

CS 154 { Lecture 4 Notes (4/10/00)

Extended RE's

UNIX pioneered the use of additional operators
and notation for RE's:

� E? = 0 or 1 occurrences of E = �+ E.

� E+ = 1 or more occurrences of E = EE�.

� Character classes [a � zGX] = the union of
all (ASCII) characters from a to z, plus the
characters G and X, for example.

Algebraic Laws for RE's

If two expressions E and F have no variables, then
E = F means that L(E) = L(F) (not that E and
F are identical expressions).

� Example: 1+ = 11�.

If E and F are RE's with variables, then E =
F (E is equivalent to F) means that whatever
languages we substitute for the variables (provided
we substitute the same language everywhere the
same variable appears), the resulting expressions
denote the same language.

� Example: R+ = RR�.

With two notable exceptions, we can think of
union (+) as if it were addition with ; in place of
the identity 0, and concatenation, with � in place
of the identity 1, as multiplication.

� + and concatenation are both associative.

� + is commutative.

� Laws of the identities hold for both.

� ; is the annihilator for concatenation.

� The exceptions:

1. Concatenation is not commutative: ab 6=
ba.

2. + is idempotent : E + E = E for any
expression E.

Checking a Law

Suppose we are told that the law (R + S)� =
(R�S�)� holds for RE's. How would we check that
this claim is true?

1

� Think of R and S as if they were single
symbols, rather than placeholders for
languages, i.e., R = f0g and S = f1g.

✦ Then the left side is clearly \any sequence
of 0's and 1's.

✦ The right side also denotes any string
of 0's and 1's, since 0 and 1 are each in
L(0�1�).

� That test is necessary (i.e., if the test fails,
then the law does not hold.

✦ We have particular languages that serve
as a counterexample.

� But is it su�cient (if the test succeeds, the
law holds)?

Proof of Su�ciency

The book has a fairly simple argument for why,
when the \concretized" expressions denote the
same language, then the languages we get by
substituting any languages for the variables are
also the same.

� But if you think that's obvious, the book also
has an example of \RE's with intersection"
where the same statement is false.

� Also | is it clear that we can tell whether
two RE's without variables denote the same
language?

✦ Algorithm to do so will be covered.

Closure Properties

� Not every language is a regular language.

� However, there are some rules that say \if
these languages are regular, so is this one
derived from them.

� There is also a powerful technique | the
pumping lemma | that helps us prove a
language not to be regular.

� Key tool: Since we know RE's, DFA's,
NFA's, �-NFA's all de�ne exactly the
regular languages, we can use whichever
representation suits us when proving
something about a regular language.

Pumping Lemma

If L is a regular language, then there exists a
constant n such that every string w in L, of length
n or more, can we written as w = xyz, where:

2

1. 0 < jyj.

2. jxyj � n.

3. For all i � 0, wyiz is also in L.

✦ Note yi = y repeated i times; y0 = �.

� The alternating quanti�ers in the logical
statement of the PL makes it very complex:
(8L)(9n)(8w)(9x; y; z)(8i).

Proof of Pumping Lemma

� Since we claim L is regular, there must be a
DFA A such that L = L(A).

� Let A have n states; choose this n for the
pumping lemma.

� Let w be a string of length � n in L, say w =
a1a2 � � �am, where m � n.

� Let qi be the state A is in after reading the
�rst i symbols of w.

✦ q0 = start state, q1 = �(q0; a1), q2 =

�̂(q0; a1a2), etc.

� Since there are only n di�erent states, two of
q0; q1; : : : ; qn must be the same; say qi = qj,
where 0 � i < j � n.

� Let x = a1 � � �ai; y = ai+1 � � �aj; z =
aj+1 � � �am.

� Then by repeating the loop from qi to qi with
label ai+1 � � �aj zero times once, or more, we
can show that xyiz is accepted by A.

PL Use

We use the PL to show a language L is not
regular.

� Start by assuming L is regular.

� Then there must be some n that serves as the
PL constant.

