

CS 154 { Lecture 2 Notes (4/3/00)


Formal De�nition of Finite Automaton


1. Finite set of states, typically Q.


2. Alphabet of input symbols, typically �.


3. One state is the start/initial state, typically
q0.


4. Zero or more �nal/accepting states; the set is
typically F .


5. A transition function, typically �. This
function:


✦ Takes a state and input symbol as
arguments.


✦ Returns a state.


✦ One \rule" of � would be written
�(q; a) = p, where q and p are states,
and a is an input symbol.


✦ Intuitively: if the FA is in state q, and
input a is received, then the FA goes to
state p (note: q = p OK).


� A FA is represented as the �ve-tuple: A =
(Q;�; �; q0; F ).


Example: Clamping Logic


We may think of an accepting state as representing
a \1" output and nonaccepting states as
representing \0" out.


A \clamping" circuit waits for a 1 input, and
forever after makes a 1 output. However, to avoid
clamping on spurious noise, we'll design a FA that
waits for two 1's in a row, and \clamps" only then.


In general, we may think of a state as representing
a summary of the history of what has been seen on
the input so far. The states we need are:


1. State q0, the start state, says that the most
recent input (if there was one) was not a 1,
and we have never seen two 1's in a row.


2. State q1 says we have never seen 11, but the
previous input was 1.


3. State q2 is the only accepting state; it says
that we have at some time seen 11.


� Thus, A = (fq0; q1; q2g; f0; 1g; �; q0; fq2g),
where � is given by:
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! q0 q0 q1
q1 q0 q2
�q2 q2 q2


� By marking the start state with ! and
accepting states with �, the transition table
that de�nes � also speci�es the entire FA.


Conventions


It helps if we can avoid mentioning the type of
every name by following some rules:


� Input symbols are a, b, etc., or digits.


� Strings of input symbols are u; v; : : : ; z.


� States are q, p, etc.


Transition Diagram


A FA can be represented by a graph; nodes =
states; arc from q to p is labeled by the set of
input symbols a such that �(q; a) = p.


� No arc if no such a.


� Start state indicated by word \start" and an
arrow.


� Accepting states get double circles.


Example


For the clamping FA:


Start
q0 q1 q2


1 1


0


0 0,1


Extension of � to Paths


Intuitively, a FA accepts a string w = a1a2 � � �an if
there is a path in the transition diagram that:


1. Begins at the start state,


2. Ends at an accepting states, and


3. Has sequence of labels a1; a2; : : : ; an.


Formally, we extend transition function � to
�̂(q; w), where w can be any string of input
symbols:
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� Basis: �̂(q; �) = q (i.e., on no input, the FA
doesn't go anywhere.


� Induction: �̂(q; wa) = �
�
�̂(q; w); a


�
, where w is


a string, and a a single symbol (i.e., see where
the FA goes on w, then look for the transition
on the last symbol from that state).


� Important fact with a straightforward,
inductive proof: �̂ really represents paths.
That is, if w = a1a2 � � �an, and �(pi; ai) = pi+1


for all i = 0; 1; : : : ; n� 1, then �̂(p0; w) = pn.


Acceptance of Strings


A FA A = (Q;�; �; q0; F ) accepts string w if


�̂(q0; w) is in F .


Language of a FA


FA A accepts the language L(A) = fw j �̂(q0; w) is
in Fg.


Aside: Type Errors


A major source of confusion when dealing with
automata (or mathematics in general) is making
\type errors."


� Example: Don't confuse A, a FA, i.e., a
program, with L(A), which is of type \set of
strings."


� Example: the start state q0 is of type \state,"
but the accepting states F is of type \set of
states."


� Trickier example: Is a a symbol or a string of
length 1?


✦ Answer: it depends on the context, e.g.,
is it used in �(q; a), where it is a symbol,


or �̂(q; a), where it is a string?


Nondeterministic Finite Automata


Allow (deterministic) FA to have a choice of 0 or
more next states for each state-input pair.


� Important tool for designing string processors,
e.g., grep, lexical analyzers.


� But \imaginary," in the sense that it has to be
implemented deterministically.


Example


In this somewhat contrived example, we shall
design an NFA to accept strings over alphabet
f1; 2; 3g such that the last symbol appears
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previously, without any intervening higher symbol,
e.g., � � �11, � � �21112, � � �312123.


� Trick: use start state to mean \I guess I
haven't seen the symbol that matches the
ending symbol yet.


� Three other states represent a guess that
the matching symbol has been seen, and
remembers what that symbol is.


1 1


2 2


3 3


1


1,2


p


q


r


s


t


1,2,3


Start


Formal NFA


N = (Q;�; �; q0; F ), where all is as DFA, but:


� �(q; a) is a set of states, rather than a single
state.


Extension to �̂


� Basis: �̂(q; �) = fqg.


� Induction: Let:


✦ �̂(q; w) = fp1; p2; : : : ; pkg.


✦ �(pi; a) = Si for i = 1; 2 : : : ; k.


Then �̂(q; wa) = S1 [ S2 [ � � � [ Sk.


Language of an NFA


An NFA accepts w if any path from the start state
to an accepting state is labeled w. Formally:


� L(N ) = fw j �̂(q0; w) \ F 6= ;g.


Subset Construction


� For every NFA there is an equivalent (accepts
the same language) DFA.


� But the DFA can have exponentially many
states.
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Let N = (QN ;�; �N ; q0; FN ) be an NFA.
The equivalent DFA constructed by the subset
construction is D = (QD ;�; �D; fq0g; FD), where:


1. QD = 2QN ;. i.e., QD is the set of all subsets of
QN .


2. FN is the set of sets S in QD such that S \
F 6= ;.


�D(fq1; q2; : : : ; qkg; a) = �N (p1; a) [
�N (p2; a) [ � � � [ �N (pk; a).


� Key theorem (induction on jwj, proof in


book): �̂D(fq0g; w) = �̂N (q0; w).


� Consequence: L(D) = L(N ).


Example: Subset Construction From
Previous NFA


An important practical trick, used in lexical
analyzers and other text-processors is to ignore the
(often many) states that are not accessible from
the start state (i.e., no path leads there).


� For the NFA example above, of the 32 possible
subsets, only 15 are accessible. Computing
transitions \on demand" gives the following
�D :


1 2 3


! p pq pr ps


pq pqt pr ps


�pqt pqt pr ps


pr pqr prt ps


�prt pqr prt ps


ps pqs prs pst


�pst pqs prs pst


prs pqrs prst pst


�prst pqrs prst pst


pqs pqst prs pst


�pqst pqst prs pst


pqr pqrt prt ps


�pqrt pqrt prt ps


pqrs pqrst prst pst


�pqrst pqrst prst pst
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