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Abstract


Generalized network flow problems generalize normal network flow problems by specifying a flow
multiplier for each arc . For every unit of flow entering the arc, units of flow exit. Flow
multipliers permit modelling transforming one type into another and modification of the amount of flow.
For example, currency exchange and water evaporation from canals can be modelled.


We present a strongly polynomial algorithm for a single-source generalized shortest paths problem,
also called the restricted generalized uncapacitated transshipment problem. We present a left-distributive
closed semiring which permits use of the Bellman-Ford algorithm to solve this problem given a guess
for the value of the optimal solution. Using Megiddo’s parametric search scheme, we can compute
the optimal value in strongly polynomial time. The algorithm’s running time matches
the previously best known, but the algorithm is simpler, is based on the well-known theory of closed
semirings, and directly works with the given graph. All previous polynomial-time algorithms were
based on interior-point methods or directly solved the dual problem and translated the solution back to
the primal problem.


Using this generalized shortest paths algorithm, we present fully polynomial-time approximation
schemes for the generalized versions of the maximum flow, the nonnegative-cost minimum-cost flow,
the concurrent flow, the multicommodity maximum-flow, and the multicommodity nonnegative-cost
minimum-cost flow problems. For all of these problems except the maximum flow variant, these combi-
natorial algorithm schemes are the first polynomial-time algorithms not based on interior point methods.
All running times are independent of the size of the flow multipliers’ representation. Also, the gener-
alized concurrent flow and the generalized multicommodity maximum flow approximation schemes are
the first known strongly polynomial algorithms.


1 Introduction


Ordinary network flow models require flow conservation on all arcs: The amount of flow entering an arc
equals the amount of flow leaving the arc. Generalized network flow models modify this conservation by
associating a flow multiplier with each arc . For each unit of flow sent from vertex along the
arc, units of flow arrive at . Using flow multipliers permits two types of modelling not possible
with canonical models. Flow multipliers can represent transformations from one type of object to another.
For example, Hong Kong dollars can be converted into South African rands, and trees can be converted into
reams of paper. Multipliers can also modify the amount of flow. Thus, one can model evaporation from a
network of water canals and breakage caused during transport through a delivery network.
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single-source generalized shortest paths (GSP)
[CR66, WF99] ( only) Dijkstra
Hochbaum and Naor [HN94] Fourier-Motzkin [AC91]
this paper Bellman-Ford [Meg79]


generalized maximum flow
Tardos and Wayne [TW98]


capacity scaling
Goldfarb, Jin, and Orlin [GZO97] augmented paths
Vaidya [Vai89] interior point
Radzik [Rad93] capacity scaling
this paper GSP [GK98]


generalized minimum-cost flow
Vaidya [Vai89] interior point
Tseng and Bertsekas [TB96] exponential in input size Lagrangian relaxation
this paper (nonnegative costs) GSP [GK96]


generalized concurrent flow
Vaidya [Vai89] interior point
Kamath and Palmon [KP95a]


interior point
this paper [CM94] commodities


[CM94] commodities
generalized multicommodity maximum flow
interior point algorithms same as for generalized concurrent flow
this paper GSP [GK98]


generalized multicommodity minimum-cost flow
interior point algorithms same as for generalized concurrent flow
this paper (nonnegative costs) GSP [GK96]


Table 1: The best running times for exact and approximate generalized flow algorithms. To the right of each running
times is a short description of the algorithm. is the largest integer used to represent the input assuming the arc capac-
ities and vertex supplies/demands are integral and assuming flow multipliers are ratios of integers. and represent
the absolute value of the largest arc cost and capacity, respectively.


The generalized flow model has been studied [Dan63, Jew62] since the publication of Ford and Fulk-
erson’s network flows book [FF62] defined flows as an area of research, but the only previously known
combinatorial polynomial-time algorithms solved the generalized versions of shortest paths and maximum
flows. In this paper, we present a Bellman-Ford approach [Bel58, For56] for solving the single-source gen-
eralized shortest path problem (GSP), also called the restricted generalized uncapacitated transshipment
problem. Previous approaches [AC91, CM94, HN94] solved the dual problem as a linear program with
two variables per inequality and then converted the solution back to the original problem. Our approach
has exactly the same running time but is simpler, directly uses the given graph, avoids the dual-to-primal
conversion, and requires less space.


