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Abstract

Modern online learning algorithms achieve
low (sublinear) regret in a variety of diverse
settings. These algorithms, however, update
their solution at every time step. While these
updates are computationally efficient, the
very requirement of frequent updates makes
the algorithms untenable in some practical
applications. In this work we develop on-
line learning algorithms that update a sub-
linear number of times. We give a meta al-
gorithm based on non-homogeneous Poisson
Processes that gives a smooth trade-off be-
tween regret and frequency of updates. Em-
pirically, we show that in many cases, we can
significantly reduce updates at a minimal in-
crease in regret.

1 INTRODUCTION

Bandit, expert learning, and convex optimization al-
gorithms have revolutionized online learning, and low
regret algorithms are now known for a multitude of di-
verse settings. Whether the examples are drawn from
a distribution, are chosen by an adversary, come anno-
tated with additional context, or are selected from ar-
bitrary convex domains, there are efficient algorithms
that achieve sublinear, o(T ), regret after T timesteps.

One characteristic of these algorithms is that they
rarely stick with playing the same action repeatedly,
instead continually exploring new decisions. While
this exploration is necessary to achieve low regret, the
constant switching between actions can have adverse
effects in practice both from a systems standpoint, and
user interface design. On the systems side, a lot of
switching can wreak havoc on caches, and incur ad-
ditional latency in the processing of results. At the
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same time, most users prefer a sense of predictability,
or consistency in their interactions with the system,
and overly dynamic systems add to the overall cogni-
tive load.

In this work, we investigate the trade-off between the
consistency cost (defined as the number of times the
algorithm changes its action), and the regret achieved
by the algorithm. We show that a simple modifica-
tion of classic online gradient descent approaches leads
to a smooth trade-off between the two goals. At a
high level, we achieve this by probabilistically decid-
ing whether to keep playing the same action, or per-
form an update step. Importantly, we can do this with
constant additional overhead—the additional compu-
tation needed to decide the probability of whether to
update takes only constant time.

Finally we note that our algorithm can be easily ex-
tended to more complex settings. For instance, in Sec-
tion 4 we show how to extended our technique to solve
the consistent online submodular maximization prob-
lem.

1.1 Related Work

Online Convex Optimization is a very active re-
search topic in online learning with many beautiful re-
sults (Merhav et al., 2002). Perhaps the closest to our
setting is the work on learning with memory (Merhav
et al., 2002). In this problem, the adversary is obliv-
ious to the algorithm’s choices but the loss that the
algorithm incurs depends on the current and the re-
cent choices of the algorithm. Interestingly, although
the setting is different from ours, the algorithms in-
troduced to solve this problem have non-trivial consis-
tency guarantees. Often, the algorithms are based on
a blocking technique (Merhav et al., 2002) that divides
the rounds in blocks and allows only a constant num-
ber of switches per block. In turn, this technique auto-
matically guarantees also to have a limited consistency
cost, but with higher regret1. This result was later im-
proved by György and Neu (2014) using the Shrink-

1The regret of this technique is O(T
2/3) and the consis-

tency cost O(T
1/3).
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ing Dartboard framework introduced by Geulen et al.
(2010), but unfortunately their technique is limited
to the expert setting. Recently, Anava et al. (2015)
proposed a new algorithm that obtains near optimal
bounds for the Online Convex Optimization setting
in the counterfactual feedback model where the algo-
rithm knows the loss that it would have incurred had
it played any sequence of m decisions in the previous
rounds. Our results are incomparable with these be-
cause our algorithm does not assume to have access
to counterfactual feedback. Furthermore, it is simpler
and can be easily extended to handle more complex
settings like the consistent online submodular maxi-
mization problem.

A related area to ours is metrical task systems (MTS).
The player’s goal is to minimize the movement (in a
metric space) plus the costs she recieves, while hold-
ing a plausible competitive ratio, i.e., the ratio of the
cost of the algorithm relative to the cost of the opti-
mal offline algorithm on a worst-case sequence. Impor-
tant problems in this field include the k-server problem
(Manasse et al., 1990; Bubeck et al., 2017) and convex
chasing problem (Argue et al., 2019).

Another area of work that is closely related to ours is
research in online algorithms with recourse. In this set-
ting, one seeks better online algorithms to compute op-
timal or approximate solutions for combinatorial prob-
lems by allowing the algorithm to make a limited num-
ber of changes to the online solution. This concept is
very close to the notion of consistency that we con-
sider in this paper. The first problem that received a
lot of attention in this area is the classic online Steiner
tree problem introduced by Imase and Waxman (1991)
for which it is possible to design better algorithms by
allowing a small recourse as shown in several papers
(Gu et al., 2016; Gupta and Kumar, 2014; Lacki et al.,
2015; Megow et al., 2016). The concept of recourse has
been applied to other classic optimization problems as
online scheduling (Andrews et al., 1999; Epstein and
Levin, 2014; Phillips and Westbrook, 1998; Sanders
et al., 2009; Skutella and Verschae, 2010), online flow
(Gupta et al., 2014; Westbrook, 2000), online match-
ing Bernstein et al. (2018) and online set cover (Gupta
et al., 2017). Very recently, Lattanzi and Vassilvitskii
(2017) introduced the notion of consistency in online
algorithms for machine learning and studied the con-
sistent online clustering problem.

