CS 154 — Lecture 4 Notes (4/10/00)

Extended RE’s

UNIX pioneered the use of additional operators
and notation for RE’s:

e FE?=0o0r1 occurrences of £ = ¢+ E.
e FET =1 or more occurrences of £ = EE*.

e Character classes [a — zGX] = the union of
all (ASCII) characters from a to z, plus the
characters G and X, for example.

Algebraic Laws for RE’s

If two expressions E and F' have no variables, then
FE = F means that L(E) = L(F) (not that F and
F are identical expressions).

e Example: 1t =11*.

If £ and F are RE’s with variables, then £ =

F (F is equivalent {0 F') means that whatever
languages we substitute for the variables (provided
we substitute the same language everywhere the
same variable appears), the resulting expressions
denote the same language.

e Example: RT = RR*.

With two notable exceptions, we can think of
union (+) as if it were addition with @ in place of
the identity 0, and concatenation, with € in place
of the identity 1, as multiplication.

e + and concatenation are both associative.
e + is commutative.

e  Laws of the identities hold for both.

e () is the annihilator for concatenation.

e  The exceptions:

1. Concatenation is not commutative: ab #

ba.

2. 4+ is idempotent: E + F = F for any
expression F.

Checking a Law

Suppose we are told that the law (R + S)* =
(R*S*)* holds for RE’s. How would we check that

this claim 1s true?



e  Think of R and S as if they were single
symbols, rather than placeholders for
languages, i.e., R = {0} and S = {1}.

0 Then the left side is clearly “any sequence
of 0’s and 1’s.

0 The right side also denotes any string
of 0’s and 1’s, since 0 and 1 are each in
L(0"17).

e That test is necessary (i.e., if the test fails,
then the law does not hold.

O  We have particular languages that serve
as a counterexample.

e  But is it sufficient (if the test succeeds, the
law holds)?

Proof of Sufficiency

The book has a fairly simple argument for why,
when the “concretized” expressions denote the
same language, then the languages we get by
substituting any languages for the variables are

also the same.

But if you think that’s obvious, the book also

has an example of “RE’s with intersection”
where the same statement is false.

Also — 1s it clear that we can tell whether
two RE’s without variables denote the same
language?

O Algorithm to do so will be covered.

Closure Properties

Not every language is a regular language.

However, there are some rules that say “if
these languages are regular, so is this one
derived from them.

There 1s also a powerful technique — the
pumping lemma — that helps us prove a
language not to be regular.

Key tool: Since we know RE’s, DFA’s,
NFA’s, e-NFA’s all define exactly the
regular languages, we can use whichever
representation suits us when proving
something about a regular language.

Pumping Lemma

If L is a regular language, then there exists a

constant n such that every string w in L, of length

n or more, can we written as w = zyz, where:
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0 <yl

|lzy| < n.

For all i > 0, wy'z is also in L.

O Note 3 = y repeated ¢ times; y° = e.

The alternating quantifiers in the logical
statement of the PL makes it very complex:

(VL)(3Fn)(Yw) (3w, y, 2)(Vi).

Proof of Pumping Lemma

e  Since we claim L is regular, there must be a
DFA A such that L = L(A).

e Let A have n states; choose this n for the
pumping lemma.

e Let w be a string of length > n in L, say w =
a1as - - - Uy, where m > n.

e Let g; be the state A is in after reading the
first ¢ symbols of w.

O qo = start state, ¢1 = 6(qo,a1), g2 =
8(qo, a1az), ete.

e  Since there are only n different states, two of
90,41, - - -, ¢n must be the same; say ¢; = ¢;,
where 0 <i < j <n.

o Letx = a1 a5y = @iq1---a5; 2 =
aj-l—l BRI Foegy

e  Then by repeating the loop from ¢; to ¢; with
label a;11 - - -a; zero times once, or more, we
can show that xy’z is accepted by A.

PL Use

We use the PL to show a language L is not

regular.

e  Start by assuming L is regular.

e  Then there must be some n that serves as the
PL constant.

