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Abstract

Hyper Text Transfer Protocol (HTTP) traffic dominates Internet traffic. The ex-
change of HTTP messages is implemented using the connection-oriented TCP.

HTTP/1.0 establishes a new TCP connection for each HT'TP request, resulting in
many consecutive short-lived TCP connections. The emerging HTTP /1.1 reduces laten-
cies and overhead from closing and re-establishing connections by supporting persistent
connections as a default.

A TCP connection which is kept open and reused for the next HI'TP request reduces
overhead and latency. Open connections, however, consume sockets and memory for
socket-buffers. This trade-off establishes a need for connection-management policies.

We propose policies that exploit embedded information in the HTTP request mes-
sages, e.g., senders’ identities and requested URLs, and compare them to the fixed-
timeout policy used in the current implementation of the Apache Web server.

An experimental evaluation of connection management policies at Web servers, con-
ducted using Web server logs, shows that our URL-based policy consistently outperforms
other policies, and achieves significant 15%-25% reduction in cost with respect to the

fixed-timeout policy. Hence, allowing Web servers and clients to more fully reap the
benefits of persistent HTTP.
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1 Introduction

The Hypertext Transfer Protocol (HTTP) dominates information exchange through the Inter-
net. HTTP messages are transported by TCP connections between clients and servers. Most
implementations of HTTP/1.0 [6] use a new TCP connection for each HT'TP request /response
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exchange. Hence, the transmission of a page with HTML content and embedded images in-
volves many short-lived TCP connections.

TCP connection is established with a 3-way handshake; and typically several additional
round trip times (RTT) are needed for TCP to achieve appropriate transmission speed [34].
Each connection establishment induces user-perceived latency and processing overhead. Thus,
persistent connections were proposed [31, 19, 32] and are now a default with the draft HT'TP /1.1
standard [17, 18]. HTTP/1.1 keeps open and reuses TCP connections to transmit sequences
of request /response messages; hence, reducing the number of connection establishments and
resulting latency and processing overheads.

Deployment of HT'TP /1.1 necessitates policies for deciding when to terminate inactive per-
sistent connections. HTTP/1.1 specifies that connections should remain open until explicitly
closed, by either party. Beyond that HT'TP/1.1 provides only one example for a policy, sug-
gesting using a timeout value beyond which an inactive connection should be closed [18, §8.1.4].
A connection kept open until the next HI'TP request reduces latency and TCP connection
establishment overhead. However, an idle open TCP connection consumes a socket and buffer
space memory. The minimum size for a socket buffer must exceed the size of the largest TCP
packet, i.e., 64Kb, and many implementations pre-allocate buffers when establishing connec-
tions [30]. The number of available sockets is also limited. Many BSD-based operating systems
have small default or maximum values for the number of simultaneously-open connections (a
typical value of 256) but newer systems are shipped with higher maximum values (typically
thousands). Studies show, however, that with current implementations, large numbers of
(even idle) connections can have a detrimental impact on server’s throughput [2, 3, 4].

The design challenge of good connection-management policies is to strike a good balance
between benefit and cost of maintaining open connections and to enforce some quality of
service and fairness issues. The current version 1.3 of the Apache HTTP Server [1] uses a
fixed holding-time for all connections (the default is set to 15 seconds), and a limit on the
maximum allowed number of requests per connection (at most 100). (Limiting the number
of request was proposed in [19] and provides some fairness.) The Apache implementation is
a quick answer to the emerging need for connection management. The wide applicability and
potential benefit of good connection-management makes it deserving further study.

Persistent connection management is performed at the HT'TP-application layer. Current
implementations of Web servers use a holding-time model rather than a typical caching model.
Using holding-times, a server sets a holding time for a connection when it is established or when
a request arrives. While the holding-time lasts. the connection is available for transporting and
servicing incoming HTTP requests. The server resets the holding-time when a new request
arrives and closes the connections when the holding-time expires. In a caching model there is
a fixed limit on the number of simultaneously-open connections. Connections remains open
(“cached”) until terminated by client or evicted to accommodate a new connection request.
A holding-time policy is more efficient to deploy due to architectural constraints whereas a
cache-replacement policy more naturally adapts to varying server load. Policies in the two
models are closely related when server load is predictable [10]; A holding-time policy assigning
the same value to all current connections is analogous to the cache-replacement policy LRU
(evict the connection that was Least Recently Used). In fact, under reasonable assumptions
the holding-time value can be adjusted through time as to emulate LRU under a fixed cache size



(and hence adapt to varying server load) [10]. Heuristics to adjust the holding-time parameter
were recently proposed and evaluated on server logs [15].

A critical component in the effectiveness of connection-management policies in both mod-
els is the ability to distinguish connections that are more likely to be active sooner. LRU
exploits the strong presence of reference locality but does not use further information to
distinguish between connections. We propose policies based on various attributes of HTTP
request messages. and compare them to LRU.