2 PRELIMINARIES

We consider the online learning framework, which
can be seen as a game between a player and an ad-
versary. The game proceeds in rounds. In round
t ∈ {1, 2, . . . , T}, the player selects an action xt from

some set X , and the adversary reveals the loss func-
tion ft. The goal of the player is to adaptively select
x1, x2, . . . , xT to compete with the best single action
in hindsight, x?. Formally, the goal of the player is to
minimize her regret:

RT :=

T∑
t=1

ft(xt)− min
x?∈X

T∑
t=1

ft(x
?).

Our goal will be to simultaneously achieve sublinear
regret, and minimize the number of times the player
changes her decision, i.e., the consistency cost:

κT :=

T∑
t=2

1xt 6=xt−1
.

Convex Setting We begin with a restriction to the
setting where X is a compact convex subset of Rd. Let
‖ · ‖ be a norm on Rd and denote by C1

L(X ) the set
of all real-valued continuously differentiable functions
over X that are Lipschitz continuous with constant L,
i.e., ‖∇f(x)‖? ≤ L for all x ∈ X and all f ∈ C1

L(X ).

Let ProjX (z) be the unique orthogonal projection of z
onto the convex set X . If the gradient of ft is revealed
to the player at the end of round t, then sublinear
regret can be achieved by a simple gradient descent
algorithm, OGD, which repeatedly takes a gradient
step and projects it to the feasible set of actions.

Algorithm 1 Online Gradient Descent (OGD)
Select x1 ∈ X arbitrarily
for t ∈ 1, 2, . . . , T do
Play xt and receive loss ft(xt)
Set xt+1 := ProjX (xt − ηt∇ft(xt)).

end for

Theorem 1 (Zinkevich (2003)). Suppose ft ∈ C1
L(X )

for all t ∈ [T ], and X has diameter D (w.r.t. Eu-
clidean norm). Then Online Gradient Descent with
step size ηt = D

L
√
t
guarantees

RT ≤
3

2
LD
√
T = O(

√
T ). (1)

Note that while the OGD algorithm is guaranteed to
achieve low regret, it is easy to set up scenarios where
it will pick a new point xt at every time step, suffering
κT = Ω(T ).

Decision Path In our study, the notion of a decision
path turns out to be useful. For a sequence of points
(xt)t∈[T ] ⊂ Rd we define the decision path to be the
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Figure 1: The Decision Path

sequence of non-negative real numbers (pt)t∈[T ] such
that p1 = 0 and for all t > 1,

pt − pt−1 = ‖xt − xt−1‖.

Intuitively, if we had to move a pebble from xt−1 to
xt as the algorithm went on, pt would represent the
total distance traveled by the pebble after t steps, see
Figure 1 for an illustration.

For analytic reasons, we also introduce the δ-padded
decision path as follows.

Definition 2. Let δ = (δt)t∈N be an increasing se-
quence of positive numbers and p1, . . . , pT be a de-
cision path. Then the corresponding δ-padded deci-
sion path is the sequence r1, . . . , rT with r1 = p1 and
rt = pt + δt for t > 1.

When using the OGD algorithm, the following Lemma
on the length of the decision paths will be useful.

Lemma 3. Let ft ∈ C1
L(X ) be convex for all t ∈ [T ]

and (xt) be the sequence of decisions made by OGD.
Assume that (pt) is the decision path for (xt).

(i) One has for all t ∈ [T ],

pt ≤ 2D
√
t.

(ii) If ft is α-strongly convex for all t ∈ [T ], then using
step size ηt = 1

αt ,

pt ≤ L
α (1 + log t).

We give the proof in the appendix.

Poisson Point Process Recall that a Poisson pro-
cess on the real line is a stochastic process for mod-
eling random events, which defines a probability dis-
tribution on the number of points (events) within any
interval (a, b] with the following key properties:

• The number of points in any interval has a Poisson
distribution.

r1 r2 r3 r4 r5

. . .

Figure 2: Let (rt) be the padded decision path. The
crosses are the Poisson process events. Red points de-
note rounds we do not update and green squares are
updating rounds. We always update in the first round,
and for round t, we update only if there is a Poission
event on the line segment ending in rt.

• For any two disjoint intervals, the number of
points in them are independent random variables.

In our work, we will consider non-homogeneous Pois-
son processes on the real line, with varying continuous
intensity, λ(τ). In this case, the number of points
on an interval (a, b] is distributed as a Poisson random
variable with mean

∫ b
a
λ(τ) dτ , i.e., the intensity varies

with the position of the interval. To simplify notation,
we will denote by M(τ) =

∫ τ
0
λ(u) du.

