CS 154 — Lecture 6 Notes (4/17/00)

Decision Properties of Regular Languages

Given a (representation, e.g., RE, FA| of a) regular
language L, what can we tell about L7

e  Since there are algorithms to convert between
any two representations, we can choose the rep
that makes the test easiest.

Membership

Is string w in regular language L7

e  Choose DFA representation for L.
e  Simulate the DFA on input w.

Emptiness
Is L = (7
e  Use DFA representation.

e  Use a graph-reachability algorithm to test if at
least one accepting state is reachable from the
start state.

Finiteness

Is L a finite language?

e Note every finite language is regular (why?),
but a regular language is not necessarily finite.

DFA method:

e Given a DFA for L, eliminate all states that
are not reachable from the start state and all
states that do not reach an accepting state.

e  Test if there are any cycles in the remaining
DFA; if so, L is infinite, if not, then L is finite.

RE method: Almost, we can look for a x in the
RE and say its language is infinite if there is one,
finite if not. However, there are exceptions, e.g.
0¢*1 or 0*(). Thus:

1.  TFind subexpressions equivalent to §§ by:

O (Basis) () is; € and a are not.

O (Induction) B+ F is iff both F and F' are;
EF is if either E or F' are; £ never is.

2. Eliminate subexpressions equivalent to §) by:

O Replace £ 4+ F or F + E by F whenever
E is and F isn’t.

O Replace E* by € whenever F is equivalent
to 0.



3.  Now, find subexpressions that are equivalent
to € by:

O (Basis) € is; a isn’t.

O (Induction) B+ F is iff both F and F' are;
ditto FF; E* is iff F is.

4. Now, we can tell if L(R) is infinite by looking
for a subexpression E* such that F is not
equivalent to e.

Example
Consider (0 + 10)* + 10*.

e Step 1: § (twice) and 10 are subexpressions
equivalent to (.

e Step 2: 0" + 1¢ remains.
e  Step 3: only subexpression € is equivalent to e.

e  Since 0 is starred, language is infinite.

Minimization of States

e Real goal is testing equivalence of (reps of)
two regular languages.

e Interesting fact: DFA’s have unique (up to
state names) minimum-state equivalents.

0 But proof in course reader doesn’t quite
get to that point.

Distinguishable States

Key idea: find states p and ¢ that are
distinguishable because there is some input w that
takes exactly one of p and ¢ to an accepting state.

e Basis: any nonaccepting state is
distinguishable from any accepting state

(w = e).

e Induction: p and ¢ are distinguishable if there
is some input symbol a such that é(p, a) is
distinguishable from é(q, a).

O  All other pairs of states are
indistinguishable, and can be merged into
one state.

Example (Very Simple)

Consider:



p 1s distinguishable from ¢ and » by basis.

Can we distinguish ¢ from r?

No string beginning with 0 works, because
both states go to p, and therefore any string of
the form Oz takes ¢ and r to the same state.

No string beginning with 1 works.

O Technically, é(q,1) = r and é(r, 1) = ¢ are
not distinguishable. Thus, induction does
not tell us ¢ and r are distinguishable.

0 What happens is that, starting in either ¢
or r, as long as we have inputs 1, we are
in one of the accepting states, and when a
0 1s read, we go to the same state forever
after.

Constructing the Minimum-State DFA

For each group of indistinguishable states,
pick a “representative.”

0 Note a group can be large, e.g.,
41,492, - . ., qx, if all pairs are
indistinguishable.

O Indistinguishability is transitive (why?)
so indistinguishability partitions states.

If p is a representative, and é(p,a) = ¢, in
minimum-state DFA the transition from p
on a is to the representative of ¢’s group (to
q 1tself if ¢ is either alone in a group or a
representative).

State state is representative of the original
start state.

Accepting states are representatives of groups
of accepting states.

0 Notice we could not have a “mixed”
(accepting + nonaccepting) group (why?).



e Delete any state that is not reachable from the
start state.
Example

For the DFA above, p is in a group by itself; {q,7}
is the other group.

Why Above Minimization Can’t be Beaten

Suppose we have a DFA A, and we minimize it to
construct a DFA M. Yet there is another DFA N
that accepts the same language as A and M, yet
has fewer states than M. Proof contradiction that
this can’t happen:

e  Run the state-distinguishability process on the
states of M and N together.

e  Start states of M and N are indistinguishable
because L(M) = L(N).

e If {p, ¢} are indistinguishable, then their
successors on any one input symbol are also
indistinguishable.

e  Thus, since neither M not N could have
an inaccessible state, every state of M is
indistinguishable from at least one state of

N.

e  Since N has fewer states than M, there are
two states of M that are indistinguishable
from the same state of N, and therefore
indistinguishable from each other.

e But M was designed so that all its states are
distinguishable from each other.

e  We have a contradiction, so the assumption
that N exists is wrong, and M in fact has as
few states as any equivalent DFA for A.

e In fact (stronger), there must be a 1-1
correspondence between the states of any
other minimum-state N and the DFA M,
showing that the minimum-state DFA for A
is unique up to renaming of the states.

