
CS 154 { Notes for Lecture 12 (5/8/00)

Stupid Turing Machine Tricks

Often it is useful to think of the state and the tape
symbol as having structure.

� The components of a tape symbol are tracks.

� Usually one component of the state is the
control, responsible for running the \program"
of the TM; other components hold data.

Example

Let M = (Q;�;�; �; q0; B; F ). Suppose the
program of M needs to swap the contents of
adjacent tape cells sometimes.

� Some of the states in Q will be of the form
[q;X] and [p;X], where X is any symbol in �.
We also need states r to begin and s to end.

� In state r, M will pick up the symbol scanned
into the data portion of the state.

✦ �(r;X) = ([q;X]; X;R) for all X in �.

� In control state q, M deposits the symbol in
its data component and picks up the symbol
that was there, going to control state p.

✦ �([q;X]; Y ) = ([p; Y ]; X; L) for all X and
Y in �.

� In control state p, M deposits its data and
enters state s, moving right.

✦ �([p;X]; Y ) = (s;X;R) for all X and Y in
�.

Example: Multiple Tracks

A common use for multiple tracks is to use one
track for data the other for a single \mark."

� Symbols of � are pairs [A;X], where X is the
\real" symbol, and A is either B (blank) or �.

✦ Input symbol a is identi�ed with [B; a].

✦ The blank is [B;B].

� Here's a program to �nd the �, assuming it is
somewhere to the left of the present position.

1. �(q; [B;X]) = (q; [B;X]; L)

2. �(q; [�; X]) = (p; [B;X]; R)

1



Other TM Models

While regular or CF languages are classes of
languages that we de�ned by convenient notations
(RE's, CFG's, etc.), no one supposed that they
represented \everything we can compute."

� The purpose of the TM was to de�ne
\everything we can compute."

✦ For convenience, we use recognition
of languages as the space of possibly
computable things; other spaces, e.g.,
computing arithmetic functions, yield the
same conclusions.

� Thus, it would be awkward if we could �nd
another notion of \everything" that was
di�erent from the TM.

✦ A real computer is an important special
case. Do real computers and TM's de�ne
the same set of computable things?

� Our next steps are to consider potentially
more powerful notions of computing and see
that the TM model we de�ned can simulate
them.

✦ These models are: multitape TM,
nondeterministic TM, multistack
machines, counter machines, \real"
computers.

Multitape TM's

Allow the TM to have some �nite number of tapes
k, with a head for each tape.

� Move is a function of the state and the symbol
scanned by each tape head.

� Action = new state, new symbol for each
tape, and a head motion (L, R, or S, for
\stationary").

� First tape holds the input, other tapes are
initially blank.

Many Tapes to One Tape Simulation

To simulate k tapes, use one tape with 2k tracks.

� One track holds the contents of each tape.

� Another track holds a mark representing the
head position of that tape, as

�

W X Y Z

2



� To simulate one move of the multitape TM,
the one-tape TM must remember how many
*'s are to its left.

1. Move left, then right, visiting all the *'s
to see what each tape head is scanning.

2. Decide on the multitape TM's move,
based on the scanned symbols and its
state (remembered in the state of the one-
tape TM).

3. Visit each * again, making the necessary
adjustments: change symbols and move
*'s one cell left or right, as needed.

� Important observation for when we study
polynomial time TM's: If the multitape TM
makes T (n) moves when the input is of length
n, then the one-tape TM makes O

�
T 2(n)

�

moves.

✦ Thus, if the multitape TM takes
polynomial time, so does the one-tape
TM.

✦ Key point in proof: The *'s can't get
more than T (n) cells apart, so one move
is simulated in O

�
T (n)

�
moves of the one-

tape TM.

Nondeterministic TM

Let the TM have a �nite set of choices of move.

� As with the (nondeterministic) PDA, there is
no \mix-and-match"; if (p;X; L) and (q; Y;R)
are choices, we cannot go to state q, print
X on the cell and move right, e.g., unless
(q;X;R) is another choice.

Nondeterministic to Deterministic
Simulation

Let the NTM have one tape, but �rst simulate
with a multitape DTM; later convert the multitape
DTM to a one-tape DTM.

� Use one tape of DTM to hold a queue of ID's
of the NTM, separated by special markers (*).