Using the GSP algorithm as a subroutine in the Cohen-Megiddo, Garg-Könemann, Grigoriadis-Khach-
iyan frameworks [CM94, GK98, GK96], we obtain fully polynomial-time approximation schemes for all
variants of generalized network flow problems with nonnegative costs. Excepting the generalized maximum-
flow problem [GPT91, Rad93, TW98], these are the first combinatorial polynomial-time algorithms known
to the authors. Furthermore, the generalized concurrent flow and the generalized multicommodity maximum-
flow flow algorithms extend the class of problems for which strongly polynomial algorithms (assuming a
fixed approximation factor) are known.


In the single-source generalized shortest paths problem, one is given a directed graph with arc costs, arc
multipliers, and a source vertex . The objective is to find a minimum-cost augmented path consuming one
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unit of flow starting at . An augmented path is a path connected to a lossy cycle, i.e., a cycle with flow
multiplier less than one. If one unit of flow enters a lossy cycle, traversing the cycle will yield less than one
unit of flow.1 We show that the vertex potentials of the dual problem form a left-distributive, but not right-
distributive, closed semiring. Fully-distributive closed semirings are algebraic structures underlying path
algorithms, e.g., the Floyd-Warshall algorithm, in directed graphs. However, the Bellman-Ford algorithm
requires only left-distributivity. Given an initial value for the source’s vertex potential, one Bellman-Ford
computation will indicate whether the potential was smaller than, equal to, or greater than the problem’s
optimal value. Thus, we can perform binary search to solve the problem. Using this comparison routine and
binary search, we can solve the GSP in time, where and are the largest arc cost
and arc multiplier, respectively.


To obtain a strongly polynomial running time, we use Megiddo’s parametric search tech-
nique [Meg79] to compute the optimal value. Instead of representing the vertex potentials as numbers,
we use lines that are a function of the source vertex’s potential. Throughout the algorithm, each iteration
narrows the possible range for the optimal value and consists of one Bellman-Ford iteration. An iteration
may invoke the comparison subroutine, which narrows the range for the optimal value. At the algorithm’s
termination, the instance’s optimal value is the smallest one in the possible range of optimal values.


Three recent frameworks [CM94, GK98, GK96] permit us to use the GSP algorithm to produce fully
polynomial approximation schemes for all other generalized flow problems with nonnegative costs: gener-
alized maximum flow, generalized nonnegative-cost minimum-cost flow, generalized concurrent flow, gen-
eralized multicommodity maximum flow, and generalized multicommodity nonnegative-cost minimum-cost
flow. (Table 1 contains the schemes’ running times.) The frameworks permit computing approximate solu-
tions by repeatedly solving GSP problems with different arc costs. These arc costs reflect the current vio-
lation of the problem’s capacity and cost constraints. The Cohen-Megiddo framework [CM94] repeatedly
computes a GSP in the residual graph with respect to arc costs that reflect the flow’s use of arc capacities.
The Garg-Könemann framework [GK98] uses a greedy approach. Each iteration yields an augmented path
routing as much flow as the path’s capacity constraints permit. The arc costs are exponentially related to the
ratio of their flow to capacity. The Grigoriadis-Khachiyan framework [GK96] repeatedly reroutes flow until
it is -optimal. A potential function, which is closely related to the sum of the capacity and cost constraints’
dual variables, yields the arc costs for a GSP iteration. The current flow is replaced by its convex combi-
nation with the GSP flow scaled to satisfy the source vertex’s supply. Similar frameworks [KP95b, PST95]
have proven practical [GOPS98] giving a good indication these frameworks will yield practical algorithms.


Running times for the approximation schemes and the best extant generalized flow algorithms are listed
in Table 1. Both exact and approximation algorithms are presented. All the interior point and several
combinatorial algorithms depend on the size of the input numbers. is the largest integer in the problem’s
input assuming the arc capacities and vertex supplies/demands are represented as integers and the flow
multipliers are ratios of integers. and represent the largest arc cost and capacity, respectively. Excepting
generalized maximum flow, this paper’s algorithms have the smallest running time for certain parameter
values.


The running times of strongly polynomial algorithms depend only on the size of the instance’s under-
lying structure, not the size of the input data. Tardos [Tar86] presented a strongly polynomial algorithm
for a large class of combinatorial linear programs with bounded constraint matrix entries. Generalized flow
problems can have arbitrary size flow multipliers so Tardos’s algorithm does not solve these problems, but
they are among the next natural set of problems to consider. In 1994, Cohen and Megiddo [CM94] presented
a strongly polynomial approximation scheme for the generalized maximum flow problem to which we add
the generalized concurrent flow and generalized multicommodity maximum flow problems.