Context-Free Grammars

Notation for recursive description of languages.
Example:



Roll =< ROLL > Class Studs < /ROLL >
Class =< CLASS > Text < JCLASS >
Text — Char Text

Text — Char

Char — a--- (other chars)

Studs — Stud Studs

Studs — €

Stud —< STUD > Text < /STUD >

e  Generates “documents” such as:
<ROLL><CLASS>cs154</CLASS>
<STUD>Sally</STUD>
<STUD>Fred</STUD>
</ROLL>

Variables (e.g., Studs) represent sets of strings
(i.e., languages).

0 In sensible grammars, these strings share
some common characteristic or role.

o Terminals (e.g., a or < ROLL >) = symbols
of which strings are composed.

O “Tags” like < ROLL > could be
considered either a single terminal or the
concatenation of 6 terminals.

e  Productions = rules Head — Body.

0 Head is a variable.

0 Body is a string of zero or more variables
and/or terminals.

e  Start Symbol = variable that represents “the
language.”

e Notation: G = (V,X, P,S) = (variables,
terminals, productions, start symbol).
Example

Generates 0-1 strings such that each block of 0’s is
followed by at least as many 1’s.

S— AS | e
A—0A1| Al |01

e  Vertical bar separates different bodies for one

head.

Derivations

e «aAf = avyf whenever there is a production
A—~.

0 Subscript with name of grammar, e.g.,
C:¥> , if necessary.



0 Example: 01145 = 0110A41S.

%
o = [ means string o can become [ in zero
or more derivation steps.

O Examples 01148 :> 011AS (zero steps);

01148 :> 0110A1S (one step); 011AS :>
0110011 (three steps).

Language of a CFG

L(G) = set of terminal strings w such that

%
S C:¥> w, where S 18 the start symbol.

Aside: Notation

a,b, ... terminals; ..., y, z strings of terminals.

Greek letters are strings of variables and/or
terminals, often called sentential forms.

A, B, ... are variables.
., Y, Z are variables or terminals.

S 1s typically the start symbol.

Leftmost /Rightmost Derivations

e Note choice of variable to replace at each step.
0 Derivations may appear different only
because we make the same replacements
in a different order.
0 To avoid such differences, we may restrict
the choice.
e A leftmost derivation always replaces the
leftmost variable in a sentential form.
O Yields left-sentential forms.
e Rightmost defined analogously.
. :> = | etc., used to indicate derivations are
leftnngst or rlghtmost
Example
o S :> AS :> AlS :> 0115 :> 011AS l:>
0110AlS:> 011001lS:> 0110011
e S = AS = AAS = AA = A0Al =

Tm

Tm rm rm Tm
A0011 = A10011 = 0110011
rm rm



Derivation Trees

Nodes = variables, terminals, or e.

0 Variables at interior nodes; terminals and
€ at leaves.

0O A leaf can be € only if it is the only child
of 1ts parent.

A node and its children from the left must
form the head and body of a production.

Example

PN
P
NN
0 100/\11 |

Equivalence of Parse Trees, Leftmost, and
Rightmost Derivations

The following about a grammar G = (V, X, P, S)
and a terminal string w are all equivalent:

1.

2.

S ; w (i.e., wis in L(G)).
S% w
S; w

There is a parse tree for G with root S and
yield (labels of leaves, from the left) w.

Obviously (2) and (3) each imply (1).

Parse Tree Implies LM /RM Derivations

Generalize all statements to talk about an
arbitrary variable A in place of S.

O Except now (1) no longer means w is in

L(G).
Induction on the height of the parse tree.



Basis: Height 1: Tree is root A and leaves w =

ai,as,...,ag.

e A — w must be a production, so A l:> w and
m

A= w.

Tm

Induction: Height > 1. Tree is root A with
children Xy, Xo,..., X}.

e Those X;’s that are variables are roots of
shorter trees.

0 Thus, the IH says that they have LM
derivations of their yields.

e  Construct a LM derivation of w from A by
starting with A l:> X1X5 - X}, then

m
using LM derivations from each X; that is a
variable, in order from the left.

e RM derivation analogous.

Derivations to Parse Trees

Induction on length of the derivation.

Basis: One step. There is an obvious parse tree.
Induction: More than one step.

e Let the first step be A = X1 X5 -+ X}.

e  Subsequent changes can be reordered so that
all changes to X7 and the sentential forms
that replace 1t are done first, then those
for X5, and so on (i.e., we can rewrite the
deriviation as a LM derivation).

e  The derivations from those X;’s that are
variables are all shorter than the given
deriviation, so the IH applies.

e By the IH, there are parse trees for each of
these derivations.

e  Make the roots of these trees be children of a

new root labeled A.

Example

Consider derivation S = AS = AAS = AA =
AlA = A10A1 = 011041 = 0110011

e  Subderivation from A4 1s: A = Al = 011

e Subderivation from S'i1s: S = AS = A =
0A1 = 0011

e Fach has a parse tree; put them together with
new root S.



