’s optimal value. The
minimum-cost augmented path is any augmented
path in the subgraph of arcs with zero reduced cost
and can be found using depth-first search.


LEMMA 4.3. The Bellman-Ford comparison sub-
routine (Subroutine 1) requires time and


space.


An algorithm can perform binary search using
the comparison subroutine to find the optimal an-
swer of the GSP. The maximum possible value is


, where and represent the largest arc
cost and the largest multiplier, respectively. Thus,
the worst-case running time is ,
where an accuracy of is desired. In the next
section, we will combine the Bellman-Ford compar-
ison subroutine with ideas from Megiddo’s paramet-
ric search to obtain a strongly polynomial algorithm
for the GSP.


5 Parametric Search for the Optimal Value
We present a strongly polynomial algorithm for
the single-source generalized shortest paths prob-
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// Initialization
largest possible range for the instance’s minimum cost


for all vertices do
if
otherwise


// Recurrences
for iterations do


for all vertices do
sorted sequence of intersection points from


arcs
mergesort of all is an ordered list of intersection points.


Binary search with Subroutine 1 on to determine an intersection-free interval containing .
intersection-free interval containing


for all vertices do
Determine which is the linear function of the interval containing .


return


Algorithm 2: Strongly Polynomial GSP Algorithm


lem (GSP). The algorithm sketched at the end of
the previous section consisted of binary search to
choose with an inner loop indicating whether a
particular guess was too small, correct, or too large.
Our strongly polynomial algorithm will interleave
searching for the optimal value with iterations of re-
currences. This will eliminate the dependence of the
number of Bellman-Ford comparisons on the flow
multipliers.


We represent each vertex potential as a line per
the isomorphism of Lemma 3.2. Initially, we know
the answer is in a finite range or the
problem is infeasible. Each iteration will narrow
the range by invoking the Bellman-Ford comparison
subroutine for several values in the range.


Each Bellman-Ford recurrence requires using ,
and this operator requires having sufficiently close
to the optimal value to compute the correct
answer. Consider operating on two distinct lines in
the positive-slope Cartesian plane. If the lines
intersect, they do so only at one point. Using the
Bellman-Ford comparison subroutine at this point
will indicate on which side of the point the optimal
value resides and which line has larger value (or, if
we are lucky, we will discover the optimal value).
We can use this idea on all the operands for one
recurrence equation. The operands’ lines form a
piecewise linear monotonic function. We can use
binary search on the function’s intersection points.


We can extract more parallelism during each it-
eration of the algorithm by performing binary search


on all of the vertices’ intersection points simultane-
ously. Pseudocode appears in Algorithm 2. The al-
gorithm only invokes the Bellman-Ford comparison
subroutine (Subroutine 1) when needed to resolve
which of an intersecting set of lines has the maxi-
mum value. When Algorithm 2 finishes, the smallest
value in is the answer. One more Bellman-Ford
subroutine invocation using this value will yield the
augmented path.


LEMMA 5.1. The parametric search Algorithm 2
solves the GSP problem and requires
time and space.


6 Generalized Flow Approximation Schemes
Using the strongly polynomial single-source gen-
eralized shortest paths algorithm (Algorithm 2),
we develop fully polynomial-time approximation
schemes for the generalized versions of maximum
flow, nonnegative-cost minimum-cost flow, concur-
rent flow, multicommodity maximum flow, and mul-
ticommodity nonnegative-cost minimum-cost flow
problems. For all but generalized maximum
flow, these approximation schemes yield the first
polynomial-time algorithms not based on interior-
point methods. Also, all the schemes’ running times
are independent of the flow multipliers . The
generalized concurrent flow and multicommodity
maximum flow approximation schemes are the first
strongly polynomial approximation schemes known
to the authors. This is of interest because no strongly
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polynomial exact algorithms are known. The only
generalized problem known to have a strongly poly-
nomial exact algorithm is the GSP. In 1994, Co-
hen and Megiddo [CM94] presented a fully strongly
polynomial approximation scheme for the general-
ized maximum flow problem.