Note on notation. We will use the variable t to index
the rounds of the game, i.e. t ∈ N, and use τ for the
continuous variable indicating position on the decision
path, i.e. τ ∈ R+.

3 THE SOLO ALGORITHM

In order to achieve a trade-off between regret and con-
sistency, our algorithm will make use of a basic algo-
rithm A, such as OGD, and decide probabilistically at
each time step whether to update the current solution
point, or to stick to the one from the previous round.
Intuitively, we want the updates to be more likely to
happen if the current solution point is far away from
the proposed point, but also less likely to happen as
the algorithm proceeds and starts converging to a near-
optimal solution.

We will update the algorithm’s solution whenever a
specific point process on the padded decision path has
a hit. Let λ : R+ → R+ be an increasing inten-
sity function we will define later. We will update the
strategy at time t if and only if the non-homogeneous
Poisson process with rate λ(τ) had a non-zero count
in the interval (rt−1, rt]. This is equivalent to updat-
ing with probability 1 − exp(−

∫ rt
rt−1

λ(τ) dτ) = 1 −
exp(−(M(rt) −M(rt−1))). Figure 2 shows an exam-
ple of the Poisson process and updating procedure.

Observe that this definition satisfies our desiderata
from above. Suppose that the algorithm last updated
the solution at time t′ < t. As the solution drifts,
i.e., the distance between xt′ and xt increases, rt′ and
rt get further away, and the probability of an update
increases. On the other hand, as the gradient steps
get smaller (and thus the distance between two con-
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Algorithm 2 Sticky OnLine Optimization (SOLO)
A is a no-regret algorithm
λ(τ) an increasing intensity function.
(δt) an increasing padding sequence.
x1 is the first decision proposed by A
r1 ← 0
y1 ← x1
for t ∈ [T ] do
Play yt and receive loss ft(yt).
Give A access to the oracle of ft and set xt+1 to
be the next proposal of A.
rt+1 ← rt + ‖xt+1 − xt‖+ δt+1 − δt
With probability 1− exp

{
−
( ∫ rt+1

rt
λ(u) du

)}
Update: set yt+1 ← xt+1.

Otherwise set yt+1 ← yt.
end for

secutive x’s decreases), so does the probability of an
update.

We formulate the above in Algorithm 2, called Sticky
Online Optimization (SOLO).

Analysis The analysis of Algorithm 2 proceeds in
three parts. First we relate the regret of SOLO to
that of the given algorithm A via a triangle inequal-
ity argument, and identify the additional regret paid
by Algorithm 2 (Proposition 4). Next, we prove a
technical fact about the distribution of hits in non-
homogeneous Poisson processes with sufficiently high
intensities (Lemma 5). Finally, we specialize the choice
of λ and δ to prove a consistency-regret trade-off for
OGD for convex (Theorem 8) and strongly-convex
functions (Theorem 9).

3.1 Regret

We analyze the regret of our algorithm as compared
to A. Assume that ft ∈ C1

L(X ) for all t ∈ [T ], and
let (xt) be the decisions proposed by A, and (yt) be
decisions we actually played. Also denote by (rt) the
padded decision path for (xt).

The regret of SOLO is:

RT =

T∑
t=1

ft(yt)− min
x?∈X

T∑
t=1

ft(x
?) (2)

=

T∑
t=1

ft(yt)−
T∑
t=1

ft(xt)

+

T∑
t=1

ft(xt)− min
x?∈X

T∑
t=1

ft(x
?)

≤ L
T∑
t=1

‖yt − xt‖+RT (A),

where the last line is due to the Lipschitz property
of ft and RT (A) is the regret of A. Letting p(t) :=
max{m ≤ t : m is an updating round} to be the latest
updating round before round t, it is clear that yt =
xp(t). Using the triangle inequality and remembering
that δ is increasing:

‖yt − xt‖ = ‖xt − xp(t)‖

≤
t−1∑
j=p(t)

‖xj+1 − xj‖

=

t−1∑
j=p(t)

(rj+1 − rj − [δ(j + 1)− δ(j)])

≤ rt − rp(t).

This gives rise to the definition of extra regret : we
define the extra regret to be

ET = L ·
T∑
t=1

(rt − rp(t)).

The following proposition is now immediate:
Proposition 4.

RT (SOLO) ≤ ET +RT (A).

Observe that the extra regret depends directly on the
length of the padded decision path. Thus by changing
the intensity of the sampling process, we can get a
trade-off between the number of changes, and the extra
regret.

3.2 Gap Distribution

As we saw above, the additional regret of the algorithm
depends on the length of the padded decision path be-
tween updates. In this section, we present a technical
lemma bounding this quantity for non-homogeneous
Poisson processes with sufficiently fast increasing in-
tensities.
Lemma 5. AssumeM(τ) = ω(log τ) and λ(τ) = ω(1)
to be increasing. Also assume that (1/λ(τ))′ = o(1).
Then, for all t ∈ [T ] one has E[rt − rp(t)] ≤ C/λ(rt),
where C is a constant independent of t and rt.

