

CS 154 { Introduction to Automata and Complexity Theory


Final Review Notes


Kevin Lee1, Spring Quarter 1999 - 2000


Decision problem Given an alphabet �, consider a subset L of ��. Our decision proce-
dure is one which takes a string w 2�� and decides whether or not w 2L. This essentially
represents the subset as a yes/no decision made on a case-by-case basis. Keep in mind that
we will attempt to frame all problems as questions of this form.


One comment: make sure you understand in�nite sets. In particular, be careful to avoid
fallacies of the following form: one in�nite set is \bigger" than another in�nite set, there is
a \largest string" in an in�nite set, etc.


Proof techniques Look over sections 1.2 - 1.4 of the course reader for a good survey of
proof techniques. In particular, make sure you are very familiar with induction; one of the
most common errors in problem sets was an incomplete induction proof.


Regular sets You should know the following:


� � transitions


� Subset construction (NFA ! DFA)


� State elimination (DFA! RE)


� �-NFA construction from regular expression


� Closure properties


� Pumping lemma


� Decision properties: emptiness, membership, equivalence


Context free languages You should know the following:


� CFGs: derivations, sentential forms, and parse trees


� Ambiguity in CFG's


� Chomsky normal form for CFG's


� PDA accepting: �nal state, empty stack


� Determinism: DPDA's are not equivalent to NPDA's


1with help from Aris Gionis


1







� Closure properties


� Pumping lemma


� Decision properties: emptiness, membership


Turing machines You should know the following:


� Acceptance by halting and �nal state


� Nondeterminism


� Extensions (don't memorize details, just understand/be familiar with)


� Recursively enumerable: class of languages which can be described by Turing machines


� Recursive: class of languages which can be described by Turing machines which halt
on all inputs


Reductions A restatement of the basic de�nition of reduction: Given a problem P which
we want to prove is not C (where C is a level of complexity; e.g., recursively enumerable,
recursive/decidable, etc.), take another problem K which we know is not C. Then assume
that P is C, which implies that a C-level solution for P exists. Using that C-level solution
for P , build a C-level solution for K. This is a reduction from K to P .


What this reduction shows is that P is at least as complex as K. Speci�cally, if K is not
C, then P cannot be C either. The reduction described above is essentially a proof by con-
tradiction. We start by assuming that P is C, and use that assumption to build a C-level
solution for K. Since we choose a K which we know is not C, no such solution can exist, so
by contradiction, our assumption must be false - P cannot be C.


The above explanation is somewhat confusing, so here is a more concise version: to reduce
P1 to P2, build a solution to P1 using a black-box solution to P2. This \reduces" the problem
of solving P1 to that of solving P2 - once we have a solution to P2, we can solve P1 using our
reduction.


Make sure that you have the correct direction for your reduction; otherwise, it doesn't prove
anything at all. Also keep in mind the distinction between running a Turing machine and
examining its encoding. This distinction plays a crucial role in the Lne proof provided in the
course reader, which you should be familiar with.


Decidability A decidable problem is one which can be stated as a recursive language.
That is, there exists a Turing machine which given any input w 2 ��, is guaranteed to
eventually halt. Note that this de�nition assumes that the Turing machine accepts by �nal
state rather than by halting - otherwise, it would accept all strings.


2







Generally speaking, we are concerned here with three distinct classes of languages: recur-
sive, recursively enumerable (but not recursive), and not recursively enumerable. Look at
the course reader and book and be familiar with examples of each.


You should know:


� Complement properties of RE and recursive languages


� Rice's theorem


� Examples of non-RE languages: Ld, Le


� Examples of undecidable problems: Lu, Lne, CFG ambiguity


Tractability Here, we make a distinction between problems which can be solved in poly-
nomial time and those which cannot. P denotes the class of problems solvable in polynomial
time by deterministic Turing machines, and NP denotes the class of problems solvable in
polynomial time by nondeterministic Turing machines.


We are generally concerned with NP-complete problems - that is, problems which are in
NP but are not provably in P. This is a gross oversimpli�cation, and you should see the
course reader and/or the textbook for further explanation. For now, just note that the class
of NP-complete problems is a subset of those in NP.


The diagram provided on the last page of the course reader summarizes reductions among
NP-complete problems. You should read through this chapter and familiarize yourself with
the di�erent NP-complete problems, and understand the reductions which transform these
problems back and forth.


One important thing to note is that when dealing with tractability problems, we must
make sure that our reductions are polynomial-time as well. If we provide an exponential-
time reduction from a one polynomial-time algorithm to another, we have not really shown
anything - the end result is still an exponential-time algorithm.


3