✦ We may no know what n is, but we can
work the rest of the \game" with n as a
parameter.

� We choose some w that is known to be in L.

✦ Typically, w depends on n.

� Applying the PL, we know w can be broken
into xyz, satisfying the PL properties.

✦ Again, we may not know how to break w,
so we use x; y; z as parameters.

3

� We derive a contradiction by picking i (which
might depend on n, x, y, and/or z) such that
xyiz is not in L.

Example

Consider the set of strings of 0's whose length is a
perfect square; formally L = f0i j i is a squareg.

� We claim L is not regular.

� Suppose L is regular. Then there is a constant
n satisfying the PL conditions.

� Consider w = 0n
2

, which is surely in L.

� Then w = xyz, where jxyj � n and y 6= �.

� By PL, xyyz is in L. But the length of xyyz
is greater than n2 and no greater than n2 + n.

� However, the next perfect square after n2 is
(n+ 1)2 = n2 + 2n+ 1.

� Thus, xyyz is not of square length and is not
in L.

� Since we have derived a contradiction, the
only unproved assumption | that L is
regular | must be at fault, and we have a
\proof by contradiction" that L is not regular.

Closure Properties

Certain operations on regular languages are
guaranteed to produce regular languages.

� Example: the union of regular languages is
regular; start with RE's, and apply + to get
an RE for the union.

Substitution

� Take a regular language L over some alphabet
�.

� For each a in �, let La be a regular language.

� Let s be the substitution de�ned by s(a) = La
for each a.

✦ Extend s to strings by s(a1a2 � � �an) =
s(a1)s(a2) � � �s(an); i.e., concatenate the
languages La1La2 � � �Lan .

✦ Extend s to languages by s(M) =[w in M

s(w).

� Then s(L) is regular.

4

Proof That Substitution of Regular
Languages Into a Regular Language is
Regular

� Let R be a regular expression for language L.

� Let Ra be a regular expression for language
s(a) = La, for all symbols a in �.

� Construct a RE E for s(L) by starting with R

and replacing each symbol a by the RE La.

� Proof that L(E) = s(L) is an induction on the
height of (the expression tree for) RE R.

Basis: R is a single symbol, a. Then E = Ra,
L = fag, and s(L) = s(fag) = L(Ra).

� Cases where R is � or ; easy.

Induction: There are three cases, depending on
whether R = R1 + R2, R = R1R2, or R = R�1.
We'll do only R = R1R2.

� L = L1L2, where L1 = L(R1) and L2 =
L(R2).

� Let E1 be R1, with each a replaced by Ra,
and E2 similarly.

� By the IH, L(E1) = s(L1) and L(E2) = s(L2).

� Thus, L(E) = s(L1)s(L2) = s(L).

Applications of the Substitution Theorem

� If L1 and L2 are regular, so is L1L2.

✦ Let s(a) = L1 and s(b) = L2. Substitute
into the regular language fabg.

� So is L1 [L2.

✦ Substitute into fa; bg.

� Ditto L�1.

✦ Substitute into L(a�).

� Closure under homomorphism = substitution
of one string for each symbol.

✦ Special case of a substitution.

Example: Homomorphism

Let L = L(0�1�), and let h be a homomorphism
de�ned by h(0) = aa and h(1) = �.

� Then h(L) = L
�
aa)�

�
= all strings of an even

number of a's.

5

Closure Under Inverse Homomorphism

� h�1(L) = fw j h(w) is in Lg.

� See argument in course reader. Briey:

✦ Given homomorphism h and regular
language L, start with a DFA A for L.

✦ Construct DFA B for h�1(L), by having
B go from state q to state p on input a if
�̂
�
q; h(a)

�
= p.

Closure Under Reversal

� The reverse of a string w = a1a2 � � �an is
an � � �a2a1.

✦ Denoted wR.

✦ Note �R = �.

� The reverse of a language L is the set
containing the reverse of each string in L.

� If L is regular, so is LR.

✦ Proof: use RE's, recursive reversal as in
course reader.

6