Our policies design was guided by a basic framework, which assumes an associated dis-
tribution function on the next-request-time for each open connection. Holding-time values
or (analogously) eviction decisions are determined based on these distributions. This frame-
work was previously used in various contexts (for example, holding-times for IP over ATM
virtual circuits [25], spinning on a lock in a shared memory multiprocessor [24], adaptive
disk spindown [27], and Web proxy caching [12].) Theoretical analysis and polices were given
in [10, 24, 27, 28]; an optimal policy in the holding-time model was given in [24, 25, 10]; and
an optimal policy in the caching model, for predictable load conditions, was provided in [10].
The optimal policy in this context uses knowledge of the distributions in the best possible
way.

Since such distributions are not explicitly available, the framework is deployed using heuris-
tics. Our general methodology is to first identify an attribute of HT'TP requests that is corre-
lated with the time to the next-request; For each reasonably frequent value of the attribute, we
estimate following inter-request time distribution from a sample data; The estimated distri-
butions are then substituted in the “optimal” policy to assign holding-times. Performance of
these derived policies highly depends on the selected attribute, and on the size and relevance
of the sample.

An important issue was to obtain a good estimate of the distribution for less-frequent
attribute values. We developed a heuristic that uses a weighted-sum of samples from the
conditional distribution (for particular attribute value) with a richer sample obtained over all
attribute values. This heuristic was critical for the performance of our policies and we suspect
it may be valuable in other applications.

Connection management policies can assign timeout values based on attributes present in
HTTP requests and responses. For example, requested URL. the referrer URL, and content
type. Using the framework above, we obtain and compare policies utilizing different attributes.
Our study centered on policies at Web servers. HTTP/1.1 permits either party to terminate
a connection. Web servers, however, are typically the busier party, with larger incentives for
tighter connection management. Our evaluation was performed using server logs obtained from
AT&T’s Easy Word Wide Web service [14]. Since HTTP/1.1 is not widely deployed, available
logs are for HTTP/1.0 traffic, which do not utilize persistent connections. Deployment of
persistent HT'TP and pipelining may mostly impact ordering and decrease inter-request times
between requests for embedded contents, but longer inter-request times are unlikely to be
significantly affected. Thus, changes due to HI'TP/1.1 deployment are unlikely to significantly
affect our conclusions. To further confront the issue, we simulated the various policies on
both the original logs and clicks logs, which factor out intervals due to embedded contents,
but preserve user think times. Clicks logs attempt to capture traffic patterns with persistent
high bandwidth connections.



Our experimental results were consistent across server logs and for both variants of each
log; hence, substantiating the soundness and applicability of our conclusions. Our URL-
based policy uniformly provided better performance trade-offs than other policies we consid-
ered. On the original logs, compared with LRU (or fixed holding-time policy implemented
at the Apache server), our adaptive policy used 15%-25% fewer open connections (on aver-
age) while incurring the same number of connection establishments; and required 10%-25%
fewer connection-establishments when using the same average amount of open connections.
Even more significant reductions, typically around 50%. are achieved on the clicks logs. The
resulting performance improvement is considerable, since connection-establishments induce
user-perceived latency and overhead [16, 31, 23] wheras large number of open connections is
both detrimental to throughput [4] and is more likely to reach the server’s hard-set limits,
causing it to refuse new connections.

In Section 2 we discuss the interaction between HTTP and TCP at Web servers, and the
nature of server-logs data. We then describe the logs used in our evaluation. Last, we discuss
issues with the use of HI'TP/1.0 traffic logs, and our solutions. Section 3 contains our cost
model. Section 4 describes how a policy should use an estimate of the distribution of the time
to the next request from the same client in making holding-time decisions. This section allows
for detailed understanding of our connection management policies. The overall presentation
however, permits the reader to proceed with later sections before reading Section 4. Section 5
lists the various connection management policies we evaluated. In Section 6 we provide ex-
perimental results and conclusions. Section 7 concludes with proposals for future research
directions.

2 Experiment Setup and Data

2.1 Interaction of HTTP and TCP at Web Servers

The interaction between the operating system and the Web server application imposes some
separation between the HTTP session and the transport layer. The HTTP server application
writes the response contents into the TCP send socket. The actual transmission is performed
by the transport layer and in invisible to the application; there is typically no channel for
“upward” communication from the transport layer to the HT'TP server as to whether and
when transmission is completed and acknowledged. Simply put., the HTTP session would
hear next from that TCP connection only if and when the connection transports a new HTTP
request.

Top-level management of persistent connections is performed at the HT'TP server applica-
tion, and hence, may depend only on information available to the application. In particular,
holding-times directives are determined when response contents are placed in the socket, and
not, for example, when transmission ends.

Management of persistent connections at the server application amounts to determining a
holding-time during which the connection remains open awaiting additional HTTP requests.
The server resets the holding-time when a new request arrives.



label site characterization requests clients resources

L1 Organization 946953 33101 1906
L2  Multimedia equipment retailer 1583776 60747 244
L3 Fashion retailer 3921767 58838 347
L4 Magazine 1550162 140920 245

Table 1: Specifications of the server logs.