1The reader is encouraged to think of a flow as a static object obeying flow conservation constraints at vertices and arc multipliers
along arcs, not an entity flowing through a network. This is because vertex flow conservation constraints require more flow through
an augmented path’s lossy cycle than the amount of flow “reaching” the cycle through the path from the source vertex.
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In the next section, we formally define the single-source generalized shortest paths problem and prove
its solution consists of an augmented path. In Section 3, the problem’s dual variables are shown to be linear
functions of the source vertex’s dual value. We define generalized reduced costs and prove a set of linear
functions form a left-distributive closed semiring. Subsequently, we present a Bellman-Ford comparison
subroutine indicating whether the source vertex’s initial potential is smaller than, equal to, or larger than the
problem instance’s optimal value. Using the Bellman-Ford subroutine, a binary-search algorithm can solve
the GSP problem. In Section 5, this algorithm is modified to use Megiddo’s parametric search technique to
yield a strongly polynomial-time algorithm. Using this algorithm, we derive approximation algorithms for
all the other generalized flow problems. Finally, we conclude the paper.


2 Single-Source Generalized Shortest Paths Problem


The single-source generalized shortest paths problem (GSP), also called the restricted generalized uncapac-
itated transshipment problem, is to find a minimum-cost flow function obeying flow conservation, obeying
the arc multipliers, and starting at a source vertex. The input consists of


a directed graph ,


an arc multiplier function ,


an arc cost function , and


a source vertex .


The resulting flow function must obey flow conservation at the vertices, the multiplier
function, remove one unit of flow from the source vertex , and minimize the flow’s cost. Writing these
requirements as a linear program:


Minimize
arcs


subject to vertices [ ] (1)


arcs


The constraints’ equalities ensures flow is conserved at vertices, but the flow multipliers change the flow
along arcs. (We use Iverson notation [predicate] which is if predicate is true and otherwise [Knu92].)
Without loss of generality, the cost of a flow on an arc is the product of the arc’s cost and the flow entering
the arc.


The GSP has no sink vertices (vertices with demands) and exactly one source vertex with unit supply.
Conceptually, sink vertices can be eliminated by adding a zero-cost lossy self-looping arc so restricting the
generalized problem does not limit our ability to model problems. Thus, any flow reaching the sink will be
consumed by the arc. If multiple source vertices are present, the problem can be solved for each source and
then the solutions can be combined. We can assume, without loss of generality, a unit supply at the source
because any solution can be scaled by a positive scalar and still remain a solution. Also, without loss of
generality, we assume all vertices are reachable from .


Flow multipliers and costs can be defined for any walk. The flow multiplier of a walk is the
product of its arcs’ flow multipliers. The definition ensures flow conservation at the vertices. A lossy cycle
has flow multiplier less than one. Breakeven and gainy cycles have multipliers equal to and greater
than one, respectively. The cost of a walk is the cost of sending a unit of flow along the walk starting at its
initial vertex. For example, the cost of the path is . The
multiplier and cost of an empty walk is and , respectively.
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An augmented path is a nonempty path with an extra arc forming
a lossy cycle . An augmented path is a solution to the GSP because its path transports the
source’s unit supply to a lossy cycle which “consumes” the flow reaching it.


Lemma 1 For any path and any initial flow supply at the path’s initial vertex, the flow on each of the
path’s arcs is determined, and the supply at the path’s terminus is .


Proof: The proof easily follows from flow conservation at the path’s interior vertices, the fact each vertex
has unit in- and out-degree, and the definition of .


Corollary 2 The flow on each arc of an augmented path is a scalar multiple of the
supply at the path’s initial vertex.


Proof: Using the previous lemma, we need only consider flow conservation at the junction vertex . Repre-
senting the flow out of the junction vertex by ,


or


(Since the cycle is lossy, the denominator is nonzero.) This flow is a scalar multiple of . Thus, we can
compute the flow along the paths and .


Corollary 3 The cost of an augmented path is a scalar multiple of the supply .


We next prove augmented paths are the only solutions to the GSP.


Lemma 4 All solutions of the single-source generalized shortest paths problem are augmented paths.


Proof: Viewing the constraints 1 using matrix notation where is the arc adjacency matrix and
noting each of its rows are linearly independent, we see any basis has variables, i.e., one arc out of each
vertex. Thus, the solution must consist of a tree plus an additional arc. Using the previous lemma and the
fact that the source vertex has positive unit supply, the flow on all tree arcs not ending with a cycle must
be zero. The proof of Corollary 2 shows flow conservation and nonnegativity prevents augmented paths’
having breakeven or gainy cycles.


