

CS 154 { Lecture 6 Notes (4/17/00)


Decision Properties of Regular Languages


Given a (representation, e.g., RE, FA, of a) regular
language L, what can we tell about L?


� Since there are algorithms to convert between
any two representations, we can choose the rep
that makes the test easiest.


Membership


Is string w in regular language L?


� Choose DFA representation for L.


� Simulate the DFA on input w.


Emptiness


Is L = ;?


� Use DFA representation.


� Use a graph-reachability algorithm to test if at
least one accepting state is reachable from the
start state.


Finiteness


Is L a �nite language?


� Note every �nite language is regular (why?),
but a regular language is not necessarily �nite.


DFA method:


� Given a DFA for L, eliminate all states that
are not reachable from the start state and all
states that do not reach an accepting state.


� Test if there are any cycles in the remaining
DFA; if so, L is in�nite, if not, then L is �nite.


RE method: Almost, we can look for a � in the
RE and say its language is in�nite if there is one,
�nite if not. However, there are exceptions, e.g.
0��1 or 0�;. Thus:


1. Find subexpressions equivalent to ; by:


✦ (Basis) ; is; � and a are not.


✦ (Induction) E+F is i� both E and F are;
EF is if either E or F are; E� never is.


2. Eliminate subexpressions equivalent to ; by:


✦ Replace E + F or F + E by F whenever
E is and F isn't.


✦ Replace E� by � whenever E is equivalent
to ;.


1







3. Now, �nd subexpressions that are equivalent
to � by:


✦ (Basis) � is; a isn't.


✦ (Induction) E+F is i� both E and F are;
ditto EF ; E� is i� E is.


4. Now, we can tell if L(R) is in�nite by looking
for a subexpression E� such that E is not
equivalent to �.


Example


Consider (0 + 1;)� + 1;�.


� Step 1: ; (twice) and 1; are subexpressions
equivalent to ;.


� Step 2: 0� + 1� remains.


� Step 3: only subexpression � is equivalent to �.


� Since 0 is starred, language is in�nite.


Minimization of States


� Real goal is testing equivalence of (reps of)
two regular languages.


� Interesting fact: DFA's have unique (up to
state names) minimum-state equivalents.


✦ But proof in course reader doesn't quite
get to that point.


Distinguishable States


Key idea: �nd states p and q that are
distinguishable because there is some input w that
takes exactly one of p and q to an accepting state.


� Basis: any nonaccepting state is
distinguishable from any accepting state
(w = �).


� Induction: p and q are distinguishable if there
is some input symbol a such that �(p; a) is
distinguishable from �(q; a).


✦ All other pairs of states are
indistinguishable, and can be merged into
one state.


Example (Very Simple)


Consider:


2







0


0


1


0


1 1


Start p q


r


� p is distinguishable from q and r by basis.


Can we distinguish q from r?


� No string beginning with 0 works, because
both states go to p, and therefore any string of
the form 0x takes q and r to the same state.


� No string beginning with 1 works.


✦ Technically, �(q; 1) = r and �(r; 1) = q are
not distinguishable. Thus, induction does
not tell us q and r are distinguishable.


✦ What happens is that, starting in either q
or r, as long as we have inputs 1, we are
in one of the accepting states, and when a
0 is read, we go to the same state forever
after.


Constructing the Minimum-State DFA


� For each group of indistinguishable states,
pick a \representative."


✦ Note a group can be large, e.g.,
q1; q2; : : : ; qk, if all pairs are
indistinguishable.


✦ Indistinguishability is transitive (why?)
so indistinguishability partitions states.


� If p is a representative, and �(p; a) = q, in
minimum-state DFA the transition from p
on a is to the representative of q's group (to
q itself if q is either alone in a group or a
representative).


� State state is representative of the original
start state.


� Accepting states are representatives of groups
of accepting states.


✦ Notice we could not have a \mixed"
(accepting + nonaccepting) group (why?).


3







� Delete any state that is not reachable from the
start state.


Example


For the DFA above, p is in a group by itself; fq; rg
is the other group.


0


Start p


0,1
qr 1


Why Above Minimization Can't be Beaten


Suppose we have a DFA A, and we minimize it to
construct a DFA M . Yet there is another DFA N
that accepts the same language as A and M , yet
has fewer states than M . Proof contradiction that
this can't happen:


� Run the state-distinguishability process on the
states of M and N together.


� Start states of M and N are indistinguishable
because L(M ) = L(N ).


� If fp; qg are indistinguishable, then their
successors on any one input symbol are also
indistinguishable.


� Thus, since neither M not N could have
an inaccessible state, every state of M is
indistinguishable from at least one state of
N .


� Since N has fewer states than M , there are
two states of M that are indistinguishable
from the same state of N , and therefore
indistinguishable from each other.


� But M was designed so that all its states are
distinguishable from each other.


� We have a contradiction, so the assumption
that N exists is wrong, and M in fact has as
few states as any equivalent DFA for A.


� In fact (stronger), there must be a 1-1
correspondence between the states of any
other minimum-state N and the DFA M ,
showing that the minimum-state DFA for A
is unique up to renaming of the states.