2.2 Server Logs

Our evaluation was performed using Web server logs. For each HT'TP request, the logs provide
the IP address of the requesting client, the requested URL, a time stamp (in whole seconds),
the HTTP response code, the referrer field (if available), and some additional information.
The logged time is usually one of the followings: the time when the server starts processing
the request, the time when the server starts writing the response contents into the socket
buffer, or the time when the server completes writing the response contents into the socket!.
The times of the other two events are not recorded.

The actual choice which of the three times above is recorded has little significance for our
purposes. The elapsed time of the internal server operation of processing the requests and
writing the response, is fairly small with respect to transmission time. reasonable holding-
time values, and to the 1-second granularity of the time stamps. Therefore, whatever the
exact logged time is, it must be close to the time when the HT'TP session makes connection
management decisions. Further discussion on properties of server logs can be found in [26].

2.3 The Data
Our evaluation utilized four server logs obtained from AT&T’s Easy World Wide Web [14].

The logs specifications are given in Table 1. Each log contains the stream of requests to the
corresponding server from November 21 1997 to February 22 1998. We will refer to these logs
using the labels: L1, L2, L3, and L4.

Figure 1(a) shows the cumulative fraction r(7) of the requests for the ¢ most frequently
requested resources (URLs) in L3. Figure 1(b) shows the cumulative fraction ¢(i) of the
requests sent by the ¢ clients with the largest number of requests in L.3. The corresponding
distributions for L1, L2, and L4 are similar. We can see that about 1/5 of the resources
are responsible for 80% of the requests where 1/5 of the clients is responsible only for 50%
of the requests. Server logs exhibit asymmetry between clients and resources (observed also
when the number of resources is large). Most of the requests are made to frequently-requested
resources (resource popularity is Zipf like) whereas a large part of requests are made by
transient clients. These observations reflect known phenomena and are relevant for designing
connection management policies based on client-history and URL.

IThis varies by server software
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Figure 1: a) Fraction of requests to the 7 most popular resources (URLs) in 1.3. b) Fraction
of requests by the ¢ most frequent clients in L3.

2.4 Using HTTP/1.0 Logs

Available server logs predominantly include HTTP /1.0 traffic, where typically a separate TCP
connection is used for each request. Hence, spacings between requests reflect delays due to
connection establishment and slow-start [34].

Deployment of HTTP/1.1 is expected to decrease inter-request spacings. Pipelining of
requests on the same persistent connection may further decrease spacings. Pipelining is sup-
ported by HTTP /1.1 but does not seem to be implemented yet by popular browsers [36]. The
decrease in spacings is likely to be more noticeable for shorter inter-request time intervals.?
Shorter intervals are typically due to requests for embedded contents, whereas longer intervals
reflect “user think times” or transmission time. Reasonable connection management policies
are likely to maintain persistent connections open for at least a short amount of time following
the last request. The TCP TIME_WAIT state [35] implies that closed connections consume
resources from 60-240 seconds past their closing time; factoring this in the overhead cost of a
new connection establishment, we obtain that the latter compares with open-cost of the order
of a minute or more. Thus, supporting the use of longer holding times.

The performance difference between various policies therefore stems from their actions
on longer intervals. Hence, the direct use of existing HTTP/1.0 logs is expected to yield
meaningful results.

To further substantiate this, we simulate the different persistent connection management
policies on both

1. the original HTTP/1.0 logs, and

2. derived clicks log.

2In the uncommon event (for our data) of significant wait at the server queue, longer intervals are also
affected.



The clicks logs were derived from the original logs by including only requests due to users
actions (requests due to embedded contents were factored out). We developed an effective
heuristic that identifies these URLs based on content-type. occurrence in referrer field, and
typical length of time since previous request. The click logs approximate a situation where
requests for embedded contents always arrive on the same persistent connection, and almost
at the same time (due to higher bandwidth and pipelining), as the request for their referrer
URL.

We expect future HT'TP/1.1 request patterns to be in between the HTTP /1.0 log and the
clicks log. Consistent results across both these extremes suggest robustness and applicability
of our conclusions.

2.4.1 Concurrent TCP Connections

HTTP transfers are often facilitated by a client opening multiple concurrent TCP connections.
The maximum number of connections to one server is a browser-configurable parameter, and
defaults to 4 concurrent threads [29] in HT'TP /1.0 implementations of the Netscape Navigator
browser. The suggested number is 2 concurrent persistent TCP connections with HTTP /1.1
[17. 18]. Microsoft Explorer seems to indeed use up to 2 connections whereas Navigator seems
to use up to 6 concurrent connections [36].

Available server logs, unfortunately, do not provide information on the number of active
connections. The information could be retrieved from the times each HTTP response is
received and acknowledged by the client, but these times are not available. Our evaluation
therefore assumed a single active connection for each client. We note that our attribute-
based policies essentially “learn” policies from sample data, and their performance could only
improve if the different connections are distinguished.

3 Cost Model

We use the following holding-time cost model. Upon receiving an HTTP request r, the server
decides on a holding-time interval T'(r). The server then leaves the connection open for at
most T'(r) seconds from the moment it received r. If a new request r’ arrives within the next
T'(r) seconds, then a new holding-time interval 7'(r') is in effect. Otherwise the connection is
terminated after 7'(r) seconds.

