
CS 154 { Notes for Lecture 11 (5/3/00)

Outline of Turing Machines and Complexity

1. Turing machine (TM) = formal model of a
computer running a particular program.

✦ We must argue that the TM can do
exactly what a computer can do, albeit
slower.

2. We use the simplicity of the TM model to
prove formally that there are speci�c problems
(=languages) that the TM cannot solve.

✦ Two classes: \recursively enumerable"
= TM can accept the strings in the
language but cannot tell for certain that a
string is not in the language; \non-RE" =
no TM can even recognize the members of
the language in the RE sense.

3. We then look at problems (languages) that do

have TM's that accept them and always halt;
i.e., they not only recognize the strings in the
language, but they tell us when they are sure
the string is not in the language.

✦ The classes P and NP are those
languages recognizable by deterministic
(resp., nondeterministic) TM's that halt
within a time that is some polynomial in
the input.

✦ Polynomial is as close as we can get,
because real computers and di�erent
models of (deterministic) TM's can di�er
in their running time by a polynomial
function, e.g., a problem might take
O(n2) time on a real computer and O(n6)
on a TM.

4. NP-complete problems: Since we don't know
whether P = NP, but it appears that at least
some problems in NP take exponential time,
the best we can do is show that a certain
problem is \NP-complete," = if this problem
is in P, then all of NP is in P.

5. Some speci�c problems that are NP-complete:
satis�ability of boolean (propositional logic)
formulas, traveling salesman, etc.

Intuitive Argument About an Undecidable
Problem

Given a C program, does it print hello, world.

as the �rst 13 characters of output?

1



� We prove there is no C program to solve that
problem by supposing that there were such a
program H, the \hello-world-tester."

✦ H takes as input a C program P and an
input �le I for that program, and tells
whether P , with input I, \prints hello
world" (by which we mean it does so as
the �rst 13 characters).

� Modify H to a new program H1 that acts like
H, but when H prints no, H1 prints hello,
world.

✦ Requires some thought: we need to
�nd where no is printed and change the
printf statement.

� Modify H1 to H2. This program takes only
one input, P , and acts like H1 with both its
program and data inputs equal to P .

✦ I.e., H2(P ) = H1(P; P ).

✦ Requires more thought: H2 must bu�er
its input so it can be used as both the P
and I inputs to H1.

� H2 cannot exist. If it did, what would H2(H2)
do?

✦ If H2(H2) = yes, then H2 given H2 as
input evidently does not print hello,
world. But H2(H2) = H1(H2;H2) =
H(H2;H2), and H1 prints yes if and only
if its �rst input, given its second input as
data, prints hello, world. Thus, H2(H2)
= yes implies H2(H2) = hello, world.

✦ But if H2(H2) = hello, world. then
H1(H2;H2) = hello, world. and
H(H2;H2) = no. Thus, H2(H2) =
hello, world. implies H2(H2) 6= hello,

world.

The TM

� Finite-state control, like PDA.

� One read-write tape serves as both input and
unbounded storage device.

✦ Tape divided into cells.

✦ Each tape holds one symbol from the tape

alphabet.

✦ Tape is \semi-in�nite"; it ends only at the
left.

2



� Tape head marks the \current" cell, which is
the only cell that can in
uence the move of
the TM.

� Initially, tape holds a1a2 � � �anBB � � � where
a1a2 � � �an is the input, chosen from an input

alphabet (subset of the tape alphabet) and B
is the blank.

Formal TM

M = (Q;�;�; �; q0; B; F ), where:

� Q = �nte set of states.

� � = tape alphabet; � � � = input alphabet.

� B in �� � = blank.

� q0 in Q = start symbol; F � Q = accepting
states.

� � takes a state and tape symbol, returns a new
state, replacement symbol (either might not
change) and a direction L=R for head motion.

Example

Nontrivial examples are hard to come by. Here's a
TM that checks its third symbol is 0, accepts if so,
and runs forever, if not.

M = (fp; q; r; s; tg; f0;1g; f0; 1;Bg; p;B; fsg)

1. �(p;X) = (q;X;R) for X = 0; 1.

2. �(q;X) = (r;X;R) for X = 0; 1.

3. �(r; 0) = (s; 0; L).

4. �(r; 1) = (t; 1; R).

5. �(t;X) = (t;X;R) for X = 0; 1; B.

ID's of a Turing Machine

The ID (instantaneous description) captures what
is going on at any moment: the current state, the
contents of the tape, and the position of the tape
head.

� Keep things �nite by dropping all symbols to
the right of the head and to the right of the
rightmost nonblank.

✦ Subtle point: although there is no limit
on how far right the head may move and
write nonblanks, at any �nite time, the
TM has visited only a �nite pre�x of the
in�nite tape.

3



� Notation: �q� says:

✦ � is the tape contents to the left of the
head.

✦ The state is q.

✦ � is the nonblank tape contents at or to
the right of the tape head.

� One move indicated by `; zero, one, or more

moves represented by `
*

.

✦ Check the reader for the detailed
de�nition of `.

Example

With input 0101, the sequence of ID's of the TM
is: p0101 ` 0q101 ` 01r01 ` 0s101.

� At that point it halts, since state s has no
move when the head is scanning 1.

With input 0111 the sequence is: p0111 ` 0q111 `
01r11 ` 011t1 ` 0111t ` 0111Bt ` � � �.

� The TM never halts, but continues to move
right.

Acceptance by Final State and by Halting

One way to de�ne the language of a TM is by
the set of input strings that cause it to reach an
accepting state.

� L(M ) = fw j q0w `
*

�p� for some p in F and
any � and � in ��g.

Another way is to de�ne the set of strings that
cause the TM to halt = have no next move.

� H(M ) = fw j q0w `
*

�pX�, and �(p;X) is not
de�nedg.

✦ Subtle point: a TM can appear to halt if
the next move would take the head o� the
left end of the tape.

✦ Given any TM, we can mark the left end
so that never happens; i.e., we produce
a modi�ed TM that accepts the same
language and halts rather than fall o�
the left end.

Example

� The TM M of our previous example has L(M )
equal to those strings in the language of RE
(0 + 1)(0 + 1)0(0 + 1)�.

4



� H(M ) is the language of �+0+1+ (0+1)(0+
1) + (0 + 1)(0 + 1)0(0 + 1)�.

Equivalence of Acceptance by Final State
and Halting

We need to show L is L(M1) for some TM M1 if
and only if L is H(M2) for some TM M2.

If

Modify M2 as follows:

1. Introduce one accepting state r.

2. Whenever there is no transition for M2 on
state q and symbol X, add a transition to
state r, moving right (so we can't possibly fall
o� the left end) and leaving symbol X.

Only-If

Roughly, we let M2 simulate M1, but if M1 enters
an accepting state, M2 has no next move and so
halts.

� Major problem: M1 could halt without
accepting.

✦ To avoid this problem, introduce state r
that moves right on every symbol, staying
in state r and leaving the tape symbols
unchanged.

✦ Give M2 a transition to r (moving right)
on every state-symbol combination that
does not have a rule.

� Also, remove all transitions where the state is
an accepting state of M1, so M2 will halt in
those situations.

Falling O� the Left End of Tape

The reader talks about the funny situation where
the TM would halt but falls o� the left end of
tape.

� This situation is not halting.

� Neither does a TM accept if it tries to enter
an accepting state as it falls o� the left end.

� We can prevent falling o� the left end, by
marking the leftmost cell, as in the reader.

� But it appears we do not need to do
so in order to prove the equivalence of
halting/accepting, since neither occurs when
the TM falls o� the left end.

5