At a high level, Lemma 5 implies that we only need to
look at the intensity at the last point of the interval
(where it is the highest) to bound the expected length
of the gap.

First we bring two supplementary lemmas which are
crucial in the proof.
Lemma 6. Assuming conditions of Lemma 5, one has

lim
τ→∞

M(τ)

log
∫ τ
0
eM(u) du

= 1.



Mohammad Reza Karimi, Andreas Krause, Silvio Lattanzi, Sergei Vassilvitskii

Proof. Using integration by parts and knowing that
d
duM(u) = λ(u) we see that∫ τ

0

eM(u) du = τeM(τ) −
∫ τ

0

uλ(u)eM(u) du.

Now, since the last term is positive, we get

log

∫ τ

0

eM(u) du < log(τeM(τ)) = M(τ) + log τ. (3)

Also, since λ(τ) is increasing, we can write∫ τ

0

uλ(u)eM(u) du ≤ τλ(τ)

∫ τ

0

eM(u) du,

and using the first equality, we arrive at

(1 + τλ(τ))

∫ τ

0

eM(u) du ≥ τeM(τ),

which gives

log

∫ τ

0

eM(u) du ≥M(τ)− log
1 + τλ(τ)

τ
. (4)

Dividing both sides of (3) by M(τ) and taking the
limsup gives

lim sup
τ→∞

log
∫ τ
0
eM(u) du

M(τ)
≤ 1 + lim sup

τ→∞

log τ

M(τ)
= 1,

and doing the same for (4), and taking the liminf gives

lim inf
τ→∞

log
∫ τ
0
eM(u) du

M(τ)
≥ 1− lim sup

τ→∞

log 1+τλ(τ)
τ

M(τ)

= 1− lim sup
τ→∞

log λ(τ)

M(τ)
= 1,

since by L’Hôpital’s rule the last limit is equal to 1−
limτ→∞

λ′(τ)
λ(τ)2 = 1. Combining these two inequalities,

we can observe that the following limit exists and the
equality holds:

lim
τ→∞

log
∫ τ
0
eM(u) du

M(τ)
= 1.

Lemma 7. With the same conditions as Lemma 5, we
have

e−M(τ)

∫ τ

0

eM(u) du = Θ(1/λ(τ)) (as τ →∞)

Also it also holds that

lim
τ→0

e−M(τ)

∫ τ

0

eM(u) du = 0.

Proof. Let us introduce for τ > 0

f(τ) := log

∫ τ

0

eM(u) du.

Note that the equation in the lemma is equal to
1/f ′(τ). Clearly limτ→∞ f(τ) = +∞, as well as
limτ→∞M(τ) = +∞. So by L’Hôpital’s rule and
Lemma 6 above, one gets

lim
τ→∞

M(τ)

f(τ)
= lim
τ→∞

λ(τ)

f ′(τ)
= 1,

which yields

lim
τ→∞

e−M(τ)
∫ τ
0
eM(u) du

1/λ(τ)
= 1,

which is exactly what we wanted.

For the second argument, observe that as τ → 0,
e−M(τ) → 1 and

∫ τ
0
eM(u) du → 0, which completes

the proof of this lemma.

Proof of Lemma 5. We begin by deriving the proba-
bility distribution of p(t). For all 1 < t ≤ T and m ≤ t

P(p(t) = m)

= P(update at m) · P(no updates from m to t)

= (1− e−(M(rm)−M(rm−1))) · e−(M(rt)−M(rm))

= e−(M(rt)−M(rm)) − e−(M(rt)−M(rm−1))

Then

E[rt − rp(t)]

=

t−1∑
m=1

(rt − rm)(e−(M(rt)−M(rm)) − e−(M(rt)−M(rm−1)))

=

t−1∑
m=1

(rm+1 − rm)e−(M(rt)−M(rm))

= e−M(rt)
t−1∑
m=1

(rm+1 − rm)eM(rm)

≤ e−M(rt)

∫ rt

0

eM(u) du.

Now by Lemma 7, one gets the desired result.

3.3 Regret vs. Consistency Trade-offs

We are now ready to specialize the general algorithm
above to obtain our main result, namely a regret-
consistency trade-off for OGD for convex and strongly
convex functions.

By linearity of expectation, and using Lemma 5 we
have:

E[ET ] = L ·
T∑
t=1

E[rt − rp(t)] ≤ C
T∑
t=1

1

λ(rt)
. (5)
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It remains to specialize δ and λ to achieve our desired
bounds.
Theorem 8 (Consistent OGD for Convex functions).
Let ft ∈ C1

L(X ) be convex for all t ∈ [T ]. Let δt =
√
t,

and denote by (rt) the padded decision path. For a
fixed ε ∈ (0, 1] set

λ(τ) := (1 + ε) τε, M(τ) = τ1+ε.