To create the approximation schemes, we use
three different packing frameworks [CM94, GK98,
GK96] and a GSP algorithm. Writing the general-
ized flow problems listed above as linear programs
requires more than constraints. The dual linear
program, however, assigns one dual variable to each
constraint and has only constraints, each specify-
ing the cost of an arc so a GSP algorithm can be used.
Each framework yields an approximation algorithm
that iteratively computes the flow and the dual vari-
ables’ values. Each iteration, a GSP algorithm yields
a minimum-cost flow w.r.t. the dual variables’ val-
ues, the flow is combined with the previously com-
puted flow, and new dual variable values are com-
puted. The frameworks differ according to how the
flows are combined and how the costs are computed.


The remainder of this section is split into three
parts. Generalized problems with nonnegative costs
are solved using the Grigoriadis-Khachiyan frame-
work [GK96]. The generalized concurrent flow
problem is solved using the technique of Cohen and
Megiddo [CM94]. Generalized maximum flow prob-
lems are solved using the Garg-Könemann frame-
work [GK98]. Pseudocode for the approximation al-
gorithms follow the references.


6.1 Problems with Nonnegative Costs First, we
will consider the generalized minimum-cost flow
and generalized multicommodity minimumcost flow
problems. Of all generalized flow problems, the gen-
eralized minimum-cost flow problem appears most
frequently in the generalized flow literature. For ex-
ample, the first generalized flow paper [Jew62] and
the generalized flow chapter in [AMO93] concen-
trate on this problem. In addition to GSP’s input,
the nonnegative-cost version requires an arc capacity
function and restricts costs to be
nonnegative. The goal is to find a flow of minimum-
cost that obeys the capacity constraints. A flow on an
arc obeys the arc’s capacity constraint if the flow en-
tering the arc is less than or equal to the arc’s capac-
ity. An -approximate solution exactly satisfies the
supplies but may violate arc capacity constraints by a
factor of and the flow’s cost may be larger
than the minimum-possible cost for a flow strictly


obeying the arc capacity constraints.
(For simplicity, we will consider problems with


only one source vertex. Exact algorithms do not dif-
ferentiate between single source and multiple source
problems, but this approximation scheme does. One
approach to solve multiple source problems, each
source having its own supply, is to add a supersource
vertex connected to each source by an arc with ca-
pacity equal to the source’s supply. The approxi-
mation scheme will yield a solution ensuring the to-
tal supply entering the network equals the total of
the source vertices’ supplies, but some sources may
send up to their supply into the network. This
technique’s running time is the same as for a single
source. Alternatively, each source can be treated as a
separate commodity. The approximation scheme en-
sures each source sends exactly its supply into the
network, but the running time and space require-
ments are multiplied by the number of sources.)


LEMMA 6.1. A combinatorial -approximation al-
gorithm (Algorithm 3 specialized to one com-
modity) solves the generalized nonnegative-cost
minimum-cost flow problem in


time and
space. ( and represent the absolute value of the
largest arc cost and capacity, respectively.)


Proof. We consider the generalized cost-bounded
flow problem, which is the same as the generalized
minimum-cost flow problem except the latter’s ob-
jective function is replaced by a constraint bounding
the maximum permitted flow cost. The cost-bounded
problem’s goal is to find a feasible flow, i.e., one
obeying the arc capacities and having cost at most
the bound. Using binary search on the possible cost
range , one can solve the minimum-
cost problem.