0 We may no know what n is, but we can
work the rest of the “game” with n as a
parameter.

e  We choose some w that 1s known to be in L.
00 Typically, w depends on n.

e  Applying the PL, we know w can be broken

into zyz, satisfying the PL properties.

0 Again, we may not know how to break w,
SO we use ¥, y, z as parameters.



e We derive a contradiction by picking ¢ (which
might depend on n, #, y, and/or z) such that
xy'z 1s notin L.

Example

Consider the set of strings of 0’s whose length is a
perfect square; formally L = {0" | i is a square}.

e  We claim L is not regular.

e  Suppose L is regular. Then there is a constant
n satisfying the PL conditions.

e  Consider w = 0”2, which is surely in L.
e Then w = zyz, where |zy| < n and y # e.

e By PL, zyyz isin L. But the length of zyyz
is greater than n? and no greater than n? 4 n.
e However, the next perfect square after n? is

(n+1)2=n?+2n+1.

e  Thus, zyyz 1s not of square length and is not
in L.

e  Since we have derived a contradiction, the
only unproved assumption — that L is
regular — must be at fault, and we have a
“proof by contradiction” that L is not regular.

Closure Properties

Certain operations on regular languages are
guaranteed to produce regular languages.

e FExample: the union of regular languages is
regular; start with RE’s; and apply + to get
an RE for the union.

Substitution

e  Take a regular language L over some alphabet
.

e For each a in X, let L, be a regular language.

e Let s be the substitution defined by s(a) = L,
for each a.

O Extend s to strings by s(ajaz---ap) =
s(ay)s(az) - - s(ap); i.e., concatenate the
languages Lo, Lg, - L, -

O Extend s to languages by s(M) =Uy in m
s(w).
e  Then s(L) is regular.
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Proof That Substitution of Regular
Languages Into a Regular Language is
Regular

o Let R be aregular expression for language L.

o Let R, be a regular expression for language
s(a) = Ly, for all symbols a in X.

e Construct a RE F for s(L) by starting with R
and replacing each symbol a by the RE L,.

e  Proof that L(E) = s(L) is an induction on the
height of (the expression tree for) RE R.

Basis: R is a single symbol, a. Then £ = R,,
L ={a}, and s(L) = s({a}) = L(R,).

e Cases where R is ¢ or ) easy.

Induction: There are three cases, depending on
whether R = Ry + Ry, R = RiRy, or R = RJ.
We’ll do only R = Ry Rs.

e L = LiLy, where 1 = L(R;) and Ly =
L(Ry).

e Let Fy be Ry, with each a replaced by R,
and F5 similarly.

e By the IH, L(E;) = s(L1) and L(F2) = s(L2).
e Thus, L(E) = s(L1)s(La) = s(L).

Applications of the Substitution Theorem

e If Ly and Ls are regular, so is Ly Ls.

O TLet s(a) = Ly and s(b) = Ls. Substitute
into the regular language {ab}.

e Sois LqyULs.

O  Substitute into {a, b}.
e Ditto L.

O  Substitute into L(a*).

e  (Closure under homomorphism = substitution
of one string for each symbol.

O Special case of a substitution.

Example: Homomorphism

Let I = L(0"1"), and let A be a homomorphism
defined by h(0) = aa and h(1) = ¢.

e Then h(L) = L(aa)*) = all strings of an even
number of a’s.



Closure Under Inverse Homomorphism

o A7 HL)={w|h(w)isin L}.
e  See argument in course reader. Briefly:

O Given homomorphism h and regular
language L, start with a DFA A for L.

0 Construct DFA B for h=1(L), by having
B go from state ¢ to state p on input a if

6(q, h(a)) = p.
Closure Under Reversal

e  The reverse of a string w = ayas---a, is
Ap - - - AoAq .
O Denoted wt.
O Note ff = ¢.

e  The reverse of a language L is the set
containing the reverse of each string in L.

e If L is regular, so is L%.

O Proof: use RE’s, recursive reversal as in
course reader.