A connection management policy is an algorithm that determines an interval T'(r) for every
request . Consider a request sequence s. The profit (number of hits), pa, of a policy A on
s is the number of requests that did not require opening a new connection. The number of
misses, my., of A on s is the number of requests that required opening a new connection.
The open-cost, H,., of a policy A is total time connections were open. The policy used by
HTTP/1.0 closes the connection after every request thereby incurring a miss for each request
and minimal open-cost. Another extreme is a policy that never closes connections incurring a
minimal number of misses and very high open-cost. We are looking for policies between these
two extremes, that generate good trade-offs between the number of misses and the open-cost.

We parameterize policies by a threshold V' that governs trade-offs between open-cost and



number of misses. For all policies considered here, both open-cost and profit increase with V/,
whereas the number of misses decrease with V. This follows from the fact that for all policies
T(r) increases with V' for every r. We compare the misses to open-cost trade-offs generated by
various policies. The open-cost (when divided by elapsed time) measures the average number
of open connections.

Minimizing misses is important since HT'TP requests necessitating connection establish-
ments endure longer user-perceived latency; and connection establishments and closings incur
processing and memory overhead. The per-connection overhead includes socket buffers allo-
cation/deallocation and memory, periodic processing, and port number consumed when the
connection is in TIME_WAIT state, which lasts 60 seconds (for BSD-based implementations)
to 240 seconds (as specified in [8]) past the closing time of the connection [35]. On the other
hand, small open-cost is important since the number of open connections is subjected to hard-
set limits and large numbers of (even idle) open connections degrade server throughput [4].

Keshav et al [25] studied a closely related cost model. A parameter O governs the relative
costs of opening a connection and connection open time. The cost of a policy A is defined
as its open time plus the total cost for opening connections. That is Cy = Hsg + O * my4.
Keshav et al compared the cost of various policies while varying the value of the parameter
O. This model is related to ours by capturing the same trade-offs; as we shall see. the policy
MPG described in section 4 minimizes C'y when we set the parameter V' to be 1/0.

Another natural cost model for connection management is a regular caching model where
we have a fixed capacity k on the number of open connections we can hold. Once a connection
needs to be established and the cache is full the policy has to decide and close one of the
currently open connections. The goal is to maximize profit.

The holding-time model and the caching model are closely related. There exists corre-
spondence between policies in the two models and their relative performance [10]. If the
holding-time policy is adjusted to maintain a near-steady number of open connections, then
the open-time cost measure corresponds to cache size (when divided by elapsed time). In [10]
it is shown that under reasonable assumptions, experimental results on the relative perfor-
mance of policies in one model indicate a similar relation between the analogous policies in
the other model.

Because of architectural and implementation reasons (see Section 2.1), the first model
seems to be a likely implementation for Web server based persistent connection management.

4 Using Distributions of Inter-Request Times

In this section we show how a policy can utilize an estimate of the distribution of the time
to the next request from the same client. In Section 4.1 we describe a policy Minimum
Profit Gradient (MPG) to deduce from a inter-request time distribution a holding-time for the
corresponding connection. Policy MPG is optimal in the sense that it generates best possible
trade-offs between the open-cost and the number of misses among all policies knowing the
exact inter-request times distributions. In section 4.2 we show how to use MPG when the
exact distributions of the inter-request times are not available and have to be estimated. Our
attribute-based policies described later in Section 5.3 are derived using the framework we



provide here. These policies differ from each other in the way they associate a distribution
with each request, but once distributions are associated, they use used in the same way.

4.1 Foundations

Let D be a probability distribution over all possible request sequences. Distribution D defines
a set of possible requests where a request r is a triple consisting of a requesting client ¢,,
request time ¢,, and a distribution function F,. Function F, is the distribution function of the
time to the next request from ¢,. In this section we assume that the server knows F, for every
request r, and describe an optimal policy which a server should use under this assumption.

It is possible to summarize the actions of a policy B with a parameter V' by a mapping from
the set of all possible requests S (triples (¢, t,, F,)) to a probability density function A, y(¢)
that captures the likelihood that upon encountering a request at time ¢, with associated
probability F,.. B keeps an open connection to ¢, for time period .

Let r be a request from client ¢, with associated distribution function F,. The expected
profit (number of hits) of keeping a connection to ¢, for timelength ¢ following r is Eprofit,.(¢) =
F,(t) and the corresponding expected cost (connection time) is Ecost,(t) = [5(1 — F(z))dz®.
It follows from linearity of expectation that the expected profit of B is

Epa(V)) = X g [~ Anv(t)Eprofit (t)dt

res

and the expected open-cost is

E(eg(V) =g /OOC A, (t)Ecost,(t)dt .

res

Here g, is the probability of request r. That is, the sum over sequences in which request r is
made, of the probability of the sequence.
For a request r we define
Eprofit, (t2) — Eprofit, (¢1) F.(t2)

util, (£, ) = _ — B (k)
’ Ecost,(l2) — Bcost, (1)~ [(1 — F.(z))da

as the expected profit gain of increasing the caching period from ¢; to ¢y divided by the
expected cost of this increase.

