Problem 1

(a) Exercise 3.2.6(c): The set of prefixes of strings in \(L \).

(b) Exercise 3.2.6(d): The set of substrings of strings in \(L \).

Problem 2

(a) \((10 + 0)^* (\epsilon + 1 + 11) (01 + 0)^*\) - the first and third sub-expressions ensure that there are no consecutive 1s, while the second allows for the presence of a single pair of consecutive 1s.

(b) \((1)^* (0 + 111)^* (1)^*\) - while the expression can begin and end with any number of 1s, a 0 must be followed by either zero 1s or at least two 1s before another 0.

Problem 3

(a) \[R_{33}^{(0)} = a + b + c + \epsilon \]
\[R_{12}^{(0)} = a \]
\[R_{12}^{(4)} = a(ba)^* \]
\[R_{11}^{(0)} = \epsilon \]
\[R_{11}^{(4)} = (ab)^* \]

(b) \((ab)^* \epsilon\)

Problem 4

Assume \(L \) is regular and apply the Pumping Lemma.

By the P.L., there exists some \(n > 0 \).

We choose \(w = 0^n1^{2n} \) which is in \(L \) and also satisfies \(|w| \geq n \).

By the P.L., \(w = xyz \) such that \(|xy| \leq n \) and \(y \neq \epsilon \). Note that all \(x \) and \(y \) contain only 0s. Let \(|x| = a \) and \(|y| = b \), then \(0 < b \leq n \).

We choose \(k = 2 : xy^2z \in L \) by P.L., but \(xy^2z = 0^{n+b}1^{2n} \) and \(b \) is at least 1. Since \(2n < 2(n+b) \), this string cannot be in \(L \). Thus we have a contradiction, hence \(L \) cannot be regular. \(\square \)

Problem 5

Assume \(L \) is regular and apply the Pumping Lemma.

By the P.L., there exists some \(n > 0 \).

We choose \(w = 0^n \) which is in \(L \) and also satisfies \(|w| \geq n \) since \(n^3 > n \) for all \(n > 0 \).

By the P.L., \(w = xyz \) such that \(|xy| \leq n \) and \(y \neq \epsilon \). Note that all \(x \), \(y \) and \(z \) contain only 0s. Let
\[|x| = a \text{ and } |y| = b, \text{ then } 0 < b \leq n. \]

We choose \(k = 2 : x y^2 z \in L \) by P.L., but \(xz = 0^{n^2 + b} \). But \(n^3 + b \) cannot be a perfect cube since the bounds on \(b \) imply the following:

\[
n^3 < n^3 + b \leq n^3 + n < n^3 + 3n^2 + 3n + 1 = (n + 1)^3
\]

Note that \(n < 3n^2 + 3n + 1 \) holds for all \(n \geq 0 \) because the quadratic \(3n^2 + 2n + 1 \) has a negative discriminant. So \(n^3 + b \) is strictly between the values of two consecutive perfect cubes and cannot be a perfect cube itself. Thus we have a contradiction, hence \(L \) cannot be regular. \(\square \)

Problem 6

(a) \(b^i e^m : x = \epsilon, y = b^n \) and \(z = b^{-n} e^m \). It is easy to see that the first two conditions are satisfied. Since there are no \(a \), there are no constraints on the string, and condition 3 is satisfied as well.

\(a b^m e^m : x = \epsilon, y = a \) and \(z = b^m e^m \). It is easy to see that the first two conditions are satisfied. For \(i = 0 \), there are no constraints. For \(i = 1 \), we already have the same powers of \(b \) and \(c \). For all other \(i \), we have strings with no constraints because the power of \(a \) is greater than 1. Thus, condition 3 is also satisfied.

\(a^2 b^i e^m : x = \epsilon, y = a^2 \) and \(z = b^i e^m \). It is easy to see that the first two conditions are satisfied. For \(i = 0 \), there are no constraints. For all other \(i \), we have strings with no constraints because the power of \(a \) is greater than 1. Thus, condition 3 is also satisfied.

\(a^3 b^i e^m : x = \epsilon, y = a^3 \) and \(z = b^i e^m \). It is easy to see that the first two conditions are satisfied. For \(i = 0 \), there are no constraints. For all other \(i \), we have strings with no constraints because the power of \(a \) is greater than 1. Thus, condition 3 is also satisfied.

(b) In general, it is not true that if \(A \Rightarrow B \) then \(B \Rightarrow A \).

(c) **Solution 1:** Assume that \(L \) is regular. Consider the language \(L_1 = \{ab^*c^*\} \) — clearly, this is a regular language. Now, consider the language \(L_2 = L \cap L_1 = \{ab^m c^m | m \geq 0\} \). Since \(L_1 \) is regular, it follows that if \(L \) is regular then \(L_2 \) must also be regular by the closure of regular languages under intersection. But we can prove via the pumping lemma that \(L_2 \) is not regular, so it follows that \(L \) cannot be regular. The proof that \(L_2 \) is not regular is similar to the pumping lemma proof that \(\{0^n 1^n | n \geq 0\} \) is not regular and is omitted.

Solution 2: We know that if a language \(L \) is regular, then its reverse \(L^R \) must also be regular.

\[
L^R = \{e^m b^k a^l | m, l, k \geq 0, k = 1 \Rightarrow l = m\}
\]

Now assume \(L^R \) is regular and apply the Pumping Lemma. By the P.L., there exists some \(n > 0 \). We choose \(w = e^n b^n a \) which is in \(L^R \) and also satisfies \(|w| \geq n \). By the P.L., \(w = xyz \) such that \(|x| \leq n \) and \(y \neq \epsilon \). Note that all \(x \) and \(y \) contain only \(e's \). Let \(|y| = m \), then \(0 < m \leq n \). We choose \(k = 2 : x y^2 z \in L \) by P.L., but \(x y^2 z = e^{n+m} b^n a \) and \(m \) is at least 1. Since \(n + m \neq n \), this string cannot be in \(L^R \). Thus we have a contradiction, hence \(L^R \) cannot be regular. \(\square \)