3 The Dual Variables and Left-Distributive Closed Semirings


In this section, we present the GSP’s dual linear program, which has two variables per inequality. After
defining reduced costs using the vertices’ dual variables, we will show these variables’ values are linear
functions of a path’s origin’s value. Using this fact, we can determine whether the source vertex’s value is
less than, equal to, or greater than an augmented path’s flow cost. We conclude with a left-distributive closed
semiring for these dual variables. The semiring is isomorphic to lines with positive slope in the Cartesian
plane. The Bellman-Ford algorithm of Section 4 uses the closed semiring, while the parametric algorithm
of Section 5 uses its linear form.


The GSP dual linear program is


maximize


subject to arcs
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where represents ’s dual variable and can attain any real value. The objective function is so simple
because the flow is conserved at all vertices except the source vertex . By the duality theorem of linear
programming (see, e.g., [Sch86, Corollary 7.1g]), equals the cost of the minimum-cost augmented
path. Thus, determining the maximum value of yields the cost of the minimum-cost augmented path.


Just as for ordinary shortest paths, we define the reduced cost of an arc as


The dual program’s constraints can be written as requiring nonnegative reduced costs for all arcs. Comple-
mentary slackness implies flow on an arc is positive only if its reduced cost is zero.


The vertex potentials along any path of arcs with zero reduced cost are linear functions of the initial
vertex’s potential. The same is also true for augmented paths having only arcs with zero reduced cost except
possibly the extra arc.


Lemma 5 Given any path having only arcs with zero reduced cost and vertex potential ,
the vertex potential for vertex on the path is


Proof: To prove the claim, we use the recursive definition of a path. For an empty path, its multiplier is
and its cost is and equals so the claim is true.


Consider a path . Since the last arc has zero reduced cost,
, i.e.,


The second equality follows from the inductive hypothesis and the fourth equality follows from the defini-
tions of flow multipliers and costs for paths.


The lemma shows vertex potentials are linear functions of a path’s initial vertex’s potential . Thus,
we can view them as lines in Cartesian plane. Furthermore, the proof indicates how to calculate
one vertex’s potential from its predecessor’s potential and the arc’s cost and multiplier. To form a left-
distributive closed semiring, we only additional tool we need is an operator, e.g., maximum, to compare
vertex potentials.


Closed semirings are an algebraic structure for solving path problems in directed graphs. For example,
the Floyd-Warshall algorithm [Flo62, War62], transitive closure algorithms, and the Bellman-Ford algo-
rithm [Bel58, For56] are all based on these structures. (Algorithms based on semirings usually use algebraic
techniques. For example, the Bellman-Ford algorithm is based on the Jacobi iteration method [Jac45].) See
[CLR90, Section 26.4] or [AHU74, Section 5.6] for details. A semiring consists of a domain, a summary
operator , an extension operator , and identities for these operators. The definition of closed semirings
requires both left and right distributivity:


left distributivity:
right distributivity: ,
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Cartesian plane
line


line
maximum line at x-coordinate


function composition
bottom line
identity line


Table 2: Isomorphism between the left-distributive closed semiring and lines in the Cartesian plane.


but the closed semiring for generalized flow will be only left-distributive, which is sufficient for the Bellman-
Ford algorithm.


The domain of the generalized flow left-distributive closed semiring has ordered pairs
of costs and flow multipliers for paths. To translate an ordered pair into a vertex potential, we will
use , where is the vertex potential of the source vertex . The domain


contains all possible path costs and multipliers augmented by a bottom element . The
summary operator yields the larger vertex potential when comparing two paths:


the operand yielding the larger of and


If a multiplier is zero, the division is defined to yield . This operation is analogous to comparing two
lines in the Cartesian plane at a particular value of . (See Table 2.) The extension operator
computes the cost and flow multiplier of the concatenation of two paths:


This operation is analogous to reversed functional composition, i.e., the functional composition of the second
operand’s line with the first operand’s line. The summary identity is the “least” domain
element according to the summary operator. Extending a line with the extension identity returns
the same line under reversed functional composition.


Lemma 6 For every value of , there is an isomorphism between the system and a system
containing the line and lines with positive slope in the Cartesian plane. is isomorphic
to the line if . is isomorphic to . The plane’s operators are
maximum value with respect to fixed and reversed functional composition. Its identities are the
line and the identity line.


Proof: We refer the reader to the intuition presented in the previous paragraph, but we illustrate reverse
functional composition of the two lines and .


Lemma 7 The system is a left-distributive closed semiring. That is, it is a closed semiring
with only left distributivity, not right distributivity.