The policy Minimum Profit Gradient (MPG) upon receiving r keeps the connection open
for Ty(r) = max{z|Vy < z util-'(y,2) < V}. That is, Ty(r) is the maximum point such
that for every y < Ty (r), the expected cost of increasing the caching period from y to Ty (r)
divided by the expected profit gain from this increase is no greater than V.

By the above definition, the policy MPG with parameter V' minimizes the expected cost
Ca=Hy+ %mA when A ranges over the set of all policies that know the probability distri-
bution F, for every request r. This corresponds to choosing O = 1/V in the Keshav et al cost
model mentioned in Section 3.

3We shall omit the subscript » when it would be clear from context.



Given a distribution function F(?), there is a discrete set of time intervals that corresponds
to choices that MPG can make (on the range of V' > 0 threshold values) for caching a connection
to client ¢, with associated distribution F,(¢) = F(t). We partition the domain of F(¢) into
intervals Iy = [0,t1], I, = (t1,t2], I35 = (l2,13],... where {; is the maximum z > 0 that
maximizes the quantity

R
w0 2) = R

and #; (¢ > 1) is the maximum z > ¢;_; that maximizes the quantity

F(Z) — F(ti_l)
j;f_l(l — F(z))dx

util(t;_1, 2) =

We define util(l;) = util(¢;-1,¢;). It follows from this definition that util(/;) < util(/;—;) for
every 1. The following lemma shows that MPG always keeps a connection to ¢, for one of the
time periods 0 = 4. ¢4, .. ..

Lemma 4.1 ([10]) An equivalent allernative definition for the choice of policy MPG is to
keep a conneclion to ¢, for an interval [0,4;] for the maximum @ such that util_l(]i) <V.

Policy MPG yields optimal trade-offs of profit to open-cost in the sense of the following
theorem.

Theorem 4.1 ([10]) For every caching policy B thal knows the distribution F,. for every
request v (but not the actual sequence drawn) there exists values 0 < Vi <V, and 0 < a <1
such that E(HB) = (1—&)E(HMPG(Vl))—I—OzE(HMp(;(VQ)) and E(pB) < (1—G)E(pMp(}(V1))—|—
al(pmpa(V2)).

4.2 Deployment

In reality the distributions F,. for each request r, are not directly available. We use the
following methodology:

o We identify attributes A;, As. ..., Ap of requests, that are indicative of next request

time.

The derived connection management policy is captured by a mapping My (uy, ..., ux) — RT

from sets of attribute values to the applicable holding-times. It follows from the above that
for any fixed set of values u;,..., ug, the mapping is a non-decreasing step function of the

threshold V', where the steps correspond to the interval partition of the distribution F,, ., (%).
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Performance depends on choice of attributes, in particular, their number, interdependence,
and correlation with the next request time. Examples of attributes available with HTTP
requests are the requesting client, requested URL, and referrer URL. Our evaluated policies
utilizes at most two attributes at a time.

The “learned” distribution is obtained by first collecting a histogram on inter-request
times, and then smoothing it by taking a weighted average with the general inter-request time
histogram.

A good choice of attributes and sample size is such that for most requests, there is a
sufficient amount of sample data with the applicable attribute values. With more sample data
containing requests for a URL u we are able to obtain more confident estimates for the inter-
request time distribution following requests for u. For some attribute-values, however. there
inherently may not be sufficient data. For example, when considering URLs in fast changing
sites or when using the client attribute: Large fraction of requests originate by transient clients
which were not seen recently and for which there are only short or no histories available.

A small sample may still carry important information. The following example demon-
strates, however, that when small samples are used without smoothing. the effectiveness of
distribution-based policies suffers. Suppose we have 4 requests to a URL u in the sample
data, with all 4 inter-request times being 2 seconds and below. If the unsmoothened sample
histogram is provided as input to MPG, then MPG always selects holding times of at most 2
seconds, since it associates zero expected profit for an increase to a longer holding time. The
sample, however, could be a likely outcome from a “true” distribution with 10% likelihood
of inter-request times between 2 and 10 seconds; and if so the MPG policy would incurs a
miss-rate of at least 10% on all requests made to the URL u, even for large values of V.

Thus, we deployed the following smoothing heuristic to derive the associated distributions.
Consider a resource u for which we have n samples. Let R, be the distribution function
obtained by dividing the histogram of inter-request intervals following requests for u, by
n. Similarly, let G be the distribution function obtained in this manner across all available
requests. Instead of using the distribution F, = R, we used

n 1
R G .
+n—|—1

F’U. u
n+1

That is, we use a weighted combination of R, and the general distribution G, where G is
weighted as a single additional data point. Note that if we use (¢ as the associated distribution,
different requests are not distinguished and the resulting policy collapses to LRU. On the other
hand using R, alone is subject to the problems illustrated in the example above.

