CS 154 — Lecture 1 Notes (3/29/00)

Inductive Proofs

Prove a statement S(X) about a family of objects
X (e.g., integers, trees) in two parts:

1. Basts: Prove for one or several small values of
X directly.

2. Inductive step: Assume S(Y') for Y “smaller
than” X; prove S(X) using that assumption.

Example
A binary tree with n leaves has 2n — 1 nodes.

e Formally, S(T): if T is a binary tree with n
leaves, then 7" has 2n — 1 nodes.

e Induction is on the size = number of nodes of

T.

Basis: If T has 1 leaf, it is a one-node tree. 1 =
2x1—1so0 OK.

Induction: Assume S(U) for trees with fewer
nodes than T'. In particular, assume for the
subtrees of T'.

e T'must be a root plus two subtrees U and V.

e If U and V have u and v leaves, respectively,
and 7" has t leaves, then u + v = ¢.

e By the inductive hypothesis, U and V" have
2u — 1 and 2v — 1 nodes, respectively.

e Then T has 1 4+ (2u— 1) + (2v — 1) nodes.
O =2u+wv)-—1.
0 =2t —1, proving the inductive step.

If-And-Only-If Proofs

Often, a statement we need to prove is of the form
“X if and only if Y.” We are then required to do
two things:

1. Prove the if-part: Assume Y and prove X.

2. Prove the only-if-part: Assume X, prove Y.

Remember:

e The if and only-if parts are converses of each
other.

e One part, say “if X then Y’ says nothing
about whether Y 1s true when X is false.

e An equivalent form to “if X then Y” is “if not
Y then not X7; the latter is the contrapositive
of the former.

Equivalence of Sets

Many important facts in language theory are of
the form that two sets of strings, described in two
different ways, are really the same set. To prove
sets S and 7" are the same, prove:

e zisin Sifand only if z isin 7. That is:
0 Assume z isin S; prove z is in 7.

0 Assume z is in 7 prove z isin S.

Example: Balanced Parentheses

Here are two ways that we can define “balanced
parentheses”:

1. Grammatically:
a) The empty string ¢ is balanced.
b) If wis balanced, then (w) is balanced.
¢) If wand x are balanced, then so is wu.

2. By Scanning: w is balanced if and only if:
a) w has an equal number of left and right
parentheses.
b) Every prefix of w has at least as many
left as right parentheses.

e (all these GB and SB properties, respectively.

e Theorem: a string of parentheses w is GB if
and only if it is SB.

If

An induction on |w| (length of w). Assume w is
SB; prove it is GB.

Basis: If w = € (length = 0), then w is GB by rule
(a).

e Notice that we do not even have to address
the question of whether € is SB (it is,
however).

Induction: Suppose the statement “SB implies
GB” is true for strings shorter than w.

1. Case 1: w is not ¢, but has no nonempty
prefix that has an equal number of (and).
Then w must begin with (and end with); i.e.,
w=(z).

O « must be SB (why?).
0 By the IH, z is GB.

2

Only-If

O

By rule (b), (z) is GB; but (z) = w, so w
is GB.

Case 2: w = =y, where z is the shortest,
nonempty prefix of w with an equal number

of (and), and y # e.

U
U
U

z and y are both SB (why)?
By the TH, = and y are GB.
w is GB by rule (c).

An induction on |w|. Assume w is GB; prove it is

SB.

Basis: w = €. Clearly w obeys the conditions for

being SB.

Induction: Assume “GB implies SB” for strings
shorter than w, and assume w # e.

1.

Case 1: w is GB because of rule (b); i.e., w =

(z) and z is GB.

U
U

by the IH, = is SB.

Since # has equal numbers of (’s and)’s,
so does (z).

Since # has no prefix with more (’s than
)’s, so does ().

Case 2: w 1s not ¢ and 1s GB because of rule
(¢c); i.e., w=zy, and # and y are GB.

U
U

By the TH, z and y are SB.

(Aside) Trickier than it looks: we have
to argue that neither z nor y could be ¢,
because if one were, the other would be
w, and this rule application could not be
the one that first shows w to be GB.

zy has equal numbers of (’s and)’s
because x and y both do.

If w had a prefix with more)’s than (’s,
that prefix would either be a prefix of

z (contradicting the fact that # has no
such prefix) or it would be # followed by
a prefix of y (contradicting the fact that y
also has no such prefix).

(Aside) Above is an example of proof by
contradiction. We assumed our conclusion
about w was false and showed 1t would
imply something that we know is false.

Languages

Alphabet = finite set of symbols, e.g., {0,1}
(binary alphabet) or ASCII.

String = finite sequence of symbols
chosen from some alphabet, e.g., 01101 or
abracadabra.

Language = set of strings chosen from some
alphabet.

O Subtle point: the language may be
infinite, but there is some finite set
of symbols of which all its strings are
composed.

Example; Languages

The set of all binary strings consisting of some
number of 0’s followed by an equal number of

1s; that is, {e,01,0011,000111,...}.
C (the set of compilable C programs).
English.

Finite Automata

An important way to describe certain simple, but
highly useful languages called “regular languages.”

e A graph with a finite number of nodes, called
states.

e Arcs are labeled with one or more symbols
from some alphabet.

e One state i1s designated the start state or
wnitial state.

e Some states are final states or accepting states.

e The language of the FA is the set of strings
that label paths that go from the start state
to some accepting state.

Example

e Below FA scans HTML documents, looking
for a list of what could be title-author pairs,
perhaps in a reading list for some literature
course.

e It accepts whenever it finds the end of a list

item.

e In an application, the strings that matched
the title (before * by *) and author (after)
would be stored in a table of title-author pairs
being accumulated.

any non-tag
Start ,

,

any non-tag