Instead of directly dealing with arc capacity and
cost constraints, the Grigoriadis-Khachiyan frame-
work [GK96] uses their dual variables to determine
arc costs. A GSP flow with respect to these prices is
computed, scaled to satisfy the source’s supply, and
then a convex combination of the current flow and
this minimum-cost flow replaces the current flow’s
value. Grigoriadis and Khachiyan present an expo-
nential potential function argument showing a solu-
tion violating the constraints by at most a fac-
tor can be computed in
iterations and space. Using the strongly
polynomial GSP of the previous section proves the
lemma.
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The generalized multicommodity minimum-cost
flow problem models sharing of network resources
by several different commodities. The generalized
minimum-cost flow problem specifies one source
vertex and its supply, while the multicommodity ver-
sion specifies sources each with its own supply. All
of the commodities’ flows must share the network si-
multaneously while the total flow, over all the com-
modities, must still obey the arc capacity constraints
and minimizing the total cost. (For details, see, e.g.,
[AMO93, Chapter 17].)


LEMMA 6.2. The generalized multicommodity
minimum-cost flow problem can be -solved in


time and space.


6.2 Generalized Concurrent Flow The general-
ized concurrent flow problem models sharing of net-
work resources while omitting a cost function. The
objective function is to maximize the fraction of all
the commodities’ supplies that can be simultane-
ously satisfied given the network’s arc capacity con-
straints.


LEMMA 6.3. The generalized concurrent flow prob-
lem can be solved within a factor of of the opti-
mal answer in time and ex-
actly solved in time. The
space requirement is .


6.3 Maximizing Flow We solve the generalized
maximum flow and generalized multicommodity
maximum flow problems using the framework of
Garg and Könemann [GK98]. The generalized max-
imum flow problem is to maximize the flow out of
a source vertex. That is, given a directed graph


, an arc multiplier function
, an arc capacity function ,


and a source vertex , find a flow function
obeying flow conservation at all ver-


tices except the source, the multiplier function, and
the capacity function while maximizing the flow out
of the source vertex. An -optimal solution is one
within at least a factor of the optimal value.


The generalized multicommodity maximum flow
problem models sharing of the network by several
different commodities. Each commodity has its own
source vertex. The goal is to maximize the total
flow out of the source vertices. Note the problem
is distinct from its single-commodity version only if
the arcs have different arc multipliers (and possibly
capacities) for different commodities.


LEMMA 6.4. The generalized maximum flow
problem can be -approximately solved in


time and space.
The generalized multicommodity maximum flow
problem can be -approximately solved in


time and
space.


The running times of Radzik’s and Tardos and
Wayne’s approximation algorithms [Rad93, TW98]
for the generalized maximum flow problem domi-
nate the running time in the previous lemma, but we
have included the algorithm for completeness.


LEMMA 6.5. The generalized cost-bounded flow,
generalized concurrent flow, generalized multicom-
modity maximum flow, and generalized multicom-
modity cost-bounded flow problems can be -
approximately solved in strongly polynomial time.
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Éva Tardos. Fast approximation algorithms for frac-
tional packing and covering problems. Mathematics
of Operations Research, 20(2):257–301, May 1995.


[Rad93] Tomasz Radzik. Approximate generalized cir-
culation. Technical Report 93-2, Cornell Compu-
tational Optimization Project, Ithaca, NY, January
1993.
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Pseudocode for the Approximation Algorithms


Input: desired accuracy and initial flow satisfying supplies
Output: flow satisfying supplies and obeying constraints up to factor


loop
Compute arc costs as an exponential function of constraints under the current flow .
for all commodities do


GSP
Scale to satisfy supply .


if the difference between and ’s costs is small then
return


else


Algorithm 3: -Generalized Multicommodity Cost-Bounded Flow Algorithm


flow
for iterations do


Compute arc costs as a function of residual arc capacities.
for all commodities do


GSP
Scale to satisfy supply .


commodities
Scale so all arc capacities obeyed and at least one arc is saturated.


Algorithm 4: -Generalized Concurrent Flow Algorithm


arcs is a very small positive number.
flow
loop


GSP
Scale so all arc capacities obeyed and at least one capacity constraint becomes tight.


arcs
if then


return scaled to be feasible.


Algorithm 5: -Generalized Maximum Flow Algorithm