Proof: Using the isomorphism, we see and are monoids and is commutative and
idempotent. For any countable number of operands, the result of operating with exists and is unique, is
commutative, idempotent, and associative, and is associative. The reader can verify that is an annihilator
with respect to .
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Subroutine 1 Bellman-Ford Comparison Subroutine for the GSP
Input: a guess for the cost of the minimum-cost augmented path with initial vertex
Output: the guess was smaller than, equal to, or larger than the minimum cost
// Initialization


for all vertices do
if
otherwise


// Recurrences
for iterations do


for all vertices do


arcs
// Check for correctness of guess .


if there exists an arc with negative reduced cost then
return “ ”


else if there does not exist an augmented path in the subgraph of zero reduced cost arcs then
return “ ”


else
return “ ”


The operator left-distributes over for sums with countable numbers of operands; operating with
on the right of a sum shifts all operands vertically by the same multiplicative factor and then


horizontally by the same amount . The system is not right-distributive. For example, consider ,
, , and .


while


4 The Bellman-Ford Comparison Subroutine


In this section, we present a Bellman-Ford comparison subroutine for the GSP using the generalized flow
left-distributive closed semiring presented in the previous section. Given an initial vertex potential for
the source vertex , the algorithm indicates whether the guess is smaller than, equal to, or larger than the cost
of the minimum-cost augmented path, and it also yields the path. Thus, we can perform binary search on


to obtain a GSP algorithm with running time polynomial in the logarithm of the largest flow multiplier.
In Section 5, we present a strongly polynomial algorithm.


Suppose we are given an augmented path with unit supply at its initial vertex and we guess its cost
(which is uniquely determined by Corollary 3). If all arcs except possibly the extra arc have zero reduced
cost, then the extra arc’s reduced cost indicates where the guess was too small, correct, or too large.
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Lemma 8 Consider an augmented path having only arcs with zero reduced cost except
possibly the extra arc . Let denote the path’s cost. If vertex has potential , then,


Proof: Using Lemma 5, the reduced cost equals


terms independent of


terms independent of


terms independent of


By the definition of , the reduced cost is zero for . Since is lossy, the coefficient
of is negative. Thus, using decreases the reduced cost and using increases the
reduced cost.


The Bellman-Ford comparison subroutine (Subroutine 1) indicates whether the source vertex’s potential
is smaller than, equal to, or larger than the cost of the minimum-cost augmented path. The algorithm works
by repeatedly increasing vertex potentials. At the end of the th iteration, the algorithm has a tree of arcs
with zero reduced cost maximizing the vertex potentials subject to the tree’s depth being at most . Since
the longest path in the directed graph has arcs, the algorithm terminates with a tree containing all the
vertices connected by arcs with zero reduced cost.


The algorithm requires only left-distributivity, not right-distributivity. This is because the right operand
of the recurrence equation’s extension operator is a single arc, not the summary of more than one path.


Lemma 9 The Bellman-Ford comparison subroutine (Subroutine 1) yields a correct answer.


Proof: The Bellman-Ford subroutine guarantees all arcs of the minimum-cost augmented path except pos-
sibly the extra arc have zero reduced cost. By the previous lemma, this extra arc’s reduced cost will be
negative if and only if is too large. If the guess is too small for the minimum-cost augmented path, it is
too small for all augmented paths. Using the previous lemma, the subgraph of arcs with zero reduced cost
will be cycle-free. Otherwise, all arcs in the minimum-cost augmented path have zero reduced cost, and
is the problem’s optimal value. The minimum-cost augmented path is any augmented path in the subgraph
of arcs with zero reduced cost and can be found using depth-first search.


Lemma 10 The Bellman-Ford comparison subroutine (Subroutine 1) requires time and
space.


Proof: Each iteration requires a constant number of operations per vertex and each arc participates in
exactly one operation. Each vertex’s current and previous potential needs to be stored and the arc costs and
multipliers must be stored. Scanning all arcs’ reduced costs indicates if an arc has negative reduced cost. A
depth-first subroutine can discover if there exists a zero reduced-cost augmented path.


An algorithm can perform binary search using the comparison subroutine to find the optimal answer
of the GSP. The maximum possible value is , where and represent the largest arc cost and
the largest multiplier, respectively. Thus, the worst-case running time is , where an
accuracy of is desired. In the next section, we will combine the Bellman-Ford comparison subroutine
with ideas from Megiddo’s parametric search to obtain a strongly polynomial algorithm for the GSP.
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Algorithm 2 Strongly Polynomial GSP Algorithm
// Initialization


largest possible range for the instance’s minimum cost
for all vertices do


if
otherwise


// Recurrences
for iterations do


for all vertices do
sorted sequence of intersection points from


arcs
mergesort of all is an ordered list of intersection points.


