
CS 154 { Lecture 6 Notes (4/17/00)

Decision Properties of Regular Languages

Given a (representation, e.g., RE, FA, of a) regular
language L, what can we tell about L?

� Since there are algorithms to convert between
any two representations, we can choose the rep
that makes the test easiest.

Membership

Is string w in regular language L?

� Choose DFA representation for L.

� Simulate the DFA on input w.

Emptiness

Is L = ;?

� Use DFA representation.

� Use a graph-reachability algorithm to test if at
least one accepting state is reachable from the
start state.

Finiteness

Is L a �nite language?

� Note every �nite language is regular (why?),
but a regular language is not necessarily �nite.

DFA method:

� Given a DFA for L, eliminate all states that
are not reachable from the start state and all
states that do not reach an accepting state.

� Test if there are any cycles in the remaining
DFA; if so, L is in�nite, if not, then L is �nite.

RE method: Almost, we can look for a � in the
RE and say its language is in�nite if there is one,
�nite if not. However, there are exceptions, e.g.
0��1 or 0�;. Thus:

1. Find subexpressions equivalent to ; by:

✦ (Basis) ; is; � and a are not.

✦ (Induction) E+F is i� both E and F are;
EF is if either E or F are; E� never is.

2. Eliminate subexpressions equivalent to ; by:

✦ Replace E + F or F + E by F whenever
E is and F isn't.

✦ Replace E� by � whenever E is equivalent
to ;.

1



3. Now, �nd subexpressions that are equivalent
to � by:

✦ (Basis) � is; a isn't.

✦ (Induction) E+F is i� both E and F are;
ditto EF ; E� is i� E is.

4. Now, we can tell if L(R) is in�nite by looking
for a subexpression E� such that E is not
equivalent to �.

Example

Consider (0 + 1;)� + 1;�.

� Step 1: ; (twice) and 1; are subexpressions
equivalent to ;.

� Step 2: 0� + 1� remains.

� Step 3: only subexpression � is equivalent to �.

� Since 0 is starred, language is in�nite.

Minimization of States

� Real goal is testing equivalence of (reps of)
two regular languages.

� Interesting fact: DFA's have unique (up to
state names) minimum-state equivalents.

✦ But proof in course reader doesn't quite
get to that point.

Distinguishable States

Key idea: �nd states p and q that are
distinguishable because there is some input w that
takes exactly one of p and q to an accepting state.

� Basis: any nonaccepting state is
distinguishable from any accepting state
(w = �).

� Induction: p and q are distinguishable if there
is some input symbol a such that �(p; a) is
distinguishable from �(q; a).

✦ All other pairs of states are
indistinguishable, and can be merged into
one state.

Example (Very Simple)

Consider:

2



0

0

1

0

1 1

Start p q

r

� p is distinguishable from q and r by basis.

Can we distinguish q from r?

� No string beginning with 0 works, because
both states go to p, and therefore any string of
the form 0x takes q and r to the same state.

� No string beginning with 1 works.

✦ Technically, �(q; 1) = r and �(r; 1) = q are
not distinguishable. Thus, induction does
not tell us q and r are distinguishable.

✦ What happens is that, starting in either q
or r, as long as we have inputs 1, we are
in one of the accepting states, and when a
0 is read, we go to the same state forever
after.

Constructing the Minimum-State DFA

� For each group of indistinguishable states,
pick a \representative."

✦ Note a group can be large, e.g.,
q1; q2; : : : ; qk, if all pairs are
indistinguishable.

✦ Indistinguishability is transitive (why?)
so indistinguishability partitions states.

� If p is a representative, and �(p; a) = q, in
minimum-state DFA the transition from p
on a is to the representative of q's group (to
q itself if q is either alone in a group or a
representative).

� State state is representative of the original
start state.

� Accepting states are representatives of groups
of accepting states.

✦ Notice we could not have a \mixed"
(accepting + nonaccepting) group (why?).

3



� Delete any state that is not reachable from the
start state.

Example

For the DFA above, p is in a group by itself; fq; rg
is the other group.

0

Start p

0,1
qr 1

Why Above Minimization Can't be Beaten

Suppose we have a DFA A, and we minimize it to
construct a DFA M . Yet there is another DFA N
that accepts the same language as A and M , yet
has fewer states than M . Proof contradiction that
this can't happen:

� Run the state-distinguishability process on the
states of M and N together.

� Start states of M and N are indistinguishable
because L(M ) = L(N ).

� If fp; qg are indistinguishable, then their
successors on any one input symbol are also
indistinguishable.

� Thus, since neither M not N could have
an inaccessible state, every state of M is
indistinguishable from at least one state of
N .

� Since N has fewer states than M , there are
two states of M that are indistinguishable
from the same state of N , and therefore
indistinguishable from each other.

� But M was designed so that all its states are
distinguishable from each other.

� We have a contradiction, so the assumption
that N exists is wrong, and M in fact has as
few states as any equivalent DFA for A.

� In fact (stronger), there must be a 1-1
correspondence between the states of any
other minimum-state N and the DFA M ,
showing that the minimum-state DFA for A
is unique up to renaming of the states.