Our smoothing scheme is inspired by empirical Bayesian inference methods where the
generic distribution G is to be thought of as the prior distribution and F, is the posterior
distribution which we obtain using the prior and the data represented by R, [7, 20]. Smoothing
was crucial for obtaining good policies in our evaluation.

In Section 5.3 we describe the various connection management policies we derived using
this framework.
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5 Policies

5.1 LRU

Least Recently Used (LRU) is a common cache replacement algorithm. When a request for
a new item arrives and the cache is full, LRU evicts the cached item that was accessed least
recently. LRU exploits the high locality of reference usually exhibited in request sequences, and
performs well in practice. Classical theoretical results establish that LRU is ]C_Zﬁ—competitive
against the optimal offline algorithm with cache of size h < k [33].

The policy analogous to LRU in the holding-time model is the one that uses the same
interval T'(r) for every request r [10, 25, 12]. Hereafter we use the name LRU for this policy.

LRU is parameterized by the constant V' to which T'(r) is set.

5.2 OPT

As a benchmark we consider the performance of an omniscient optimal policy. The optimal
policy knows the sequence in advance and achieves the best trade-offs of misses and open-cost.
In the caching mode, Belady’s algorithm [5]. which evicts the page to be used furthest in the
future, is known to be optimal. The optimal policy OPT in the holding-time model is the
following. Let I(r) be the length of the inter-request interval from r to the following request.
Fixing a threshold V. the optimal policy OPT, sets T'(r) = I(r) if I(r) < V and T(r) =0
otherwise. If Hopr(V) is the open-cost and popr(V) is the profit of OPT with threshold V
then it is easy to see that no policy can have profit exceeding popr(V') for a cost no larger
than Hopt(V).

5.3 Attribute-Based Policies

Our attribute-based policies are motivated and derived using the framework described in
Section 4. An attribute-based policy for attributes Ay, Ay (e.g., requested URL and referrer
URL) is captured by a mapping Mél’AQ : Uy x Uy — RT from possible values of Aj, A,
to holding-times. The connection management policy uses a holding-time of Mél’AQ(ul, usg)
following all requests with attribute values Ay = uy ,Ay = uy. The parameter V corresponds to
the relation between the cost of establishing a new TCP connection and the cost of maintaining
an idle open connection for a period of time. For any fixed set of values, the holding-time is
non-decreasing with V' and is actually a step function. Performance trade-offs for each policy
are obtained by sweeping V. We evaluated policies derived from the following attributes.

¢ Requested URL (RESOURCE).
The policy is captured by a mapping M{**(u). A holding-time of M{**(u) is used after
all requests for a URL w.

¢ Referrer Resource (REFERRER).
The mapping M(/Ef(u) is defined for each URL u that occurs as a referrer. A holding-time
of M{;ef(u) is used after all requests with a referrer URL wu.
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e Referrer and Requested URL (RES-REF).

The policy is characterized by the mapping M‘{/Tes’ref}(u,v), which is defined for each
pair of URLs (u,v) such that v appears as the referrer URL in some requests for u.

A holding-time of M‘{/res’mf}(u,v) is used after all requests made for a URL u with a
referrer URL wv.

¢ Resource Size (SIZE).
Requests are characterized by the response size. We partition the set of possible sizes
into bins. The bin index is the attribute which we use to derive this policy. The
mapping M{*¢(7) is defined for each bin index j. Holding-time of M{#*¢(5) is used after
all requests made for a resource with response size in bin index j.

e Client history (CLIENT)
The policy is characterized by a mapping M{¢ert:hist} (¢ b) For each client ¢, and history-

length A.
{client, hist}

The holding-time used for the jth request for a client ¢ is My, (c.h), where h < j
is largest such that MIclienthist} (e b)Y is defined.

The CLIENT policy uses the same information as Jacobson’s estimated exponentially
weighted mean and variance policy [21]. Jacobson’s policy, and also a version of our
CLIENT policy was evaluated by Keshav et al [25] for circuit holding-times of IP traffic
over ATM.

5.3.1 Learning and Test Data

The mapping describing each attribute-based policy is constructed using log data. The con-
struction can be performed either online or by a periodic off-line processing of a subset of the
server log. An online construction may be timely whereas an off-line one minimizes run-time
computation overhead.

Our evaluation was for an off-line construction. We partitioned the logs into two parts of
approximately the same size. Each part contained the request sequences of (a random) half
of the clients. Policies were evaluated on one part of the log (“test data”). For all but for the
CLIENT attribute, the mappings were computed once using the other part of the log (“learning
data”).

Sensitivity analysis described in Section 6 shows that policies derived from learning data
containing only a small fraction of clients yield comparable results. We observed that access
patterns in our logs were fairly static through time. Hence. our off-line construction obtained
good results (learning data derived on-line from very-recent history is likely to be more effective
for more dynamic sites).

