

CS 154 { Lecture 4 Notes (4/10/00)


Extended RE's


UNIX pioneered the use of additional operators
and notation for RE's:


� E? = 0 or 1 occurrences of E = �+ E.


� E+ = 1 or more occurrences of E = EE�.


� Character classes [a � zGX] = the union of
all (ASCII) characters from a to z, plus the
characters G and X, for example.


Algebraic Laws for RE's


If two expressions E and F have no variables, then
E = F means that L(E) = L(F ) (not that E and
F are identical expressions).


� Example: 1+ = 11�.


If E and F are RE's with variables, then E =
F (E is equivalent to F ) means that whatever
languages we substitute for the variables (provided
we substitute the same language everywhere the
same variable appears), the resulting expressions
denote the same language.


� Example: R+ = RR�.


With two notable exceptions, we can think of
union (+) as if it were addition with ; in place of
the identity 0, and concatenation, with � in place
of the identity 1, as multiplication.


� + and concatenation are both associative.


� + is commutative.


� Laws of the identities hold for both.


� ; is the annihilator for concatenation.


� The exceptions:


1. Concatenation is not commutative: ab 6=
ba.


2. + is idempotent : E + E = E for any
expression E.


Checking a Law


Suppose we are told that the law (R + S)� =
(R�S�)� holds for RE's. How would we check that
this claim is true?
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� Think of R and S as if they were single
symbols, rather than placeholders for
languages, i.e., R = f0g and S = f1g.


✦ Then the left side is clearly \any sequence
of 0's and 1's.


✦ The right side also denotes any string
of 0's and 1's, since 0 and 1 are each in
L(0�1�).


� That test is necessary (i.e., if the test fails,
then the law does not hold.


✦ We have particular languages that serve
as a counterexample.


� But is it su�cient (if the test succeeds, the
law holds)?


Proof of Su�ciency


The book has a fairly simple argument for why,
when the \concretized" expressions denote the
same language, then the languages we get by
substituting any languages for the variables are
also the same.


� But if you think that's obvious, the book also
has an example of \RE's with intersection"
where the same statement is false.


� Also | is it clear that we can tell whether
two RE's without variables denote the same
language?


✦ Algorithm to do so will be covered.


Closure Properties


� Not every language is a regular language.


� However, there are some rules that say \if
these languages are regular, so is this one
derived from them.


� There is also a powerful technique | the
pumping lemma | that helps us prove a
language not to be regular.


� Key tool: Since we know RE's, DFA's,
NFA's, �-NFA's all de�ne exactly the
regular languages, we can use whichever
representation suits us when proving
something about a regular language.


Pumping Lemma


If L is a regular language, then there exists a
constant n such that every string w in L, of length
n or more, can we written as w = xyz, where:
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1. 0 < jyj.


2. jxyj � n.


3. For all i � 0, wyiz is also in L.


✦ Note yi = y repeated i times; y0 = �.


� The alternating quanti�ers in the logical
statement of the PL makes it very complex:
(8L)(9n)(8w)(9x; y; z)(8i).


Proof of Pumping Lemma


� Since we claim L is regular, there must be a
DFA A such that L = L(A).


� Let A have n states; choose this n for the
pumping lemma.


� Let w be a string of length � n in L, say w =
a1a2 � � �am, where m � n.


� Let qi be the state A is in after reading the
�rst i symbols of w.


✦ q0 = start state, q1 = �(q0; a1), q2 =


�̂(q0; a1a2), etc.


� Since there are only n di�erent states, two of
q0; q1; : : : ; qn must be the same; say qi = qj,
where 0 � i < j � n.


� Let x = a1 � � �ai; y = ai+1 � � �aj; z =
aj+1 � � �am.


� Then by repeating the loop from qi to qi with
label ai+1 � � �aj zero times once, or more, we
can show that xyiz is accepted by A.


PL Use


We use the PL to show a language L is not
regular.


� Start by assuming L is regular.


� Then there must be some n that serves as the
PL constant.