Context-Free Grammars

Notation for recursive description of languages.
Example:

4



Roll!< ROLL > Class Studs < =ROLL >
Class!< CLASS > Text < =CLASS >
Text! Char Text
Text! Char
Char! a � � � (other chars)
Studs! Stud Studs
Studs! �
Stud!< STUD > Text < =STUD >

� Generates \documents" such as:

<ROLL><CLASS>cs154</CLASS>

<STUD>Sally</STUD>

<STUD>Fred</STUD>

</ROLL>

� Variables (e.g., Studs) represent sets of strings
(i.e., languages).

✦ In sensible grammars, these strings share
some common characteristic or role.

� Terminals (e.g., a or < ROLL >) = symbols
of which strings are composed.

✦ \Tags" like < ROLL > could be
considered either a single terminal or the
concatenation of 6 terminals.

� Productions = rules Head! Body.

✦ Head is a variable.

✦ Body is a string of zero or more variables
and/or terminals.

� Start Symbol = variable that represents \the
language."

� Notation: G = (V;�; P; S) = (variables,
terminals, productions, start symbol).

Example

Generates 0-1 strings such that each block of 0's is
followed by at least as many 1's.

S ! AS j �
A! 0A1 j A1 j 01

� Vertical bar separates di�erent bodies for one
head.

Derivations

� �A� ) �� whenever there is a production
A! .

✦ Subscript with name of grammar, e.g.,
)
G

, if necessary.

5



✦ Example: 011AS ) 0110A1S.

� � )
*

� means string � can become � in zero
or more derivation steps.

✦ Examples: 011AS )
*

011AS (zero steps);

011AS )
*

0110A1S (one step); 011AS )
*

0110011 (three steps).

Language of a CFG

L(G) = set of terminal strings w such that

S )
*

G

w, where S is the start symbol.

Aside: Notation

� a; b; : : : terminals; : : : ; y; z strings of terminals.

� Greek letters are strings of variables and/or
terminals, often called sentential forms.

� A;B; : : : are variables.

� : : : ; Y; Z are variables or terminals.

� S is typically the start symbol.

Leftmost/Rightmost Derivations

� Note choice of variable to replace at each step.

✦ Derivations may appear di�erent only
because we make the same replacements
in a di�erent order.

✦ To avoid such di�erences, we may restrict
the choice.

� A leftmost derivation always replaces the
leftmost variable in a sentential form.

✦ Yields left-sentential forms.

� Rightmost de�ned analogously.

� )
lm

, )
rm

, etc., used to indicate derivations are

leftmost or rightmost.

Example

� S )
lm

AS )
lm

A1S )
lm

011S )
lm

011AS )
lm

0110A1S )
lm

0110011S )
lm

0110011

� S )
rm

AS )
rm

AAS )
rm

AA )
rm

A0A1 )
rm

A0011)
rm

A10011)
rm

0110011

6



Derivation Trees

� Nodes = variables, terminals, or �.

✦ Variables at interior nodes; terminals and
� at leaves.

✦ A leaf can be � only if it is the only child
of its parent.

� A node and its children from the left must
form the head and body of a production.

Example

S

A S

A S

�

A 1

0 1 0 A 1

0 1

Equivalence of Parse Trees, Leftmost, and
Rightmost Derivations

The following about a grammar G = (V;�; P; S)
and a terminal string w are all equivalent:

1. S )
*

w (i.e., w is in L(G)).

2. S )
*

lm

w

3. S )
*

rm

w

4. There is a parse tree for G with root S and
yield (labels of leaves, from the left) w.

� Obviously (2) and (3) each imply (1).

Parse Tree Implies LM/RM Derivations

� Generalize all statements to talk about an
arbitrary variable A in place of S.

✦ Except now (1) no longer means w is in
L(G).

� Induction on the height of the parse tree.

7



Basis: Height 1: Tree is root A and leaves w =
a1; a2; : : : ; ak.

� A ! w must be a production, so A )
lm

w and

A)
rm

w.

Induction: Height > 1. Tree is root A with
children X1; X2; : : : ; Xk.

� Those Xi's that are variables are roots of
shorter trees.

✦ Thus, the IH says that they have LM
derivations of their yields.

� Construct a LM derivation of w from A by
starting with A )

lm

X1X2 � � �Xk, then

using LM derivations from each Xi that is a
variable, in order from the left.

� RM derivation analogous.

Derivations to Parse Trees

Induction on length of the derivation.

Basis: One step. There is an obvious parse tree.

Induction: More than one step.

� Let the �rst step be A) X1X2 � � �Xk.

� Subsequent changes can be reordered so that
all changes to X1 and the sentential forms
that replace it are done �rst, then those
for X2, and so on (i.e., we can rewrite the
deriviation as a LM derivation).

� The derivations from those Xi's that are
variables are all shorter than the given
deriviation, so the IH applies.

� By the IH, there are parse trees for each of
these derivations.

� Make the roots of these trees be children of a
new root labeled A.

Example

Consider derivation S ) AS ) AAS ) AA )
A1A) A10A1) 0110A1) 0110011

� Subderivation from A is: A) A1 ) 011

� Subderivation from S is: S ) AS ) A )
0A1) 0011

� Each has a parse tree; put them together with
new root S.

8


