MCMCF
A Tool for Network Design

Jeffrey D. Oldham
Department of Computer Science
Stanford University
oldham@cs.stanford.edu

1997 September 04

A Multicommodity Flow Example

Specify:

e network topology
e edge costs
e peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA-Dallas | 35 calls
LA-NYC 80 calls
Dallas—=NYC | 70 calls

NYC

LA

30 calls @ $3 Dallas

Use: MCMCF (Minimum-Cost MultiCommodity Flow)

Linear Programming Based Solution

Disadvantages:

Size: Problem specification: O(k + m) space
Linear programs: O(k(n 4+ m)) variables
O(kn + m) inequalities
e 1 is the number of nodes.
e m is the number of arcs.
e k is the number of commodities.
LP solution time:
e experimentally quadratic in k
e experimentally quadratic in network size

design tradeoff:

e slow, exact solution
e fast approximation

Combinatorial Solution

Combinatorial program MCMCF:

e-approximation:

o flow uses at most (1 + €) arc capacity

e flow cost at most (1 + €) minimum cost
Main idea:

e reduce to single-commodity problems

e relate commodities using potential function
Theoretical advantage:

e time: O(k)(time for min-cost flow)

e space: O(k(n+m))
Practical advantages:

e trade off time for accuracy

The Potential Function

Problem:
Several objectives:

e minimize total cost
e capacity constraints for every arc

Not smooth!

Solution:
Aggregate into smooth potential function ¢

B flow’'s cost flow(a)
¢ = exp <04 (desired cost)) + Z exXp <a (capacity(a)>)

arcs a

small ¢ = good solution

Outline of the Algorithm

Goal: Reduce potential function ¢.

Main ideas:

e Move in direction (—V¢).
e Maintain flow satisfying demands.

Until e-optimal solution found:

1. Choose a commodity to improve.

2. Compute V.

3. Use V¢ as arc costs.

4. Compute single-commodity minimum-cost flow f*.
5

. Improvement step: (1 —o)f + o f*.

The Algorithm’s Running Time

The theoretical running time is

~

O(e3k)(time for min-cost flow)

[Karger and Plotkin, 1995],
[Plotkin, Shmoys, Tardos, 1995],
[Leighton et al., 1995].

Advantages:

e (almost) linear dependence on number k of
commodities

e uses well-understood single-commodity flow
subroutine

The Algorithm’s Running Time (cont’d)

Direct implementation runs slower than LP.

Problem:

e pessimistic parameters

e guarantee progress but not practical progress
Solution:

e dynamically adjust parameters

Key ldea:

e use theory to yield practical modifications

Problem Instances

Problem instances from two different families:

multigrid
e two-dimensional grids
e few additional arcs
rmfgen

e series of two-dimensional grids
e connect grids via random node permutation

Commodity sources, sinks, demands randomly chosen.

Choosing the Step Size o

Improvement step:
(1—0)f +of".

Theory:

o fixed step size 0 = O(e™°)

Practice:

e Compute o to minimize potential function.

e Use Newton-Raphson method.

e Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)

time (seconds)

Instance € Newton | theoretical
rmfgen-d-4-12-020 0.01 04 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100 0.01 3 05

Choosing o
Constant « in potential function:

B flow's cost flow(a)
?=oxp <a (desired cost)) " Z o (a <capacity(a)))

arcs a

Theory:

o fixed (large) value = guarantee progress
e progress inversely proportional to «

Practice:

e choose (smaller) value guaranteeing progress
e compute occasionally—expensive

Result: (Sun Enterprise 3000)

time (seconds)
instance € | adaptive | theoretical
rmfgen-d-7-10-020 0.01 56 161
rmfgen-d-7-10-240 0.03 238 738
multigrid-032-128-0080 0.01 42 47

10

Updating MCF Routine

Theory:

e Use any minimum-cost flow routine.

Practice:

e Costs and capacities do not vary much.
e Simplex MCF can update from feasible flow.
e Use commodity's current flow.

Result: (Sun UltraSPARC-2)

time (seconds)
instance € | updating | no updating

rmfgen-d-7-10-020 0.01 87 180
rmfgen-d-7-10-240 0.01 454 835
multigrid-032-128-0080 0.01 21 37

11

Small Incremental Flow Change

Theory:

e Flow can change on all arcs.

Practice:

e Flow changes on few arcs.
e Routines for ¢ use only nonzero differences.

Result: (Sun UltraSPARC-2)

time (seconds)
Instance € use nonzero | use all

rmfgen-d-7-10-020 0.01 87 203
rmfgen-d-7-10-240 0.01 454 972
multigrid-032-128-0080 0.01 21 33

12

Termination Criteria

Stop algorithm when have e-optimal solution.

Theory:

e small ¢ = e-optimal

Practice:

e Compute a lower bound using LP dual.
e Compute occasionally—k MCF computations

13

Comparisons with Linear Programming

MCMCF

e-approximation:
e Flow uses at most (1 + €) arc capacity
e Flow cost at most (1 + €) minimum cost

CPLEX

dual simplex: exact solutions

primal simplex
e permits stopping to yield e-approximation
e experimentally 10x slower than dual

14

Dependence on £

Multigrid Instances

5000 —

4000 —

min)

— 3000 —

[\
-
-
-

1000 —

Running Time

_ MCMCF

O
U J

-
|
0

©

| | | | |
0 100 200 300 400

Number of Commodities

Running Time (min)

150

ek
-
-

o
-

Dependence on £ (cont’d)

Rmfgen Instances

| | | |
50 100 150 200
Number of Commodities

16

Dependence on Problem Size

The tripartite generator was designed to produce
problems difficult for MCMCF to solve.

Tripartite Instances

1000 — CPLEX

300 — MCMCF (2%)

600 —
400 —

200 —

Running Time (min)

| | | |
0 2000 4000 6000
n

17

Dependence on the Approximation ¢

The dependence is approximately O(e~1-°).

Rmfgen Instances

| | | | |
5 10 20 50 100

1/e (log scale)

< s
§2><10—
80 10° —
<

— 5x10* —
S

2 2%x10% —
E 4
é 10% —
5 5000 —
@,

= 2000 —
@,

= 1000 —
B 500—
S

o)

=

=

Z,

18

Conclusions

theoretical algorithm

e theoretically fast

e practically slower than LP
practical modifications

e guided by theory

e yield fast, provably correct implementation
resulting advantages

e faster than all other algorithms

e solve larger problems than all other algorithms
e fast approximations—good for design

e trade time for accuracy

19

