
CS 154 { Notes for Lectures 7 and 8
(4/17/00{4/24/00)

Ambiguous Grammars

A CFG is ambiguous if one or more terminal
strings have multiple leftmost derivations from the
start symbol.

� Equivalently: multiple rightmost derivations,
or multiple parse trees.

Example

Consider S ! AS j �; A ! A1 j 0A1 j 01.
The string 00111 has the following two leftmost
deriviations from S:

1. S)
lm

AS)
lm

0A1S)
lm

0A11S)
lm

00111S)
lm

00111

2. S)
lm

AS)
lm

A1S)
lm

0A11S)
lm

00111S)
lm

00111

� Intuitively, we can use A ! A1 �rst or second
to generate the extra 1.

Inherently Ambiguous Languages

A CFL L is inherently ambiguous if every CFG for
L is ambiguous.

� Such things exist; see course reader.

Example

The language of our example grammar is not
inherently ambiguous, even though the grammar
is ambiguous.

� Change the grammar to force the extra 1's to
be generated last.

S ! AS j �
A! 0A1 j B
B ! B1 j 01

Why Care?

� Ambiguity of the grammar implies that
at least some strings in its language have
di�erent structures (parse trees).

✦ Thus, such a grammar is unlikely to
be useful for a programming language,
because two structures for the same string
(program) implies two di�erent meanings
(executable equivalent programs) for this
program.

1

✦ Common example: the easiest grammars
for arithmetic expressions are ambiguous
and need to be replaced by more complex,
unambiguous grammars (see course
reader).

� An inherently ambiguous language would
be absolutely unsuitable as a programming
language, because we would not have any
way of �xing a unique structure for all its
programs.

Pushdown Automata

� Add a stack to a FA.

� Typically nondeterministic.

� An automaton equivalent to CFG's.

Example

Notation for \transition diagrams": a; Z=X1X +
2 � � �Xk = \on input a, with Z on top of the stack,
consume the a, make this state transition, and
replace the Z on top of the stack by X1X2 � � �Xk

(with X1 at the top).

p q r

Start 0; Z0=XZ0

0; X=XX

1; X=�

1; X=�

1; Z0=Z0

�; Z0=Z0

� p = starting to see a group of 0's and 1's; q =
reading 0's and pushing X's onto the stack; r
= reading 1's and popping X's until the X's
are all popped.

� We can start a new group (transition from r
to p) only when all X's (which count the 0's)
have been matched against 1's.

Formal PDA

P = (Q;�;�; �; q0; Z0; F), where Q, �, q0, and F
have their meanings from FA.

� � = stack alphabet.

� Z0 in � = start symbol = the one symbol on
the stack initially.

2

� � = transition function takes a state, an input
symbol (or �), and a stack symbol and gives
you a �nite number of choices of:

1. A new state (possibly the same).

2. A string of stack symbols to replace the
top stack symbol.

Instantaneous Descriptions (ID's)

For a FA, the only thing of interest about the FA
is its state. For a PDA, we want to know its state
and the entire content of its stack.

� It is also convenient to maintain a �ction that
there is an input string waiting to be read.

� Represented by an ID (q; w; �), where q =
state, w = waiting input, and � = stack, top
left.

Moves of the PDA

If �(q; a;X) contains (p; �), then (q; aw;X�) `
(p; w; ��).

� Extend to `
*

to represent 0, 1, or many moves.

� Subscript by name of the PDA, if necessary.

� Input string w is accepted if (q0; w; Z0) `
*

(p; �;) for any accepting state p and any
stack string .

� L(P) = set of strings accepted by P .

Example

(p; 0110011; Z0) ` (q; 110011; XZ0) `
(r; 10011; Z0) ` (r; 0011; Z0) ` (p; 0011; Z0) `
(q; 011; XZ0) ` (q; 11; XXZ0) ` (r; 1; XZ0) `
(r; �; Z0) ` (p; �; Z0)

Acceptance by Empty Stack

Another one of those technical conveniences: when
we prove that PDA's and CFG's accept the same
languages, it helps to assume that the stack is
empty whenever acceptance occurs.

� N (P) = set of strings w such that

(q0; w; Z0) `
*

(p; �; �) for some state p.

✦ Note p need not be in F .

✦ In fact, if we talk about N (P) only,
then we need not even specify a set of
accepting states.

3

Example

For our previous example, to accept by empty
stack:

1. Add a new transition �(p; �; Z0) = f(p; �)g.

✦ That is, when starting to look for a new
0-1 block, the PDA has the option to pop
the last symbol o� the stack instead.

2. p is no longer an accepting state; in fact, there
are no accepting states.

Equivalence of Acceptance by Final State
and Empty Stack

A language is L(P1) for some PDA P1 if and only
if it is N (P2) for some PDA P2.

� Given P1 = (Q;�;�; �; q0; Z0; F), construct P2:

1. Introduce new start state p0 and new
bottom-of-stack marker X0.

2. First move of P2: replace X0 by Z0X0

and go to state q0. The presence of X0

prevents P2 from \accidentally" emptying
its stack and accepting when P1 did not
accept.