✦ We may no know what n is, but we can
work the rest of the \game" with n as a
parameter.


� We choose some w that is known to be in L.


✦ Typically, w depends on n.


� Applying the PL, we know w can be broken
into xyz, satisfying the PL properties.


✦ Again, we may not know how to break w,
so we use x; y; z as parameters.
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� We derive a contradiction by picking i (which
might depend on n, x, y, and/or z) such that
xyiz is not in L.


Example


Consider the set of strings of 0's whose length is a
perfect square; formally L = f0i j i is a squareg.


� We claim L is not regular.


� Suppose L is regular. Then there is a constant
n satisfying the PL conditions.


� Consider w = 0n
2


, which is surely in L.


� Then w = xyz, where jxyj � n and y 6= �.


� By PL, xyyz is in L. But the length of xyyz
is greater than n2 and no greater than n2 + n.


� However, the next perfect square after n2 is
(n+ 1)2 = n2 + 2n+ 1.


� Thus, xyyz is not of square length and is not
in L.


� Since we have derived a contradiction, the
only unproved assumption | that L is
regular | must be at fault, and we have a
\proof by contradiction" that L is not regular.


Closure Properties


Certain operations on regular languages are
guaranteed to produce regular languages.


� Example: the union of regular languages is
regular; start with RE's, and apply + to get
an RE for the union.


Substitution


� Take a regular language L over some alphabet
�.


� For each a in �, let La be a regular language.


� Let s be the substitution de�ned by s(a) = La
for each a.


✦ Extend s to strings by s(a1a2 � � �an) =
s(a1)s(a2) � � �s(an); i.e., concatenate the
languages La1La2 � � �Lan .


✦ Extend s to languages by s(M ) =[w in M


s(w).


� Then s(L) is regular.
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Proof That Substitution of Regular
Languages Into a Regular Language is
Regular


� Let R be a regular expression for language L.


� Let Ra be a regular expression for language
s(a) = La, for all symbols a in �.


� Construct a RE E for s(L) by starting with R


and replacing each symbol a by the RE La.


� Proof that L(E) = s(L) is an induction on the
height of (the expression tree for) RE R.


Basis: R is a single symbol, a. Then E = Ra,
L = fag, and s(L) = s(fag) = L(Ra).


� Cases where R is � or ; easy.


Induction: There are three cases, depending on
whether R = R1 + R2, R = R1R2, or R = R�1.
We'll do only R = R1R2.


� L = L1L2, where L1 = L(R1) and L2 =
L(R2).


� Let E1 be R1, with each a replaced by Ra,
and E2 similarly.


� By the IH, L(E1) = s(L1) and L(E2) = s(L2).


� Thus, L(E) = s(L1)s(L2) = s(L).


Applications of the Substitution Theorem


� If L1 and L2 are regular, so is L1L2.


✦ Let s(a) = L1 and s(b) = L2. Substitute
into the regular language fabg.


� So is L1 [ L2.


✦ Substitute into fa; bg.


� Ditto L�1.


✦ Substitute into L(a�).


� Closure under homomorphism = substitution
of one string for each symbol.


✦ Special case of a substitution.


Example: Homomorphism


Let L = L(0�1�), and let h be a homomorphism
de�ned by h(0) = aa and h(1) = �.


� Then h(L) = L
�
aa)�


�
= all strings of an even


number of a's.
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Closure Under Inverse Homomorphism


� h�1(L) = fw j h(w) is in Lg.


� See argument in course reader. Briey:


✦ Given homomorphism h and regular
language L, start with a DFA A for L.


✦ Construct DFA B for h�1(L), by having
B go from state q to state p on input a if
�̂
�
q; h(a)


�
= p.


Closure Under Reversal


� The reverse of a string w = a1a2 � � �an is
an � � �a2a1.


✦ Denoted wR.


✦ Note �R = �.


� The reverse of a language L is the set
containing the reverse of each string in L.


� If L is regular, so is LR.


✦ Proof: use RE's, recursive reversal as in
course reader.
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