For CLIENT we simulated an online policy utilizing the accumulated available history of
each client. This online construction is more appropriate for the CLIENT attribute, since clients
are very transient, and many requests are due to clients that only had a short interaction with
the server over a long period of time (see Section 2.3). Hence, a periodic analysis would not
provide sufficient per-client data.
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5.3.2 Computation Cost

The computational cost of constructing a policy (deriving the mapping My ) is linear in the
size of the learning data and involves a single pass. A histogram of inter-request times is
collected for every set of attribute values (u1,uz) € Uy x Uy. A generic histogram, across all
requests, 1s also collected.

The resulting policy is represented by the mapping Mél’AQ(ul, ug) from sets of attribute-
values to holding-times. The mapping can be stored in a hash-table to facilitate a quick
assignment of holding-times to requests. The size of the hash-table depends on the number
of distinct sets of values considered, and can widely vary for different attributes and between

Web sites.

6 Experimental Results and Conclusions

Figures 2 and 3 plot the performance of LRU. OPT, and the attribute-based policies RESOURCE,
CLIENT, REFERRER, RES-REF, and SIZE on the original logs. Figures 4 and 5 show the perfor-
mance of the same policies on the Clicks Logs, derived from the original logs by considering
only inter-request times due to user actions (see Section 2.4).

The y-axis (miss rate) represents the fraction of requests for which a persistent connection
was not available (In other words, the ratio of connections establishments to requests). The
measurements are restricted to requests where the previous request by the same client had
occurred no longer than 10 minutes before. The z-axis (average open time per request) cor-
responds to the total combined time connections were open divided by the total number of
requests. Note that this corresponds to the average number of open connections divided by
the average request rate.

As expected, the plain LRU policy was outperformed by attribute-based policies. The
RESOURCE policy was consistently the best (or nearly the best) performer, across all server
logs, and for both the original logs and the clicks logs. The policies REFERRER and SIZE often
approach the performance of RESOURCE, but never exceed it.

The observations that REFERRER performs close to RESOURCE, but that the combined
policy RES-REF does not generally outperform RESOURCE, indicates that the REFERRER at-
tribute indeed carries a lot of the information present in the RESOURCE attribute, but does not
carry significant additional useful information for predicting lengths of inter-request intervals.
This is due to the fact that on the logs we considered, most requests for a typical resource
(URL) had the same referrer. Hence, by and large, values of the resource attribute constitute
a finer sub-partitioning of the partition obtained by values of the referrer attribute.

The SIZE policy partitioned response sizes to about 30 bins each corresponding to a range
of sizes. The bins were mapped to holding-time intervals. If response size is indeed correlated
with inter-request time, we expect assigned holding-times to generally be longer for bins of
larger response sizes. A close look at these mappings, however, shows that this is far from
being the case. The actual explanation to the good performance of SIZE is the fact that most
requests in a typical bin were due to a small number of URLs (sometimes a single URL), and
hence, SIZE was actually mimicking the RESOURCE policy on these bins.
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The client-history policy CLIENT yields marginal improvements, if at all. over LRU, indi-
cating that unlike the situation in other contexts (e.g., IP over ATM [25]), each client’s overall
history with the server is not a significant hint for predicting the clients future inter-request
intervals. The identity of the requested URL provided a much more meaningful hint for the
duration of the inter-request interval. The CLIENT policy also suffers because typically there
are many transient clients each having a single or few short interactions with the server. Thus,
there is a very short history available for a large fraction of the requests. On such requests,
the policy applies the generic holding-time and CLIENT reduces to LRU.

The consistent results obtained across all servers and for both the clicks logs and the
original logs suggest that our conclusions and results are fairly robust. In particular, we
expect them to be similar for data that incorporates persistent connections. Results were also
consistent across a wide range of open-cost values, suggesting robustness for varying load and
server capacities.

The overall-best policy, RESOURCE, achieved significant improvements over LRU. Consider
the logs L1. L2, L3, and L4, respectively, and the use of a fixed 15 seconds holding-time
interval (the default in the current implementation of the Apache HTTP server code). The
corresponding “miss rates” are 12.4%. 17.6%, 13.2% and 13.2%. The respective normalized
open-costs are 4.05 seconds, 5.13 seconds, 4.28 seconds, and 5.6 seconds per request. The
RESOURCE policy achieves the same miss rate with normalized open-costs of 3.22. 4.38, 3.5,
and 4.2 seconds per request, respectively. Hence, achieving reductions of 20%.,15%, 16%, and
25% in total open time (equivalently, in average number of open connections) with respect to
LRU.

The reduction in cost with respect to LRU is even more significant on the clicks logs. On the
L4 log, for example, fixed holding-times of 34 and 51 seconds result in respective normalized
costs of 30 and 43 seconds, and miss rates of 51% and 37%, respectively. The RESOURCE
policy achieves these miss rates with respective costs of 15 and 23 seconds. which constitutes
improvements of about 50% over LRU. As can be seen from Figures 4 and 5, other logs exhibit
similar results.