Binary search with Subroutine 1 on to determine an intersection-free interval containing .
intersection-free interval containing


for all vertices do
Determine which is the linear function of the interval containing .


return


5 Parametric Search for the Optimal Value


We present a strongly polynomial algorithm for the single-source generalized shortest paths problem (GSP).
The algorithm sketched at the end of the previous section consisted of binary search to choose with an
inner loop indicating whether a particular guess was too small, correct, or too large. Our strongly polynomial
algorithm will interleave searching for the optimal value with iterations of recurrences. This will eliminate
the dependence of the number of Bellman-Ford comparisons on the flow multipliers.


We represent each vertex potential as a line per the isomorphism of Lemma 6. Initially, we know the
answer is in a finite range or the problem is infeasible. Each iteration will narrow the range by
invoking the Bellman-Ford comparison subroutine for several values in the range.


Each Bellman-Ford recurrence requires using , and this operator requires having sufficiently close
to the optimal value to compute the correct answer. Consider operating on two distinct lines in the
positive-slope Cartesian plane. If the lines intersect, they do so only at one point. Using the Bellman-
Ford comparison subroutine at this point will indicate on which side of the point the optimal value resides
and which line has larger value (or, if we are lucky, we will discover the optimal value). We can use this idea
on all the operands for one recurrence equation. The operands’ lines form a piecewise linear monotonic
function. We can use binary search on the function’s intersection points.


We can extract more parallelism during each iteration of the algorithm by performing binary search on
all of the vertices’ intersection points simultaneously. Pseudocode appears in Algorithm 2. The algorithm
only invokes the Bellman-Ford comparison subroutine (Subroutine 1) when needed to resolve which of an
intersecting set of lines has the maximum value. When Algorithm 2 finishes, the smallest value in is
the answer. One more Bellman-Ford subroutine invocation using this value will yield the augmented path.


Lemma 11 The parametric search Algorithm 2 solves the GSP problem and requires time
and space.


Proof: The correctness follows from the correctness of the binary search algorithm and the fact that the
answer will be the smallest value in the final range .


We analyze the running time of each of the iterations. Computing requires
time because an ordering can be defined on linear functions [Meg79, Appendix]. ( represents vertex ’s
degree.) Thus, the first line requires time. Merging sorted lists
each having length at most requires time. Since the merged list has at most intersection
points, Bellman-Ford comparisons are required. The last step requires time.
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In addition to the space requirements for the Bellman-Ford comparison subroutine, this
algorithm requires storing the number of intersection points, which is .


6 Generalized Flow Approximation Schemes


Using the strongly polynomial single-source generalized shortest paths algorithm (Algorithm 2), we develop
fully polynomial-time approximation schemes for the generalized versions of maximum flow, nonnegative-
cost minimum-cost flow, concurrent flow, multicommodity maximum flow, and multicommodity nonnegative-
cost minimum-cost flow problems. For all but generalized maximum flow, these approximation schemes
yield the first polynomial-time algorithms not based on interior-point methods. Also, all the schemes’ run-
ning times are independent of the flow multipliers . The generalized concurrent flow and multicommodity
maximum flow approximation schemes are the first strongly polynomial approximation schemes known
to the authors. This is of interest because no strongly polynomial exact algorithms are known. The only
generalized problem known to have a strongly polynomial exact algorithm is the GSP. In 1994, Cohen and
Megiddo [CM94] presented a fully strongly polynomial approximation scheme for the generalized maxi-
mum flow problem.


To create the approximation schemes, we use three different packing frameworks [CM94, GK98, GK96]
and a GSP algorithm. Writing the generalized flow problems listed above as linear programs requires more
than constraints. The dual linear program, however, assigns one dual variable to each constraint and has
only constraints, each specifying the cost of an arc so a GSP algorithm can be used. Each framework
yields an approximation algorithm that iteratively computes the flow and the dual variables’ values. Each
iteration, a GSP algorithm yields a minimum-cost flow with respect to the dual variables’ values, the flow is
combined with the previously computed flow, and new dual variable values are computed. The frameworks
differ according to how the flows are combined and how the costs are computed.


The remainder of this section is split into three parts. Generalized problems with nonnegative costs
are solved using the Grigoriadis-Khachiyan framework [GK96]. The generalized concurrent flow problem
is solved using the technique of Cohen and Megiddo [CM94]. Generalized maximum flow problems are
solved using the Garg-Könemann framework [GK98].