Context-Free Grammars


Notation for recursive description of languages.
Example:


4







Roll!< ROLL > Class Studs < =ROLL >
Class!< CLASS > Text < =CLASS >
Text! Char Text
Text! Char
Char! a � � � (other chars)
Studs! Stud Studs
Studs! �
Stud!< STUD > Text < =STUD >


� Generates \documents" such as:


<ROLL><CLASS>cs154</CLASS>


<STUD>Sally</STUD>


<STUD>Fred</STUD>


</ROLL>


� Variables (e.g., Studs) represent sets of strings
(i.e., languages).


✦ In sensible grammars, these strings share
some common characteristic or role.


� Terminals (e.g., a or < ROLL >) = symbols
of which strings are composed.


✦ \Tags" like < ROLL > could be
considered either a single terminal or the
concatenation of 6 terminals.


� Productions = rules Head! Body.


✦ Head is a variable.


✦ Body is a string of zero or more variables
and/or terminals.


� Start Symbol = variable that represents \the
language."


� Notation: G = (V;�; P; S) = (variables,
terminals, productions, start symbol).


Example


Generates 0-1 strings such that each block of 0's is
followed by at least as many 1's.


S ! AS j �
A! 0A1 j A1 j 01


� Vertical bar separates di�erent bodies for one
head.


Derivations


� �A� ) �� whenever there is a production
A! .


✦ Subscript with name of grammar, e.g.,
)
G


, if necessary.


5







✦ Example: 011AS ) 0110A1S.


� � )
*


� means string � can become � in zero
or more derivation steps.


✦ Examples: 011AS )
*


011AS (zero steps);


011AS )
*


0110A1S (one step); 011AS )
*


0110011 (three steps).


Language of a CFG


L(G) = set of terminal strings w such that


S )
*


G


w, where S is the start symbol.


Aside: Notation


� a; b; : : : terminals; : : : ; y; z strings of terminals.


� Greek letters are strings of variables and/or
terminals, often called sentential forms.


� A;B; : : : are variables.


� : : : ; Y; Z are variables or terminals.


� S is typically the start symbol.


Leftmost/Rightmost Derivations


� Note choice of variable to replace at each step.


✦ Derivations may appear di�erent only
because we make the same replacements
in a di�erent order.


✦ To avoid such di�erences, we may restrict
the choice.


� A leftmost derivation always replaces the
leftmost variable in a sentential form.


✦ Yields left-sentential forms.


� Rightmost de�ned analogously.


� )
lm


, )
rm


, etc., used to indicate derivations are


leftmost or rightmost.


Example


� S )
lm


AS )
lm


A1S )
lm


011S )
lm


011AS )
lm


0110A1S )
lm


0110011S )
lm


0110011


� S )
rm


AS )
rm


AAS )
rm


AA )
rm


A0A1 )
rm


A0011)
rm


A10011)
rm


0110011


6







Derivation Trees


� Nodes = variables, terminals, or �.


✦ Variables at interior nodes; terminals and
� at leaves.


✦ A leaf can be � only if it is the only child
of its parent.


� A node and its children from the left must
form the head and body of a production.


Example


S


A S


A S


�


A 1


0 1 0 A 1


0 1


Equivalence of Parse Trees, Leftmost, and
Rightmost Derivations


The following about a grammar G = (V;�; P; S)
and a terminal string w are all equivalent:


1. S )
*


w (i.e., w is in L(G)).


2. S )
*


lm


w


3. S )
*


rm


w


4. There is a parse tree for G with root S and
yield (labels of leaves, from the left) w.


� Obviously (2) and (3) each imply (1).


Parse Tree Implies LM/RM Derivations


� Generalize all statements to talk about an
arbitrary variable A in place of S.


✦ Except now (1) no longer means w is in
L(G).


� Induction on the height of the parse tree.


7







Basis: Height 1: Tree is root A and leaves w =
a1; a2; : : : ; ak.


� A ! w must be a production, so A )
lm


w and


A)
rm


w.


Induction: Height > 1. Tree is root A with
children X1; X2; : : : ; Xk.


� Those Xi's that are variables are roots of
shorter trees.


✦ Thus, the IH says that they have LM
derivations of their yields.


� Construct a LM derivation of w from A by
starting with A )


lm


X1X2 � � �Xk, then


using LM derivations from each Xi that is a
variable, in order from the left.


� RM derivation analogous.


Derivations to Parse Trees


Induction on length of the derivation.


Basis: One step. There is an obvious parse tree.


Induction: More than one step.


� Let the �rst step be A) X1X2 � � �Xk.


� Subsequent changes can be reordered so that
all changes to X1 and the sentential forms
that replace it are done �rst, then those
for X2, and so on (i.e., we can rewrite the
deriviation as a LM derivation).


� The derivations from those Xi's that are
variables are all shorter than the given
deriviation, so the IH applies.


� By the IH, there are parse trees for each of
these derivations.


� Make the roots of these trees be children of a
new root labeled A.


Example


Consider derivation S ) AS ) AAS ) AA )
A1A) A10A1) 0110A1) 0110011


� Subderivation from A is: A) A1 ) 011


� Subderivation from S is: S ) AS ) A )
0A1) 0011


� Each has a parse tree; put them together with
new root S.


8






