
CS 154 - Introduction to Automata and Complexity Theory

Spring Quarter, 2000

Handout 31 (5/17/00) { Supplementary Lecture Notes

1 Recursive versus recursively enumerable

First, let us clarify the precise relationship between the classes of languages recursively enumerable

and recursive. The class recursively enumerable consists of all languages for which there exists a
Turing machine (or a Procedure). The class recursive consists of all languages for which there
exists a special type of Turing machine (a Halting Turing machine or an Algorithm) which can
only reject by halting, unlike Turing machine or Procedures which are allowed to reject by not
halting at all. Quite clearly, every recursive language is also recursively enumerable. Note that we
sometimes also refer to a recursive language as being decidable, and to a non-recursive language as
being undecidable.

Given the closure properties for these two classes of languages, we can infer that for any language
L exactly one of the following three possibilities apply:

1. both L and L are recursive,

2. neither L nor L is recursively enumerable, or

3. one of L and L is recursively enumerable but not recursive, while the other is not recursively
enumerable.

This may be represented as the following 3� 3 table of possibilities.

L recursive L recursively enumerable L not recursively enumerable

(but not recursive)
L recursive

p
X X

L recursively enumerable (but X X
p

not recursive)
L not recursively enumerable X

p p

An important point is that both in the middle row and the middle column, we are talking about

languages that are \recursively enumerable but not recursive." The notation
p

indicates that the
combination of properties for L and L is possible, while X denotes that the combination is impossible

1



2 Undecidability of Emptiness

Consider the language:
L; = f<M>j L(M) = ;g:

We would like to classify L; and its complement L; with respect to the classes recursive and
recursively enumerable. This is covered in greater detail in Example 8.2 on page 185 of the textbook.

Theorem 1. L; is recursively enumerable.

Why is this? Note that a string w belongs to L; if it is the case that w =<M> for some
Turing machine M such that L(M) is non-empty. To establish Fact 1, we have to demonstrate
the existence of a Turing machine P (a mere procedure) with the following property: when given
<M> as input, P will accept if L(M) is non-empty and reject otherwise (possibly by not halting).
That is, we have to �nd a Turing machine P for the language L;. This is easily achieved via
non-determinism. The Turing machine P �rst guesses a string x 2 L(M) and then executes M on
input x to verify that M accepts x. Clearly, if L(M) is non-empty then there exists a valid choice
of x that will cause P to accept <M>; otherwise, P will reject <M>.

Theorem 2. L; is not recursively enumerable.

For this, it su�ces to show that L; is not recursive. This is because by Theorem 1 we know
that L; is recursively enumerable, which leaves open only two possibilities:

1. both L; and L; are recursive, or

2. L; is recursively enumerable but not recursive, while L; is not recursively enumerable.

If we are able to show that L; is not recursive, then we rule out the �rst possibility and are left
with only the second one, thereby establishing Theorem 2.

We now turn to the task of showing that L; is not recursive. That is, we will prove the following
lemma:

Lemma. L; is non-recursive or undecidable.

Proof: Our proof will involve establishing a reduction from LU to L;. Since LU , the complement of
the universal language LU , is already known to be non-recursive, the existence of such an reduction
will immediately imply the lemma.

Consider the two languages involved in the reduction:

LU = f<M;w>j w 62 L(M)g

L; = f<M 0>j L(M 0) = ;g
Our reduction f will take as input an instance of the �rst language, i.e., the encodings of a Turing
machine M and its input w. It will then produce as output an instance of the second language,
i.e., the encoding of another Turing machine M 0. In other words,

f(<M;w>) =<M 0> :

The reduction f will ensure that M 0 when executed on an input string w0 will behave as follows:

2



1. First, M 0 ignores the input w0 and instead merely simulates M on w.

2. If M accepts w, then M 0 will accept its own input w0 without even looking at it.

3. If M rejects w, then M 0 will reject its own input w0 without even looking at it. Note that
M may reject w by not halting at all, which is �ne since then M 0 will not halt and will thus
reject w0 as required.

To establish the correctness of the reduction, we have to demonstrate the following two properties.

a). First, we have to show that the function f(<M;w>) =<M 0> can be computed by a halting
Turing machine. That is, there exists an algorithm which when started o� with <M;w> on
its tape, will halt within a �nite number of steps ensuring that its tape now contains <M 0>.
Observe that M 0 is really quite a simple modi�cation of M | basically, M 0 �rst blanks out
its tape (dispensing with its own input w0), then it writes w on the tape, and �nally it starts
behaving like M . Modifying M into M 0 is a trivial task for an algorithm.

b). We also need to show that <M;w> belongs to LU if and only if <M 0> belongs to L;. This
may be reasoned as follows.

Consider �rst the case where <M;w> belongs to LU . In this case, w 62 L(M) and so M 0

rejects any input w0 written on its tape. That is, L(M 0) = ; or <M 0>2 L;.

Consider now the case where <M;w> does not belong to LU . In this case, w 2 L(M) and so
M 0 accepts any input w0 written on its tape. That is, L(M 0) = �� or <M 0>62 L;.

This completes the proof of the lemma and hence Theorem 2.

3