6.1 Problems with Nonnegative Costs


First, we will consider the generalized minimum-cost flow and generalized multicommodity minimum-
cost flow problems. Of all generalized flow problems, the generalized minimum-cost flow problem appears
most frequently in the generalized flow literature. For example, the first generalized flow paper [Jew62]
and the generalized flow chapter in [AMO93] concentrate on this problem. In addition to GSP’s input,
the nonnegative-cost version requires an arc capacity function and restricts costs to be
nonnegative. The goal is to find a flow of minimum-cost that obeys the capacity constraints. A flow on an
arc obeys the arc’s capacity constraint if the flow entering the arc is less than or equal to the arc’s capacity.
An -approximate solution exactly satisfies the supplies but may violate arc capacity constraints by a factor
of and the flow’s cost may be larger than the minimum-possible cost for a flow strictly obeying
the arc capacity constraints.


(For simplicity, we will consider problems with only one source vertex. Exact algorithms do not dif-
ferentiate between single source and multiple source problems, but this approximation scheme does. One
approach to solve multiple source problems, each source having its own supply, is to add a supersource
vertex connected to each source by an arc with capacity equal to the source’s supply. The approximation
scheme will yield a solution ensuring the total supply entering the network equals the total of the source
vertices’ supplies, but some sources may send up to their supply into the network. This technique’s
running time is the same as for a single source. Alternatively, each source can be treated as a separate com-
modity. The approximation scheme ensures each source sends exactly its supply into the network, but the
running time and space requirements are multiplied by the number of sources.)
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Algorithm 3 -Generalized Multicommodity Cost-Bounded Flow Algorithm
Input: desired accuracy and initial flow satisfying supplies
Output: flow satisfying supplies and obeying constraints up to factor


loop
Compute arc costs as an exponential function of constraints under the current flow .
for all commodities do


GSP
Scale to satisfy supply .


if the difference between and ’s costs is small then
return


else


Lemma 12 A combinatorial -approximation algorithm (Algorithm 3 specialized to one commodity) solves
the generalized nonnegative-cost minimum-cost flow problem in
time and space. ( and represent the absolute value of the largest arc cost and capacity, re-
spectively.)


Proof: We consider the generalized cost-bounded flow problem, which is the same as the generalized
minimum-cost flow problem except the latter’s objective function is replaced by a constraint bounding the
maximum permitted flow cost. The cost-bounded problem’s goal is to find a feasible flow, i.e., one obey-
ing the arc capacities and having cost at most the bound. Using binary search on the possible cost range


, one can solve the minimum-cost problem.
Instead of directly dealing with arc capacity and cost constraints, the Grigoriadis-Khachiyan frame-


work [GK96] uses their dual variables to determine arc costs. A GSP flow with respect to these prices is
computed, scaled to satisfy the source’s supply, and then a convex combination of the current flow and this
minimum-cost flow replaces the current flow’s value. Grigoriadis and Khachiyan present an exponential
potential function argument showing a solution violating the constraints by at most a factor can be
computed in iterations and space. Using the strongly polynomial GSP
of the previous section proves the lemma.


Note the running time depends only on arc costs and capacities, not the flow multipliers.
The generalized multicommodity minimum-cost flow problem models sharing of network resources by


several different commodities. The generalized minimum-cost flow problem specifies one source vertex
and its supply, while the multicommodity version specifies sources each with its own supply. All of the
commodities’ flows must share the network simultaneously while the total flow, over all the commodities,
must still obey the arc capacity constraints and minimizing the total cost. (For details, see, e.g., [AMO93,
Chapter 17].)


Lemma 13 The generalized multicommodity minimum-cost flow problem can be -solved in
time and space.


Proof: The algorithm is similar to the generalized minimum-cost flow algorithm except GSPs are computed
for each commodity in round-robin order.


6.2 Generalized Concurrent Flow


The generalized concurrent flow problem models sharing of network resources while omitting a cost
function. The objective function is to maximize the fraction of all the commodities’ supplies that can be
simultaneously satisfied given the network’s arc capacity constraints.
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Algorithm 4 -Generalized Concurrent Flow Algorithm
flow
for iterations do


Compute arc costs as a function of residual arc capacities.
for all commodities do


GSP
Scale to satisfy supply .


commodities
Scale so all arc capacities obeyed and at least one arc is saturated.


Lemma 14 The generalized concurrent flow problem can be solved within a factor of of the optimal
answer in time and exactly solved in time. The space
requirement is .


Proof: Algorithm 4 modifies the algorithm of Cohen and Megiddo [CM94] to support multiple commodi-
ties. Each iteration the algorithm computes arc costs with respect to the residual arc capacities. The result
of GSPs are scaled to satisfy the supplies, summed together, and then scaled to saturate at least one arc.
(In this paper, this is the only algorithm working with a residual graph. An algorithm using the Grigoriadis-
Khachiyan does not require use of a residual graph but increases the running time by a factor of .)