Then:

E[κT ] = O(T
1
2+

ε
2 ), E[RT ] = O(T 1− ε2 ).

Proof. It is easy to check that λ(τ) and M(τ) satisfy
the conditions of Lemma 5. Therefore:

E[rt − rp(t)] ≤
C

λ(rt)
≤ C

λ(
√
t)

=
C

(1 + ε)
t−

ε
2 = C ′t−

ε
2 .

Then,

E[ET ] ≤ C ′
T∑
t=1

t−
ε
2 ≤ C ′′T 1− ε2 = O(T 1− ε2 ).

By Theorem 1, we know thatRT (A) = O(
√
T ). Hence

E[RT ] = O(T 1− ε2 ).

Finally, to bound κT , recall that the total path length
from Lemma 3 (i), and the final padding of δ(T ) =

√
T .

Since M(τ) is increasing, we get

E[κT ] ≤M(rT ) ≤M((2D + 1)
√
T )

= (2D + 1)1+εT
1
2+

ε
2 = O(T

1
2+

ε
2 ), (6)

where the first inequality is due to the fact that the
number of poisson points is always greater than the
number of rounds that we update.

We can use a similar analysis in the strongly convex
case.
Theorem 9 (Consistent OGD for Strongly Convex
functions). Let ft ∈ C1

L(X ) be α-strongly convex, for
all t ∈ [T ]. Let δt = log t, and denote by (rt) the
padded decision path. Finally, let γ := 1 + L

α . For a
fixed ε ∈ (0, 1) set:

λ(τ) := exp
(
ε τγ

)
, M(τ) =

γ

ε
(exp

(
ε τγ

)
− 1).

Then one has

E[κT ] = O(T ε), E[RT ] = O(T 1−ε 1
γ ).

Proof. By Lemma 3 and the choice of δ·, since M(τ)
is increasing:

E[κT ] ≤M(rT ) ≤M(γ(1 + log T )) = O(T ε). (7)

Also, by Lemma 5 and integral approximation we get

E[ET ] ≤ C + C

∫ T

1

1

λ(log u)
du = O(T 1−ε 1

γ ). (8)

The reader should be convinced by now that for any
online algorithm that has well-behaved asymptotic de-
cision path length, one can use the SOLO algorithm
using the right intensity function λ, and get a consis-
tency/regret trade-off. We show this for the case of
Online Submodular Maximization in the next section.

4 EXTENSIONS TO CONSISTENT
SUBMODULAR MAXIMIZATION

In the previous section we described a meta-algorithm
that provides a consistency vs. regret trade-off for on-
line gradient descent. Here we show that a similar
set of ideas apply to the problem of online submod-
ular function optimization, a problem that appears
naturally in many diverse areas. For instance many
problems in clustering, result diversification, feature
selection, and data summarization, can be phrased as
optimizing a submodular function subject to a set of
constraints. Many of these have natural online vari-
ants where the loss function is a set function defined
on subsets of items, and can be reformulated as a sub-
modular utility, see for instance the survey by Krause
and Golovin (2014).

We follow a similar analysis as in Section 3. However,
the notion of regret no longer suffices: in the online
submodular maximization setting it is NP-hard to find
an optimal solution in hindsight, thus no poly-time al-
gorithm is going to achieve sublinear regret (unless P =
NP). Instead, we consider approximate no-regret algo-
rithms: For a maximization task, we call an algorithm
A a no β-regret algorithm if for any sequence of func-
tions (ft)t∈N ⊂ H inside a function class, ft : X → R,
A produces a sequence of points (xt)t∈N ⊂ X such that
for any T ∈ N, the β-regret defined as

RT := β · max
x?∈X

T∑
t=1

ft(x
?)−

T∑
t=1

ft(xt), (9)

is sublinear. In this setting, since the task is maxi-
mization, we regard ft as a utility rather than a loss.

Our goal is then to find trade-offs between approxi-
mate β-regret and consistency for different classes of
submodular functions. We give examples for two spe-
cial cases: monotone DR-submodular functions (Bian
et al., 2017) and monotone submodular set func-
tions (Nemhauser et al., 1978), see the references for
the exact definitions.
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For DR-submodular functions, Chen et al. (2018) give
an Online Gradient Ascent algorithm that achieves
sublinear 1

2 -regret. The algorithm produces points
x1, . . . , xT ∈ X satisfying

1

2
max
x?∈X

T∑
t=1

ft(x
?)−

T∑
t=1

ft(xt) ≤
3

4
DL
√
T , (10)

where D is the diameter of X .
By selectively deciding when to update the solution,
we transform it to an algorithm that suffers an extra
regret of O(T 1− ε2 ) in expectation, while updating at
most O(T

ε+1
2 ) times.