When a relatively small number of resources dominates a large fraction of requests, as is
typical in server logs. a smaller amount of learning data suffices for RESOURCE to perform
well. Figures 2-5 plot performance of policies when the learning data set included half the
clients. Figure 6 shows that performance does not degrade when the learning data contains
only 1/32 of the clients. The mapping of resources to respective holding-times is constructed
in linear time in the size of the learning data. Therefore. using less data also simplifies the
computation of the mapping. Another observation is that the Web sites represented in our
logs were fairly static; therefore, a single computed policy was effective for the total period
of 3 months. We expect more dynamic sites to benefit from more frequent re-computation of
the policies.

7 Future Research Directions

The emergence of persistent HT'TP and the cost and benefit trade-offs of keeping open idle
TCP connections necessitate the deployment of connection-management policies. We believe
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Figure 2: Performance of the various connection management policies on the L1 and L2 logs.
The y-axis shows the fraction of new connections established among requests occurring at
most 10 minutes following a previous request by client. The x-axis shows the total open time
normalized by total number of requests.
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Figure 3: Performance of the various connection management policies on the L3 and L4 logs.

The y-axis shows the fraction of new connections established among requests occurring at
most 10 minutes following a previous request by client. The x-axis shows the total open time
normalized by total number of requests.

17



L1 Clk LRU ——
OPT ]
Resource &
Referrer —— 7
client-history -=--
RES+Referrer -x-- 7
size o~
()
©
()]
N2}
IS
0.2 * .
01 B N + N _
0 1 1 1 1 1 1 |—
0 5 10 15 20 25 30 35 40
average open-seconds per request
1 %\ T T T T T T T
e L2 Clk LRU —-—
0.9 ¥ OPT - 1
VR Resource &
0.8 -, % Referrer x ]
> client-history -=--
0.7 by RES+Referrer -x-- ]
\ RS size -e--
) 0.6 *\;EL‘%__
E *, ‘\‘\‘%
0 0.5 |
N2}
= 0.4 | .
0.3 N 3
0.2 - .
0.1 ¢} e ]
0 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
average open-seconds per request
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Figure 6: Performance of the RESOURCE policy on the L3 server log, where the learning data
included all logged requests made by 1/2, 1/4, 1/8. 1/16, and 1/32 of the clients.

that the study and design of connection-management policies can potentially improve per-
formance to the same extent that paging and cache-replacement policies contributed in the
contexts of operating systems and Web.

We proposed and evaluated several adaptive policies for managing persistent connections
at HTTP Web Servers. We concluded that a policy which determines holding-times based
on the requested URL outperforms other policies and significantly improves over fixed-length
holding-times (LRU). Beyond connection management, our methodology of deriving policies
is general and may find applications in other domains.

We suggest several extensions for future research. Our evaluation assumed uniform connection-
establishment costs. Varying costs, however, can support several quality of service classes or
capture perceived-latency that varies with different network RTTs. Under varying establish-
ment costs, the objective is to optimize trade-offs of total open-time and combined connection
establishment costs. An analogous extension for document caching is when documents have
varying felching costs. In this context, Young [37, 38] proposed a generalization of LRU termed
GreedyDual. An experimental study on Web proxy traces was performed in [9]. GreedyDual
generalizes LRU and can be adopted for connection management. The MPG policy extends to
handle varying establishment costs [10]. Thus, our attribute-based policies can be generalized
as well.

Our policies are by and large Markovian, in the sense that holding-time depends on at-
tributes of the preceding requests. Such policies are simple to represent and deploy, and
achieved good performance. One obvious question is the gain from extending the viability of
holding-times beyond the next request.
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Our study focused on connection management at Web servers. HTTP/1.1, however, al-
lows both server and client to unilaterally terminate a connection. And indeed, connection
management is deployed at proxy servers and browsers as well. Popular browsers seem to
deploy different connection-management policies: Internet Explorer uses a fixed 60 seconds
timeout for idle persistent connections whereas Netscape Navigator uses an LRU-managed
fixed-size cache of 15 connections [36]. If connections are well-managed at every host, the
busier party is likely to initiate termination. Busy proxy servers support TCP connections
on behalf of many users; and proposals for HTTP-NG* [22] support connection re-use across
users. A recent study indicates that connection caching and re-use at proxy caches may re-
duce user-perceived-latencies more than document caching [16]°. Thus, proxy-side connection
management emerges as an important challenge.

Connection management at proxy servers differs in several respects from server-side man-
agement: Both request time and the time response is received are available to the HTTP
session layer and can be used by the policy. There is more per-user information available,
since all of each user’s activities, across all servers, are viewed by the proxy. but there is con-
siderably less per-resource or per-server information. Hence, the resource-based policy that
was very effective for server-side management is not likely to be effective at the proxy’s end,
client-based policies, however, may be effective. Another avenue is to bridge the server-client
information gap using piggybacking techniques as proposed in [13].

In principle, the two-sided control of each persistent connection could lead to global under-
utilization. Accommodating a new connection may cause the closing of two existing connec-
tions, one at each end. Moreover, a connection closed by one end may be a priority at the other
end. Such interactions suggest studying the global behavior of local connection management
algorithms. Recently, Cohen et al [11] proposed a theoretical model for connection caching.
Using this model they prove bounds on the competitive-ratio of local algorithms such as LRU
against the optimal offline (not local) algorithm.
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