3. Then, P2 simulates P1; i.e., give P2 all the
transitions of P1.

4. Introduce a new state r that keeps
popping the stack of P2 until it is empty.

5. If (the simulated) P1 is in an accepting
state, give P2 the additional choice of
going to state r on � input, and thus
emptying its stack without reading any
more input.

� Given P2 = (Q;�;�; �; q0; Z0; F), construct P1:

1. Introduce new start state p0 and new
bottom-of-stack marker X0.

2. First move of P1: replace X0 by Z0X0

and go to state q0.

3. Introduce new state r for P1; it is the
only accepting state.

4. P1 simulates P2.

5. If (the simulated) P1 ever sees X0, it
knows P2 accepts, so P1 goes to state r
on � input.

4

Equivalence of CFG's and PDA's

The title says it all.

� We'll show a language L is L(G) for some
CFG if and only if it is N (P) for some PDA
P .

Only If (CFG to PDA)

Let L = L(G) for some CFG G = (V;�; P; S).

� Idea: have PDA A simulate LM derivations in
G, where a left-sentential form is represented
by:

1. The sequence of input symbols that A has
consumed from its input, followed by

2. A's stack, top leftmost.

� Example: If (q; abcd; S) `
*

(q; cd;ABC), then
the LSF represented is abABC.

Moves of A

� If a terminal a is on top of the stack, then
there better be an a waiting on the input. A
consumes a from the input and pops it from
the stack, if so.

✦ The LSF represented doesn't change!

� If a variable B is on top of the stack, then
PDA A has a choice of replacing B on the
stack by the body of any production with
head B.

Formal Construction of A

A = (fqg;�; V [�; �; q; S), where � is de�ned by:

1. If B is in V , then �(q; �; B) = f(q; �) j B ! �
is in Pg.

2. If a is in �, then �(q; a; a) = f(q; �)g.

Example

G = (fS;Ag; f0; 1g; P;S), where P consists of S !
AS j �; A! 0A1 j A1 j 01.

� A = (fqg; f0; 1g; f0; 1;A; Sg; �; q; S), where � is
de�ned by:

✦ �(q; �; S) = f(q; AS); (q; �)g

✦ �(q; �; A) = f(q; 0A1); (q; A1); (q; 01)g

✦ �(q; 0; 0) = f(q; �)g

✦ �(q; 1; 1) = f(q; �)g

5

Only-If Proof (i.e., Grammar) PDA)

� Prove by induction on the number of steps

in the derivation S)
*

lm

� that for any x,

(q; wx; S) `
*

(q; x; �), where

1. w� = �.

2. � is the su�x of � that begins at the
leftmost variable (� = � if there is no
variable).

� Also prove the converse, that if (q; wx; S) `
*

(q; x; �), then S)
*

w�.

� Inductive proofs in reader.

� As a consequence, if y is a terminal string,

then S)
*

y i� (q; y; S) `
*

(q; �; �), i.e., y is in
L(G) i� y is in N (A).

PDA to CFG

Assume L = N (P), where P = (Q�;�; �; q0; Z0).

� Key idea: units of PDA action have the net
e�ect of popping one symbol from the stack,
consuming some input, and making a state
change.

� The triple [qZp] is a CFG variable that
generates exactly those strings w such that P
can read w from the input, pop Z (net e�ect),
and go from state q to state p.

✦ More precisely, (q; w; Z) `
*

(p; �; �).

✦ As a consequence of above, (q; wx; Z�) `
*

(p; x; �) for any x and �.

� It's a Zen thing: [qZp] is at once a triple
involving states and symbols of P , and yet to
the CFG we construct it is a single, indivisible
object.

✦ OK; I know that's not a Zen thing, but
you get the point.

� Complete proof is in the reader. We'll just
give some examples and the idea behind the
construction.

� Example: a popping rule, e.g., (p; �) in
�(q; a; Z).

✦ [qZp]! a

6

� A rule that replaces one symbol and state by
others, e.g., (p; Y) in �(q; a; Z).

✦ For all states r: [qZr]! a[pZr]

� A rule that replaces one stack symbol by two,
e.g., (p;XY) in �(q; a; Z).

✦ For all states r and s: [qZs] !
a[pXr][rY s]

Deterministic PDA's

Intuitively: never a choice of move.

� �(q; a; Z) has at most one member for any q,
a, Z (including a = �).

� If �(q; �; Z) is nonempty, then �(q; a; Z) must
be empty for all input symbols a.

Why Care?

Parsers, as in YACC, are really DPDA's.

� Thus, the question of what languages a DPDA
can accept is really the question of what
programming language syntax can be parsed
conveniently.

Some Language Relationships

� Acceptance by empty stack is hard for a
DPDA.

✦ Once it accepts, it dies and cannot accept
any continuation.

✦ Thus, N (P) has the pre�x property : if w
is in N (P), then wx is NOT in N (P) for
any x 6= �.

� However, parsers do accept by emptying their
stack.

✦ Trick: they really process strings followed
by a unique endmarker (typically $) e.g.,
if they accept w$, they consider w to be a
correct program.

� If L is a regular language, then L is a DPDA
language.

✦ A DPDA can simulate a DFA, without
using its stack (acceptance by �nal state).

� If L is a DPDA language, then L is a CFL
that is not inherently ambiguous.

✦ A DPDA yields an unambiguous
grammar in the standard construction.

7