We further extend the analysis to the discrete case,
where the utility functions are submodular set func-
tions and the optimization domain is a matroid M.
Using the Swap-Rounding technique by Chekuri et al.
(2009) to round the solutions of online gradient ascent
algorithm, we get an algorithm that achieves sublinear
1/2-regret. We can then be selective on when to apply
the updates to achieve additional additive regret of
T 1− ε2 using at most O(T

ε+1
2 ) updates. We defer the

details to Appendix B.

5 EXPERIMENTS

We evaluate the performance of our algorithm for dif-
ferent parameters of ε, demonstrating different points
on the consistency vs. regret trade-off curve. Overall,
we find that while the base algorithm A updates the
solution at every time step, overwhelmingly we suffer
very little additional regret when we choose to update
significantly fewer times.

We focus on two cases:

Online Convex Optimization We perform Online
Logistic Regression on the MNIST dataset of hand-
written digits (LeCun, 1998), to distinguish digit 3
from 5 over the unit `1 ball. In this setting, the ex-
pected regret is:

RT =

T∑
t=1

ft(xt)− T · min
‖x‖1≤1

E[f(x)],

where the expectation is with respect to the training
set.

Online Submodular Maximization We investi-
gate the problem introduced in the Battle of the Water
Sensor Networks challenge (Avi Ostfeld et al., 2008),
where the goal is to find the best set of sensor locations
to detect a contamination event, minimizing detection
time.

In our experiment, we select 20 sensors from among
12 527 possible locations, based on performance on a
set of contamination events. As Leskovec et al. (2007)
showed, this problem can be formulated as an instance
of the facility location problem: For any subset of sen-
sor locations S, every contamination event is a sub-
modular function fe(S) := maxs∈S we,s, where we,s is
the reduction in penalty for sensor s in event e. Given
that the events are sampled from some distribution D,
the optimization problem can be written as

max
S⊆V,|S|≤20

Ef∼D[f(S)].

We perform Online Gradient Ascent on the multilin-
ear extension of fe’s, which can be computed easily
(c.f., Appendix E.2 of Karimi et al. (2017)). The opti-
mization domain is the matroid base polytope for the
cardinality constraint.

In this setting we cannot compute the exact 1/2-regret.
Instead, we compute the extra regret, as well as cumu-
lative utility. We also report results in the case that
one rounds the continuous solutions to discrete sets in
each round.

Metrics To evaluate the performance of the algo-
rithms we plot the following quantities:

1. Consistency cost, κt, denoting the number of
switches in the solution.

2. Extra regret, Et, denoting the loss in regret over
using the best low-regret algorithm.

3. For the MNIST dataset, total regret Rt.

Additionally, for consistency and extra regret, we eval-
uate the growth of the two quantities as a function
of t. To do so, we plot the functions log κt/ log t
and log Et/ log t . Observe that if x(t) = O(tα) then
lim supt→∞ log x(t)/log t ≤ α. This allows us to estimate
how close our empirical results are to the theoretical
bounds.

Results In the top row of Figure 3 we show the re-
sults for the MNIST dataset. In the first panel we
plot the consistency cost, showing both the raw cost
κt, as well as the scaled version log κt/ log t. The re-
sults closely track those predicted by the theory, as
we see κ grow as T

1
2+

ε
2 . In the second panel we plot

the extra regret. Here we see that the theoretical re-
sults are overly pessimistic, and the actual extra regret
that is achieved is far lower than that predicted by the
theory. This leads us to very favorable trade-offs, for
instance by taking ε = 0.3, the regret increase is less
than 2%, but the number of updates drops by 30x over
the baseline, as we update on approximately 3% of the
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Figure 3: Top row are experimental results for Online Convex Optimization on MNIST dataset. The bottom
row are experimental results for Online Submodular Maximization for the BWSN problem.

rounds. This is further demonstrated in the fourth
panel, which shows the total regret of the different pa-
rameter settings. The fact that the lines are bunched
close together again demonstrates that the additional
regret incurred by not updating during the majority
of the timesteps is minimal.

In the bottom row of Figure 3 we plot the results for
the BWSN problem. Here again, in the first panel we
investigate the consistency cost where we observe it
be sublinear in the number of rounds. In the second
panel we plot the extra regret, Et. Again, the extra re-
gret is far lower than the pessimistic theoretical bound.
Moreover, we see that sufficiently high, but bounded
away from 1, values of ε, e.g., ε = 0.9, appear to lead to
an improvement in results, suggesting that the lack of
updating acts as a regularizer. (We note that the im-
provement is statistically significant.) This improve-
ment is especially pronounced in the fourth plot, where
we show the regret due to rounded solutions. More-
over, one can verify the analysis in Appendix B, that
the regret bound for the multilinear extension upper
bounds the regret bound for discrete submodular func-
tion. Concretely, by updating in 3% of the rounds, we
only suffer 0.3% additional regret, when using ε = 0.3
and rounding the solution.