� When an ID reaches the front of the queue,
�nd all its next ID's, and add them to the
back of the queue.

� Accept if you ever reach an ID with an
accepting state.

✦ Note that the queue discipline is
important, so that the DTM eventually

3



reaches every ID that the NTM can enter.

✦ In contrast, if we used a stack discipline,
the NTM might reach acceptance, but the
DTM would go o� on some in�nite chase
of ID's and never reach the accepting ID
of the NTM.

MultiStack Machines

Like PDA, but with more than one stack.

� One stack is not enough to simulate a TM;
you get only CFL's.

✦ While we haven't emphasized the point,
all the examples in Section 7.2.3 of non-
CFL's are recognized by TM's.

� But 2 stacks is enough!

� Key idea: use one stack to hold what is to the
left of the tape head, use the other to hold
what is to the right.

Counter Machines

Two equivalent ways to think of a counter:

1. A stack with a bottom-marker, say Z0, and
one other symbol, say X, that can be placed
on the stack.

✦ Thus, stack always looks like
XX � � �XZ0.

2. A device that holds a nonnegative integer,
with the operations add 1, subtract 1, and
test-if-0.

� 1 counter = subset of CFL's, including all
regular languages and some nonregular
languages like f0n1n j n � 1g.

� 2 counters = TM!

✦ Proof in two stages: 3 counters simulate
2 stacks, then 2 counters simulate 3
counters.

2 Stacks to 3 Counters

Suppose a stack has r � 1 symbols. Think of
the stack contents as a base-r number, with the
symbols as digits 1 through r � 1.

� Use one counter for each stack, plus one
\scratch" counter.

4



� Multiply and divide by r using two counters.

✦ Subtract r from one, add 1 to the other,
or vice-versa.

� Push X = multiply by r, then add digit
represented by X.

� Pop = divide by r, throw away the remainder.

� Read top symbol = move from one counter to
the other, counting in the state modulo r to
determine the remainder.

3 Counters to 2 Counters

Key idea, represent counters i, j, and k by the
integer 2i3j5k.

� Store this number on one counter, use the
other counter as scratch.

� Test if i = 0 by moving count from one
counter to the other, counting modulo 2 in
the state.

✦ i = 0 if and only if the number is not
divisible by 2.

� Tests for j = 0 and k = 0 analogous.

� Adding to i, j, k are multiplications of the
count by 2, 3, 5, respectively.

� Subtractions are similarly divisions.

Real Computers

In one sense, a real computer has a �nite number
of states, and thus is weaker than a TM.

� We have to postulate an in�nite supply of
tapes, disks, or some periferal storage device
to simulate an in�nite TM tape.

� Assume human operator to mount disks,
keep them stacked neatly on the sides of the
computer.

TM to Real Computer

Computer can simulate �nite control, and mount
one disk that holds the region of the TM tape
around the tape head.

� When the tape head moves o� this region,
the computer prints an order to have its disk
moved to the top of the left or right pile, and
the top of the other pile mounted.

5



Real Computer to TM

Simulation is at the level of stored instructions and
words of memory.

� TM has one tape that holds all the used
memory locations, and their contents.

� Other TM tapes hold the instruction counter,
memory address, computer input �le, and
scratch.

� Instruction cycle of computer simulated by:

1. Find the word indicated by the
instruction counter on the memory tape.

2. Examine the instruction code (a �nite
set of options), and get the contents of
any memory words mentioned in the
instruction, using the scratch tape.

3. Perform the instruction, changing any
words' values as needed, and adding new
address-value pairs to the memory tape, if
needed.

Comparison of Running Times

� If the computer can do a multiplication of
words whose length is not limited (e.g., to 64
bits, as on most computers), then the length
of the longest value can double at each step,
and it takes O(2T (n)) steps of the TM to
simulate T (n) steps of the computer.

� However, if we limit the length of words to,
say, 64, or we allow arbitrarily long words
but only instructions that add at most 1 to
the length in one step (e.g., addition), then
O
�
T 3(n)

�
steps of the TM su�ce to simulate

T (n) computer steps.

✦ Thus, polynomial-time computer program
becomes polynomial-time TM.

✦ Why? Memory tape can only grow
to O

�
T 2(n)

�
. Thus, one step takes

O
�
T 2(n)

�
on the TM, and T (n) steps

take O
�
T 3(n)

�
.

6


