Some more challenges with algebraic manipulation

Ray Li

August 25, 2012

1 Toolbox

Below is a general list of techniques that are useful in algebraic manipulations. Please note that algebraic manipulation is more of a tool and is not tailored to specific types of problems.

- Factoring
- Rationalizing or unrationalizing denominators
- Substitution
- Expanding, possibly with binomial theorem
- Finding and using symmetry of some sort
- Looking for patterns (small cases)
- Wishful thinking
- Partial fractions

2 Practice Problems

The problems are roughly arranged in increasing order of difficulty. Feel free to work with others.

1. Sams phone company charges him a per-minute charge as well as a connection fee (which is the same for every call) every time he makes a phone call. If Sam was charged $\$ 4.88$ for an 11-minute call and $\$ 6.00$ for a 19-minute call, how much would he be charged for a 15 -minute call? (EMC2 2011)
2. $A=10^{9}-987654321, B=\frac{123456789+1}{10}$, Compute $\sqrt{A B}$. (HMMT 2010)
3. Given that $x^{2}+5 x+6=\left(x^{2}+5 x+4\right)^{2}$, find all possible real values of x.
4. Two geometric sequences $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3} \ldots$ have the same common ratio, with $a_{1}=27, b_{1}=99$, and $a_{15}=b_{11}$. Find a_{9}. (AIME 2012)
5. Find a pair of integers (a, b) for which $\frac{10^{a}}{a!}=\frac{10^{b}}{b!}$ and $a<b$. (EMC2 2012)
6. Find a positive real number r that satisfies

$$
\frac{4+r^{3}}{9+r^{6}}=\frac{1}{5-r^{3}}-\frac{1}{9+r^{6}}
$$

(EMC2 2012)
7. The sequence $\left\{a_{n}\right\}$ is defined by

$$
a_{0}=1, a_{1}=1, \text { and } a_{n}=a_{n-1}+\frac{a_{n-1}^{2}}{a_{n-2}} \text { for } n \geq 2 .
$$

The sequence $\left\{b_{n}\right\}$ is defined by

$$
b_{0}=1, b_{1}=3, \text { and } b_{n}=b_{n-1}+\frac{b_{n-1}^{2}}{b_{n-2}} \text { for } n \geq 2 .
$$

Find $\frac{b_{32}}{a_{32}}$. (AIME2 2008)
8. For reals a, b, c, show that

$$
\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}=\frac{(a-b)(b-c)(c-a)}{a b c}
$$

9. Given that a, b, c are pairwise distinct nonzero real numbers such that $a+b+c=0$, evaluate

$$
\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right) .
$$

10. Solve in positive integers: $n^{4}+2 n^{3}+2 n^{2}+2 n+1=m^{2}$.
11. Let k and m be constants such that for all triples (a, b, c) of positive real numbers,

$$
\sqrt{\frac{4}{a^{2}}+\frac{36}{b^{2}}+\frac{9}{c^{2}}+\frac{k}{a b}}=\left|\frac{2}{a}+\frac{6}{b}+\frac{3}{c}\right| \text { if and only if } a m^{2}+b m+c=0
$$

Find k. (EMC2 2011)
12. Determine the value of

$$
26+36+998+26 \cdot 36+36 \cdot 998+998 \cdot 26+26 \cdot 36 \cdot 998
$$

(EMC2 2012)
13. Compute the value of $\left[\frac{1}{\sqrt[3]{10^{3}+1}-\sqrt[3]{10^{3}}}\right]$, where $[x]$ denotes the greatest integer less than or equal to x.
14. p, q, r are real numbers satisfying

$$
\begin{gathered}
\frac{(p+q)(q+r)(r+p)}{p q r}=24 \\
\frac{(p-2 q)(q-2 r)(r-2 p)}{p q r}=10 .
\end{gathered}
$$

Given that $\frac{p}{q}+\frac{q}{r}+\frac{r}{p}$ can be expressed in the form $\frac{m}{n}$, where m, n are relatively prime positive integers, compute $m+n$. (OMO 2012)
15. The sequence $\left\{a_{n}\right\}$ satisfies $a_{0}=1, a_{1}=2011$, and $a_{n}=2 a_{n-1}+a_{n-2}$ for all $n \geq 2$. Let

$$
S=\sum_{i=1}^{\infty} \frac{a_{i-1}}{a_{i}^{2}-a_{i-1}^{2}}
$$

What is $\frac{1}{S}$? (OMO 2012)
16. A sequence is defined as follows, $a_{1}=a_{2}=a_{3}=1$.

$$
a_{n}=\frac{1+a_{n-1} a_{n-3}}{a_{n-2}}
$$

For all $n \geq 4$. If $\frac{a_{92}}{a_{100}}=\frac{m}{n}$ for relatively prime integers m, n, compute $n-m$. (WOOT Bonus AIME 2008)
17. A sequence of integers is defined as follows: $a_{i}=i$ for all $i \leq 5$, and $a_{i}=a_{1} a_{2} \cdots a_{i-1}-1$ for all $i>5$. Evaluate

$$
a_{1} a_{2} \cdots a_{2011}-\sum_{i=1}^{2011} a_{i}^{2} .
$$

(HMMT 2011)
18. If $\left(x+\sqrt{x^{2}+1}\right)\left(y+\sqrt{y^{2}+1}\right)=1$, for real numbers x, y, compute $x+y$. (Russia)
19. Heron's formula states that if a triangle has side lengths a, b, c, then its area is equal to

$$
\text { Area of } A B C=\sqrt{\frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{16}}
$$

Derive Heron's formula using law of cosines.
(Note: one useful formula for the area of a triangle is $\frac{1}{2} a b \sin C$)
20. Ptolemy's theorem states that in a cyclic quadrilateral with sides of length a, b, c, d in that order and diagonals of length e and f, we have

$$
a c+b d=e f
$$

Prove Ptolemy's Theorem using law of cosines. (Note: a quadrilateral is cyclic if and only if the opposite sides sum to 180°.)