6 CONCLUSION

We presented the first truly online learning algorithms,
capable of dealing with large action sets, that trade-off

the frequency with which the solution is updated and
the final regret achieved. Our methods are based on
the realization of a specific non-homogeneous Poisson
process, which allows us to balance the two opposing
objectives. An immediate open question is whether
the bounds derived in this work can be further im-
proved. A broader direction is to better understand
update/performance trade-offs in other online appli-
cations.

Acknowledgements

This research was supported in part by SNSF NFP 75
grant no. 407540-167212.

References

O. Anava, E. Hazan, and S. Mannor. Online learn-
ing for adversaries with memory: Price of past mis-
takes. In Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 784–792, 2015.

M. Andrews, M. X. Goemans, and L. Zhang. Improved
bounds for on-line load balancing. Algorithmica, 23
(4):278–301, 1999. doi: 10.1007/PL00009263. URL
https://doi.org/10.1007/PL00009263.

C. Argue, S. Bubeck, M. B. Cohen, A. Gupta, and
Y. T. Lee. A nearly-linear bound for chasing nested
convex bodies. In Proceedings of the Thirtieth



Mohammad Reza Karimi, Andreas Krause, Silvio Lattanzi, Sergei Vassilvitskii

Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 117–122. SIAM, 2019.

Avi Ostfeld et al. The battle of water sensor net-
works (bwsn): A design challenge for engineers
and algorithms. Journal of Water Resources Plan-
ning and Management, 134(6):556–568, 2008. doi:
10.1061/(ASCE)0733-9496(2008)134:6(556).

A. Bernstein, J. Holm, and E. Rotenberg. On-
line bipartite matching with amortized replace-
ments. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-
10, 2018, pages 947–959, 2018. doi: 10.1137/
1.9781611975031.61. URL https://doi.org/10.
1137/1.9781611975031.61.

A. A. Bian, B. Mirzasoleiman, J. M. Buhmann, and
A. Krause. Guaranteed non-convex optimization:
Submodular maximization over continuous domains.
International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

S. Bubeck, M. B. Cohen, J. R. Lee, Y. T. Lee, and
A. Madry. k-server via multiscale entropic regular-
ization. CoRR, abs/1711.01085, 2017.

G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák.
Maximizing a Monotone Submodular Function Sub-
ject to a Matroid Constraint. SIAM Journal on
Computing, 40(6), 2011.

C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent
Randomized Rounding for Matroid Polytopes and
Applications. Computer, 2009.

L. Chen, H. Hassani, and A. Karbasi. Online contin-
uous submodular maximization. In Proceedings of
the Twenty-First International Conference on Arti-
ficial Intelligence and Statistics, volume 84, pages
1896–1905. PMLR, 2018.

L. Epstein and A. Levin. Robust algorithms for
preemptive scheduling. Algorithmica, 69(1):26–57,
2014. doi: 10.1007/s00453-012-9718-3. URL https:
//doi.org/10.1007/s00453-012-9718-3.

S. Geulen, B. Vöcking, and M. Winkler. Re-
gret minimization for online buffering problems us-
ing the weighted majority algorithm. In COLT
2010 - The 23rd Conference on Learning Theory,
Haifa, Israel, June 27-29, 2010, pages 132–143,
2010. URL http://colt2010.haifa.il.ibm.com/
papers/COLT2010proceedings.pdf\#page=140.

A. Gu, A. Gupta, and A. Kumar. The power of de-
ferral: Maintaining a constant-competitive steiner
tree online. SIAM J. Comput., 45(1):1–28, 2016.
doi: 10.1137/140955276. URL https://doi.org/
10.1137/140955276.

A. Gupta and A. Kumar. Online steiner tree with dele-
tions. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-
7, 2014, pages 455–467, 2014. doi: 10.1137/
1.9781611973402.34. URL https://doi.org/10.
1137/1.9781611973402.34.

A. Gupta, A. Kumar, and C. Stein. Maintain-
ing assignments online: Matching, scheduling, and
flows. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-
7, 2014, pages 468–479, 2014. doi: 10.1137/
1.9781611973402.35. URL https://doi.org/10.
1137/1.9781611973402.35.

A. Gupta, R. Krishnaswamy, A. Kumar, and D. Pani-
grahi. Online and dynamic algorithms for set cover.
In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages
537–550, 2017. doi: 10.1145/3055399.3055493. URL
http://doi.acm.org/10.1145/3055399.3055493.

A. György and G. Neu. Near-optimal rates for limited-
delay universal lossy source coding. IEEE Trans.
Information Theory, 60(5):2823–2834, 2014. doi: 10.
1109/TIT.2014.2307062. URL https://doi.org/
10.1109/TIT.2014.2307062.

M. Imase and B. M. Waxman. Dynamic steiner tree
problem. SIAM J. Discrete Math., 4(3):369–384,
1991. doi: 10.1137/0404033. URL https://doi.
org/10.1137/0404033.

