

CS 154 - Introduction to Automata and Complexity Theory


Spring Quarter, 2000


Handout 2 (3/29/00) { Course Description


Textbook: The textbook for this course is the course reader Introduction to Automata and Lan-


guages, by Hopcroft, Motwani, and Ullman. This is to be supplemented by an old textbook called
Introduction to Automata Theory, Languages and Computation, by Hopcroft and Ullman.


Prerequisites: The prerequisite for this course is CS 109, which covers some basic material on
�nite automata, regular expressions, and context-free grammars. We will review portions of this
material in the �rst few classes.


Course Outline: We will cover the following topics in this course. People enrolled in CS154N
will only be expected to attend the lectures on the last three topics.


1. Finite state automata: Deterministic and non-deterministic �nite state machines; regular
expressions and languages. Techniques for identifying and describing regular languages; tech-
niques for showing that a language is not regular. Properties of such languages. (Chapters 1,
2, 3, & 4 in the Course Reader, and Chapters 1, 2 & 3 in the Hopcroft-Ullman book.)


2. Context-free languages: Context-free grammars, parse trees, derivations and ambiguity. Re-
lation to pushdown automata. Properties of such languages and techniques for showing that
a language is not context-free. (Chapters 5, 6, & 7 in the Course Reader, and Chapters 4, 5


& 6 in the Hopcroft-Ullman book.)


3. Turing Machines: Basic de�nitions and relation to the notion of an algorithm or program.
Power of Turing Machines and Church's hypothesis. (Chapter 8 in the Course Reader, and


Chapter 7 in the Hopcroft-Ullman book.)


4. Undecidability: Recursive and recursively enumerable languages. Universal Turing Machines.
Limitations on our ability to compute; undecidable problems. (Chapter 9 in the Course


Reader, and Chapter 8 in the Hopcroft-Ullman book.)


5. Computational Complexity: Decidable problems for which no \e�cient" algorithms are known.
Polynomial time computability. The notion of NP-completeness and problem reductions. Ex-
amples of \hard" problems. (Chapter 10 in the Course Reader, and Chapters 12 & 13 in the


Hopcroft-Ullman book.)


1







Motivation and Overview


I have been told by past students that this is one of the more di�cult courses in the Computer
Science curriculum, but at the same time they enjoyed it the most. Keep this in mind when the
going gets tough! The reason for the di�culty is that it covers abstract and mathematical topics
which are not very easy to grasp without putting in a good deal of hard work. There are a number
of excellent reasons for becoming pro�cient with the theoretical tools that we will develop in this
course.


1. Most of what you learn in the �rst part of the course will be required in the design or analysis
of almost any reasonably complex software or hardware system. For example, the theory of
�nite state machines and regular expressions is needed for the design of switching circuits,
components of compilers such as lexical analysis, pattern-matching, text-editors, uni�cation
as needed in Prolog or for automated deduction, and almost any program which processes user
commands. The description of programming languages and the design of parsers for them will
require an intimate knowledge of context-free grammars. More interestingly, with the presence
of a large amount of unstructured text on the World-wide Web, it has become increasingly
important to employ techniques taught in the course to extract structured information from
this chaos.


2. The second half of the course is concerned with a more philosophical approach to computer
science. Here we will be concerned with the basic questions of computability and tractability.
Using the concept of Turing Machines we will try to make precise the notion of an algorithm
and explore its limitations. We will encounter undecidable problems, viz. those which cannot
be solved by any algorithm or computer. Even if a problem is decidable it may turn out to
be intractable, i.e., there does not exist any e�cient algorithm to solve that problem. These
notions have had (and will continue to have) a profound inuence on our approach to using
computers to solve problems.


3. Finally, I think the most important role of this course is to turn you into \mathematically
mature" computer scientists. This course is quite mathematical and should develop your
skills of precise and formal reasoning. These skills will prove to be extremely important in
the design, analysis, and veri�cation of complex software and hardware systems.


2






