MCMCF A Tool for Network Design

Jeffrey D. Oldham
Department of Computer Science
Stanford University
oldham@cs.stanford.edu

1997 September 04

A Multicommodity Flow Example

Specify:

- network topology
- edge costs
- peak call demand

Goal: Satisfy peak demand with minimum cost.

					1
Peal	ΚI	De	ma	an	ds

LA-Dallas	35 calls
LA-NYC	80 calls
Dallas-NYC	70 calls

Use: MCMCF (Minimum-Cost MultiCommodity Flow)

Linear Programming Based Solution

Disadvantages:

Size: Problem specification: O(k+m) space

Linear programs: O(k(n+m)) variables

O(kn+m) inequalities

 \bullet n is the number of nodes.

 \bullet m is the number of arcs.

• *k* is the number of commodities.

LP solution time:

- ullet experimentally quadratic in k
- experimentally quadratic in network size

design tradeoff:

- slow, exact solution
- fast approximation

Combinatorial Solution

Combinatorial program MCMCF:

ϵ -approximation:

- flow uses at most $(1 + \epsilon)$ arc capacity
- flow cost at most $(1+\epsilon)$ minimum cost

Main idea:

- reduce to single-commodity problems
- relate commodities using potential function

Theoretical advantage:

- time: $\tilde{O}(k)$ (time for min-cost flow)
- space: O(k(n+m))

Practical advantages:

• trade off time for accuracy

The Potential Function

Problem:

Several objectives:

- minimize total cost
- capacity constraints for every arc

Not smooth!

Solution:

Aggregate into smooth potential function ϕ

$$\phi = \exp\left(\alpha\left(\frac{\mathsf{flow's\ cost}}{\mathsf{desired\ cost}}\right)\right) + \sum_{\mathsf{arcs}\ a} \exp\left(\alpha\left(\frac{\mathsf{flow}(a)}{\mathsf{capacity}(a)}\right)\right)$$

small $\phi \Rightarrow \text{good solution}$

Outline of the Algorithm

Goal: Reduce potential function ϕ .

Main ideas:

- Move in direction $(-\nabla \phi)$.
- Maintain flow satisfying demands.

Until ϵ -optimal solution found:

- 1. Choose a commodity to improve.
- 2. Compute $\nabla \phi$.
- 3. Use $\nabla \phi$ as arc costs.
- 4. Compute single-commodity minimum-cost flow f^* .
- 5. Improvement step: $(1-\sigma)f + \sigma f^*$.

The Algorithm's Running Time

The theoretical running time is

$$\tilde{O}(\epsilon^{-3}k)$$
(time for min-cost flow)

[Karger and Plotkin, 1995], [Plotkin, Shmoys, Tardos, 1995], [Leighton et al., 1995].

Advantages:

- ullet (almost) linear dependence on number k of commodities
- uses well-understood single-commodity flow subroutine

The Algorithm's Running Time (cont'd)

Direct implementation runs slower than LP.

Problem:

- pessimistic parameters
- guarantee progress but not practical progress

Solution:

dynamically adjust parameters

Key Idea:

use theory to yield practical modifications

Problem Instances

Problem instances from two different families:

multigrid

- two-dimensional grids
- few additional arcs

rmfgen

- series of two-dimensional grids
- connect grids via random node permutation

Commodity sources, sinks, demands randomly chosen.

Choosing the Step Size σ

Improvement step:

$$(1-\sigma)f+\sigma f^*$$
.

Theory:

• fixed step size $\sigma = O(\epsilon^{-3})$

Practice:

- ullet Compute σ to minimize potential function.
- Use Newton-Raphson method.
- Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)

		time (seconds)	
instance	ϵ	Newton	theoretical
rmfgen-d-4-12-020	0.01	64	3842
rmfgen-d-7-10-020	0.01	257	15203
multigrid-008-016-0100	0.01	3	95

Choosing α

Constant α in potential function:

$$\phi = \exp\left(\alpha\left(\frac{\mathsf{flow's\ cost}}{\mathsf{desired\ cost}}\right)\right) + \sum_{\mathsf{arcs}\ a} \exp\left(\alpha\left(\frac{\mathsf{flow}(a)}{\mathsf{capacity}(a)}\right)\right)$$

Theory:

- fixed (large) value ⇒ guarantee progress
- ullet progress inversely proportional to lpha

Practice:

- choose (smaller) value guaranteeing progress
- compute occasionally—expensive

Result: (Sun Enterprise 3000)

		time (seconds)	
instance	ϵ	adaptive	theoretical
rmfgen-d-7-10-020	0.01	56	161
rmfgen-d-7-10-240	0.03	238	738
multigrid-032-128-0080	0.01	42	47

Updating MCF Routine

Theory:

• Use any minimum-cost flow routine.

Practice:

- Costs and capacities do not vary much.
- Simplex MCF can update from feasible flow.
- Use commodity's current flow.

Result: (Sun UltraSPARC-2)

		time (seconds)	
instance	ϵ	updating	no updating
rmfgen-d-7-10-020	0.01	87	180
rmfgen-d-7-10-240	0.01	454	835
multigrid-032-128-0080	0.01	21	37

Small Incremental Flow Change

Theory:

Flow can change on all arcs.

Practice:

- Flow changes on few arcs.
- ullet Routines for σ use only nonzero differences.

Result: (Sun UltraSPARC-2)

		time (seconds)	
instance	ϵ	use nonzero	use all
rmfgen-d-7-10-020	0.01	87	203
rmfgen-d-7-10-240	0.01	454	972
multigrid-032-128-0080	0.01	21	33

Termination Criteria

Stop algorithm when have ϵ -optimal solution.

Theory:

ullet small $\phi \quad \Rightarrow \quad \epsilon ext{-optimal}$

Practice:

- Compute a lower bound using LP dual.
- ullet Compute occasionally—k MCF computations

Comparisons with Linear Programming

MCMCF

ϵ -approximation:

- Flow uses at most $(1 + \epsilon)$ arc capacity
- \bullet Flow cost at most $(1+\epsilon)$ minimum cost

CPLEX

dual simplex: exact solutions primal simplex

- ullet permits stopping to yield ϵ -approximation
- experimentally 10x slower than dual

Dependence on k

Multigrid Instances

Dependence on k (cont'd)

Dependence on Problem Size

The tripartite generator was designed to produce problems difficult for MCMCF to solve.

Tripartite Instances

Dependence on the Approximation ϵ

The dependence is approximately $O(\epsilon^{-1.5})$.

Conclusions

theoretical algorithm

- theoretically fast
- practically slower than LP

practical modifications

- guided by theory
- yield fast, provably correct implementation

resulting advantages

- faster than all other algorithms
- solve larger problems than all other algorithms
- fast approximations—good for design
- trade time for accuracy