

CS 154 { Introduction to Automata and Complexity Theory

Section notes, May 15, 2000

Closure properties This is essentially a clari�cation of what closure properties are, and what
they can be used for. Both versions of the midterm discussed certain closure properties for
regular sets. We will see more of closure properties with regard to context-free languages, so
I thought it would be worthwhile to clear up any lingering confusion.

Let's take the set union operation, which is closed for both regular sets and context-free
languages. The closure property for the union operation for regular sets may be stated as:

8 regular sets L1 and L2: L3 = L1 [L2 is also regular

However, that closure property has no relevance to any of the following questions, where
L3 = L1 [L2:

� If L3 is regular, are L1 and/or L2 regular?

� If L1 is nonregular and L2 is regular, is L3 regular?

� If L1 and L2 are nonregular, is L3 nonregular?

The answer to all three of these questions is \it depends on what L1, L2, and L3 are." The
point here is that it is impossible in these three cases to draw a generalized conclusion such
as a closure property. In particular, you may not appeal to the closure property described
above, as it simply does not apply to any of the three questions.

Pumping lemma for context free languages The pumping lemma for CFL's is very sim-
ilar to the pumping lemma for regular sets, and those students who were present at section
indicated that they are comfortable with the PL for CFL's on a conceptual level. Conse-
quently, section focused on the practical application of the PL for CFL's.

Generally speaking, proofs appealing to the PL for CFL's are much more involved than
proofs based on the PL for regular sets. This di�culty results primarily from the fact that
the PL for CFL's is much less restrictive about the substrings we use to pump. More specif-
ically, given our choice of a string z, we must examine all choices of substrings u,v,w,x, and
y, where z = uvwxy and the following conditions hold:

1) jvxj � 1
2) jvwxj � n

We must then show

1

3) uviwxiy 2 L;8i � 0

for all substrings which satisfy the above two conditions. Note that there are no particular
constraints on u or y, so we have to consider cases such as u = � and y = �. In other words,
although we only really care about the vwx portion of our string z, that section may be any-
where in the string - beginning, middle, or end - and we have to deal with every possibility.

Here is an example problem: prove that the language faibj j j = i2g is not context-free,
using the pumping lemma for context-free languages.

We start by selecting the string z = anbn
2

. We now have to consider all possible uvwxy = z,
subject to the two conditions mentioned above. Here is an enumeration of all the cases we
need to consider, where p, q, r are integers greater than 0:

� v = �, x = ap

� v = �, x = bp

� v = �, x = apbq

� v = ap, x = �

� v = bp, x = �

� v = apbq, x = �

� v = ap, x = aq

� v = bp, x = bq

� v = ap, x = bq

� v = apbq, x = br

� v = ap, x = aqbr

Note that one (but not both) of v and x may be empty. Otherwise, we have to consider
every possible case for v and x given the restraint that the larger string z is of the form
anbn

2

. Proving each of these individual cases is easy, as in the following examples:

If one of the strings v or x contains both a's and b's, clearly it cannot be pumped to produce
a string in L. (Doing so will introduce a's after b's, which is not allowed in our language.)
This covers four of the enumerated cases.

If one of the strings v or x is empty, then clearly you cannot pump the other (nonempty)
string to produce a string in L. To see why, take the case where v is empty and x is all a's.
Pumping x will introduce some additional number of a's (let's say, c instances of the symbol
a, where c<0), and clearly (n + c)2 6= n2. The reciprocal argument holds where v is empty

2

and x is all b's, or v is all a's and x is empty, or v is all b's and x is empty. This covers an
additional four cases.

We still have three cases left to cover, but I will skip those, as they are similar to the ones
above. The point is that the most di�cult part is often enumerating all of the cases. My
example solution is perhaps more exhaustive than is strictly necessary - several of those cases
could be collapsed into each other - but it gives you an idea of how to proceed in a PL for
CFL proof.

Turing machine example In the last �ve minutes of section, I gave a rough run-through of
how a Turing machine can be designed to solve a particular problem. Note that the descrip-
tion is a high-level one, and that the details of implementation are omitted.

Design a Turing machine to accept the language L:

fwwR j w 2 (0 + 1)�g

The general strategy here is to read the leftmost symbol, scan across to the rightmost sym-
bol, and check to make sure that they match. If they don't, we can stop now, as the string
does not satisfy the description above. If they do, we then proceed to the second leftmost
and second rightmost symbols and compare those. In this fashion, we can process the entire
string and determine whether or not it is in L.

Now that we have an idea about our strategy, we can consider some implementation details.

� How can we keep track of which symbols we have already checked?

� How can we scan from the current left-hand symbol to the current right-hand symbol,
and vice-versa?

� How can we keep track of the left-hand symbol, so that we can compare it to the
right-hand symbol once we get there?

� How do we know when we are done?

Time did not permit much discussion of these individual points, so they are left for the
consideration of the student.

3

