CS 154 — Notes for Lecture 10 (5/1/00)

Closure Properties of CFL’s — Substitution

If a substitution s assigns a CFL to every symbol
in the alphabet of a CFL L, then s(L) is a CFL.

Proof

e Take a grammar for L and a grammar for
each language L, = s(a).

e  Make sure all the variables of all these
grammars are different.

0 We can always rename variables whatever
we like, so this step is easy.

e  Replace each terminal @ in the productions for
L by Sg, the start symbol of the grammar for
Lg.

e A proof that this construction works is in the
reader.

O Intuition: this replacement allows any
string in L, to take the place of any
occurrence of a in any string of L.

Example

e L={0"1"|n > 1}, generated by the
grammar S — 051 | 01.

e 5(0) = {a™™ | m < n}, generated by the
grammar S — aSb | A; A — aA | ab.

o 5(1) = {ab,abc}, generated by the grammar
S—abd; A—c|e

1. Rename second and third S’s to Sy and
S1, respectively. Rename second A to B.
Resulting grammars are:

S —0S1]01
Sp— aSpb | A; A — aA | ab
S —abB; B—c|e¢

2. In the first grammar, replace 0 by Sy and 1 by
S1. The combined grammar:

S—>SoSSl |5051
So — aSob | A; A — aA | ab
Sy —abB; B —c|e¢

Consequences of Closure Under Substitution
1. Closed under union, concatenation, star.

0 Proofs are the same as for regular
languages, e.g. for concatenation of CFL’s
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Ly, Lo, use L = {ab}, s(a) = L1, and
S(b) = Lz.

2. Closure of CFL’s under homomorphism.

Nonclosure Under Intersection

e  The reader shows the following language L =

{0%192%3! | i = k and j = [} not to be a CFL.

O Intuitively, you need a variable and
productions like A — 0A2 | 02 to generate
the matching 0’s and 2’s, while you need
another variable to generate matching 1’s
and 3’s. But these variables would have
to generate strings that did not interleave.

e  However, the simpler language {07192%3! | i =
k} is a CFL.

0 A grammar:

S—S3|A
A— 042 | B
B—1B|e

e  Likewise the CFL {07172%3" | j = {}.

e  Their intersection 1s L.

Nonclosure of CFL’s Under Complement

e  Proof 1: Since CFL’s are closed under union,
if they were also closed under complement,
they would be closed under intersection by
DeMorgan’s law.

e  Proof 2: The complement of L above is a
CFL. Here is a PDA P recognizing it:

O Guess whether to check i # kor j # L.
Say we want to check ¢ # k.

O Aslong as 0’s come in, count them on the
stack.

O Ignore 1’s.
0 Pop the stack for each 2.

O As long as we have not just exposed the
bottom-of-stack marker when the first 3
comes in, accept, and keep accepting as
long as 3’s come in.

0 But we also have to accept, and keep
accepting, as soon as we see that the
input is not in L(0*1*2*3*).
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Closure of CFL’s Under Reversal

Just reverse the body of every production.

Closure of CFL’s Under Inverse
Homomorphism

PDA-based construction.

Keep a “buffer” in which we place h(a) for
some input symbol a.

Read inputs from the front of the buffer (e
OK).

When the buffer is empty, it may be reloaded
with h(b) for the next input symbol b, or we
may continue making e-moves.

Testing Emptiness of a CFL

As for regular languages, we really take a
representation of some language and ask whether
it represents 0.

In this case, the representation can be a CFG

or PDA.

O  Our choice, since there are algorithms to
convert one to the other.

The test: Use a CFG; check if the start
symbol 1s useless?

Testing Finiteness of a CFL

Let L be a CFL. Then there is some pumping-
lemma constant n for L.

Test all strings of length between n and 2n — 1
for membership (as in next section).

If there 1s any such string, it can be pumped,
and the language 1s infinite.

If there is no such string, then n — 1 1s an
upper limit on the length of strings, so the
language is finite.

O Trick: If there were a string z = uvwzy
of length 2n or longer, you can find a
shorter string wwy in L, but it’s at most
n shorter. Thus, if there are any strings
of length 2n or more, you can repeatedly
cut out vz to get, eventually, a string
whose length is in the range n to 2n — 1.
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Testing Membership of a String in a CFL

Simulating a PDA for L on string w doesn’t

quite work, because the PDA can grow its stack
indefinitely on € input, and we never finish, even if
the PDA 1is deterministic.

e  There is an O(n?) algorithm (n = length
of w) that uses a “dynamic programming”

technique.
O Called Cocke-Younger-Kasami (CYK)
algorithm.

e  Start with a CNF grammar for L.
e Build a two-dimensional table:
O Row = length of a substring of w.

O Column = beginning position of the
substring.

0 Entry in row ¢ and column j = set of
variables that generate the substring of
w beginning at position j and extending
for ¢ positions.

[0 In reader, these entries are denoted
X it+j—1, l.e., the subscripts are
the first and last positions of the
string represented, so the first row 1is
Xi1,X99,..., Xnn, the second row is
X12,X23,...,Xpn_1,n, and so on.

Basis: (row 1) X;; = the set of variables A such
that A — a is a production, and a is the symbol at
position i of w.

Induction: Assume the rows for substrings of
length up to m — 1 have been computed, and
compute the row for substrings of length m.

e  We can derive a;a;41 - - - a; from A if there is a
production A — BC', B derives any prefix of
a;ai41 - - - a;, and C' derives the rest.

e  Thus, we must ask if there is any value of &k
such that i < &k < j, Bisin X, and C'is in
X415

Example

In class, we’ll work the table for the grammar:

S— AS | SB| AB
A—a
B—b

and the string aabb.