Each of the iterations requires GSPs so the running time follows. The exact running
time follows because the optimal answer has at most bits [CM94, GPT91].


6.3 Maximizing Flow


We solve the generalized maximum flow and generalized multicommodity maximum flow problems us-
ing the framework of Garg and Könemann [GK98]. The generalized maximum flow problem is to maximize
the flow out of a source vertex. That is, given a directed graph , an arc multiplier function


, an arc capacity function , and a source vertex , find a flow function
obeying flow conservation at all vertices except the source, the multiplier function, and the


capacity function while maximizing the flow out of the source vertex. An -optimal solution is one within
at least a factor of the optimal value.


The generalized multicommodity maximum flow problem models sharing of the network by several dif-
ferent commodities. Each commodity has its own source vertex. The goal is to maximize the total flow out
of the source vertices. Note the problem is distinct from its single-commodity version only if the arcs have
different arc multipliers (and possibly capacities) for different commodities.


Algorithm 5 -Generalized Maximum Flow Algorithm
arcs is a very small positive number.


flow
loop


GSP
Scale so all arc capacities obeyed and at least one capacity constraint becomes tight.


arcs
if then


return scaled to be feasible.
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Lemma 15 The generalized maximum flow problem can be -approximately solved in
time and space. The generalized multicommodity maximum flow problem


can be -approximately solved in time and space.


Proof: Algorithm 5 outlines the Garg-Könemann [GK98] algorithm for the single commodity problem. The
algorithm maintains arc costs that are exponential in the current flow’s use of the arc capacities. Using these
arc costs, a GSP is computed and scaled so at least one arc becomes saturated. This scaled flow is added to
the existing flow. When the cost of the GSP is large enough, the current flow is scaled to be feasible and is
returned. Garg and Könemann framework provides -optimality and at most iterations are
required.


To solve the multicommodity version, each iteration computes a GSP for each commodity and the cheap-
est one is scaled and added to the current flow.


The stated running time and space bounds easily follow.
The running times of Radzik’s and Tardos and Wayne’s approximation algorithms [Rad93, TW98] for


the generalized maximum flow problem dominate the running time in the previous lemma, but we have
included the algorithm for completeness.


Lemma 16 The generalized cost-bounded flow, generalized concurrent flow, generalized multicommodity
maximum flow, and generalized multicommodity cost-bounded flow problems can be -approximately solved
in strongly polynomial time.


Proof: This follows directly from Lemmas 12, 13, 14, and 15.


7 Conclusions


We presented a strongly polynomial algorithm for the single-source generalized shortest paths problem (GSP),
which is a generalized version of the shortest paths problem. The algorithm combines a left-distributive
closed semiring, a Bellman-Ford comparison subroutine, and parametric search for the optimal solution.
The algorithm is simpler and requires less space than previous polynomial-time algorithms. All algorithms
were based on interior point methods or explicitly solving the dual problem translating to a primal solution
using the algorithm of Adler and Cosares [AC91].


We also demonstrated that using a strongly polynomial time algorithm to solve the GSP problem permits
solving other generalized network flow problems: generalized maximum flow, generalized nonnegative-
cost minimum-cost flow, generalized concurrent flow, generalized multicommodity maximum flow, and
generalized multicommodity nonnegative-cost minimum-cost flow problems. Excepting the maximum flow
problem, these are the first polynomial-time algorithms not based on interior-point methods. They also show
that generalized concurrent flow and generalized multicommodity maximum flow have strongly polynomial
approximation algorithms.
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[Jac45] C. G. J. Jacobi. Über eine neue auflösungsart der bei der methode der kleinsten quadrate vork-
ommenden linearen gleichungen. Astronomische Nachrichten, 22:297–303, 1845.


15







[Jew62] William S. Jewell. Optimal flow through networks with gains. Operations Research, 10(4):476–
499, July–August 1962.


[Knu92] Donald E. Knuth. Two notes on notation. American Mathematical Monthly, 99(5):403–422,
May 1992.


[KP95a] Anil Kamath and Omri Palmon. Improved interior point algorithms for exact and approximate
solution of multicommodity flow problems. In Proceedings of the Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 502–511. Association for Computing Machinery, January
1995.


[KP95b] David Karger and Serge Plotkin. Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows. In Symposium on the Theory of Comput-
ing, volume 27, pages 18–25. Association for Computing Machinery, ACM Press, May 1995.


[Meg79] Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics
of Operations Research, 4(4):414–424, November 1979.
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