

CS 154 { Lecture 2 Notes (4/3/00)

Formal De�nition of Finite Automaton

1. Finite set of states, typically Q.

2. Alphabet of input symbols, typically �.

3. One state is the start/initial state, typically
q0.

4. Zero or more �nal/accepting states; the set is
typically F .

5. A transition function, typically �. This
function:

✦ Takes a state and input symbol as
arguments.

✦ Returns a state.

✦ One \rule" of � would be written
�(q; a) = p, where q and p are states,
and a is an input symbol.

✦ Intuitively: if the FA is in state q, and
input a is received, then the FA goes to
state p (note: q = p OK).

� A FA is represented as the �ve-tuple: A =
(Q;�; �; q0; F).

Example: Clamping Logic

We may think of an accepting state as representing
a \1" output and nonaccepting states as
representing \0" out.

A \clamping" circuit waits for a 1 input, and
forever after makes a 1 output. However, to avoid
clamping on spurious noise, we'll design a FA that
waits for two 1's in a row, and \clamps" only then.

In general, we may think of a state as representing
a summary of the history of what has been seen on
the input so far. The states we need are:

1. State q0, the start state, says that the most
recent input (if there was one) was not a 1,
and we have never seen two 1's in a row.

2. State q1 says we have never seen 11, but the
previous input was 1.

3. State q2 is the only accepting state; it says
that we have at some time seen 11.

� Thus, A = (fq0; q1; q2g; f0; 1g; �; q0; fq2g),
where � is given by:

1

0 1

! q0 q0 q1
q1 q0 q2
�q2 q2 q2

� By marking the start state with ! and
accepting states with �, the transition table
that de�nes � also speci�es the entire FA.

Conventions

It helps if we can avoid mentioning the type of
every name by following some rules:

� Input symbols are a, b, etc., or digits.

� Strings of input symbols are u; v; : : : ; z.

� States are q, p, etc.

Transition Diagram

A FA can be represented by a graph; nodes =
states; arc from q to p is labeled by the set of
input symbols a such that �(q; a) = p.

� No arc if no such a.

� Start state indicated by word \start" and an
arrow.

� Accepting states get double circles.

Example

For the clamping FA:

Start
q0 q1 q2

1 1

0

0 0,1

Extension of � to Paths

Intuitively, a FA accepts a string w = a1a2 � � �an if
there is a path in the transition diagram that:

1. Begins at the start state,

2. Ends at an accepting states, and

3. Has sequence of labels a1; a2; : : : ; an.

Formally, we extend transition function � to
�̂(q; w), where w can be any string of input
symbols:

2

� Basis: �̂(q; �) = q (i.e., on no input, the FA
doesn't go anywhere.

� Induction: �̂(q; wa) = �
�
�̂(q; w); a

�
, where w is

a string, and a a single symbol (i.e., see where
the FA goes on w, then look for the transition
on the last symbol from that state).

� Important fact with a straightforward,
inductive proof: �̂ really represents paths.
That is, if w = a1a2 � � �an, and �(pi; ai) = pi+1

for all i = 0; 1; : : : ; n� 1, then �̂(p0; w) = pn.

Acceptance of Strings

A FA A = (Q;�; �; q0; F) accepts string w if

�̂(q0; w) is in F .

Language of a FA

FA A accepts the language L(A) = fw j �̂(q0; w) is
in Fg.

Aside: Type Errors

A major source of confusion when dealing with
automata (or mathematics in general) is making
\type errors."

� Example: Don't confuse A, a FA, i.e., a
program, with L(A), which is of type \set of
strings."

� Example: the start state q0 is of type \state,"
but the accepting states F is of type \set of
states."

� Trickier example: Is a a symbol or a string of
length 1?

✦ Answer: it depends on the context, e.g.,
is it used in �(q; a), where it is a symbol,

or �̂(q; a), where it is a string?

Nondeterministic Finite Automata

Allow (deterministic) FA to have a choice of 0 or
more next states for each state-input pair.

� Important tool for designing string processors,
e.g., grep, lexical analyzers.

� But \imaginary," in the sense that it has to be
implemented deterministically.

Example

In this somewhat contrived example, we shall
design an NFA to accept strings over alphabet
f1; 2; 3g such that the last symbol appears

3

previously, without any intervening higher symbol,
e.g., � � �11, � � �21112, � � �312123.

� Trick: use start state to mean \I guess I
haven't seen the symbol that matches the
ending symbol yet.

� Three other states represent a guess that
the matching symbol has been seen, and
remembers what that symbol is.

1 1

2 2

3 3

1

1,2

p

q

r

s

t

1,2,3

Start

Formal NFA

N = (Q;�; �; q0; F), where all is as DFA, but:

� �(q; a) is a set of states, rather than a single
state.

Extension to �̂

� Basis: �̂(q; �) = fqg.

� Induction: Let:

✦ �̂(q; w) = fp1; p2; : : : ; pkg.

✦ �(pi; a) = Si for i = 1; 2 : : : ; k.

Then �̂(q; wa) = S1 [S2 [� � � [Sk.

Language of an NFA

An NFA accepts w if any path from the start state
to an accepting state is labeled w. Formally:

� L(N) = fw j �̂(q0; w) \ F 6= ;g.

Subset Construction

� For every NFA there is an equivalent (accepts
the same language) DFA.

� But the DFA can have exponentially many
states.

4

Let N = (QN ;�; �N ; q0; FN) be an NFA.
The equivalent DFA constructed by the subset
construction is D = (QD ;�; �D; fq0g; FD), where:

1. QD = 2QN ;. i.e., QD is the set of all subsets of
QN .

2. FN is the set of sets S in QD such that S \
F 6= ;.

�D(fq1; q2; : : : ; qkg; a) = �N (p1; a) [
�N (p2; a) [� � � [�N (pk; a).

� Key theorem (induction on jwj, proof in

book): �̂D(fq0g; w) = �̂N (q0; w).

� Consequence: L(D) = L(N).

Example: Subset Construction From
Previous NFA

An important practical trick, used in lexical
analyzers and other text-processors is to ignore the
(often many) states that are not accessible from
the start state (i.e., no path leads there).

� For the NFA example above, of the 32 possible
subsets, only 15 are accessible. Computing
transitions \on demand" gives the following
�D :

1 2 3

! p pq pr ps

pq pqt pr ps

�pqt pqt pr ps

pr pqr prt ps

�prt pqr prt ps

ps pqs prs pst

�pst pqs prs pst

prs pqrs prst pst

�prst pqrs prst pst

pqs pqst prs pst

�pqst pqst prs pst

pqr pqrt prt ps

�pqrt pqrt prt ps

pqrs pqrst prst pst

�pqrst pqrst prst pst

5