M. R. Karimi, M. Lucic, H. Hassani, and A. Krause.
Stochastic Submodular Maximization: The Case of
Coverage Functions. NIPS, 2017.

A. Krause and D. Golovin. Submodular function max-
imization., 2014.

J. Lacki, J. Ocwieja, M. Pilipczuk, P. Sankowski, and
A. Zych. The power of dynamic distance oracles:
Efficient dynamic algorithms for the steiner tree. In
Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 11–20,
2015. doi: 10.1145/2746539.2746615. URL http:
//doi.acm.org/10.1145/2746539.2746615.

S. Lattanzi and S. Vassilvitskii. Consistent k-
clustering. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, pages
1975–1984, 2017. URL http://proceedings.mlr.
press/v70/lattanzi17a.html.

Y. LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.



Consistent Online Optimization: Convex and Submodular

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective out-
break detection in networks. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD), pages 420–429, August 2007.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for server problems. Journal
of Algorithms, 11(2):208–230, 1990.

N. Megow, M. Skutella, J. Verschae, and A. Wiese.
The power of recourse for online MST and TSP.
SIAM J. Comput., 45(3):859–880, 2016. doi: 10.
1137/130917703. URL https://doi.org/10.1137/
130917703.

N. Merhav, E. Ordentlich, G. Seroussi, and M. J.
Weinberger. On sequential strategies for loss func-
tions with memory. IEEE Trans. Information The-
ory, 48(7):1947–1958, 2002. doi: 10.1109/TIT.2002.
1013135. URL https://doi.org/10.1109/TIT.
2002.1013135.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submod-
ular set functionsâĂŤi. Mathematical programming,
14(1):265–294, 1978.

S. J. Phillips and J. Westbrook. On-line load bal-
ancing and network flow. Algorithmica, 21(3):245–
261, 1998. doi: 10.1007/PL00009214. URL https:
//doi.org/10.1007/PL00009214.

P. Sanders, N. Sivadasan, and M. Skutella. Online
scheduling with bounded migration. Math. Oper.
Res., 34(2):481–498, 2009. doi: 10.1287/moor.
1090.0381. URL https://doi.org/10.1287/moor.
1090.0381.

M. Skutella and J. Verschae. A robust PTAS
for machine covering and packing. In Algo-
rithms - ESA 2010, 18th Annual European Sym-
posium, Liverpool, UK, September 6-8, 2010. Pro-
ceedings, Part I, pages 36–47, 2010. doi: 10.1007/
978-3-642-15775-2\_4. URL https://doi.org/
10.1007/978-3-642-15775-2\_4.

J. Westbrook. Load balancing for response time. J.
Algorithms, 35(1):1–16, 2000. doi: 10.1006/jagm.
2000.1074. URL https://doi.org/10.1006/jagm.
2000.1074.

M. Zinkevich. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceed-
ings of the 20th International Conference on Ma-
chine Learning (ICML-03), pages 928–936, 2003.

A Proofs

A.1 Proof of Lemma 3

Proof. By the OGD update rule, the projection in-
equality, and Lipschitz continuity one gets

pt+1 − pt = ‖xt+1 − xt‖
= ‖ProjX (xt − ηt∇ft(xt))− xt‖
≤ ‖xt − ηt∇ft(xt)− xt‖
= ηt‖∇ft(xt)‖ ≤ ηtL.

Since p1 = 0 one can write

pt =

t−1∑
j=1

(pj+1 − pj) ≤ L
t−1∑
j=1

ηj .

For (i), we have ηt = D
L
√
t
and

pt ≤ L
t−1∑
j=1

D

L
√
j
≤ D

∫ t−1

0

z−
1
2 dz ≤ 2D

√
t.

For (ii), we have ηt = 1
αt and

pt ≤ L
t−1∑
j=1

1

αj
≤ L

α
(1 + log t).

B Details on Online Submodular
Maximization

DR-Submodular case We can use our result to de-
vise a consistent online DR-submodular maximization
algorithm, using the simple fact that our regret anal-
ysis is additive with respect to Et. Namely, if we add∑T
t=1 ft(xt)−

∑T
t=1 ft(yt) to (10), we get the notion of

1/2-regret for the sequence (yt). The rest of the analy-
sis follows immediately: by being consistent, one suf-
fers an extra regret of O(T 1− ε2 ) in expectation, while
updating at most O(T

ε+1
2 ) times.

Monotone Submodular Functions We now re-
late the DR-Submodular result to the discrete case,
where the utility functions are submodular set func-
tions and the optimization domain is a matroidM.

It is known (see Calinescu et al. (2011)) that for
any non-negative monotone submodular function F :
2V → R+, where V is a d-element set, the multilinear
extension f : [0, 1]d → R+ defined as

f(x) :=
∑
S⊆V

F (S)
∏
i∈S

xi
∏

j∈V \S

(1− xj),
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is DR-submodular. Also for a monotone submodular
function F with marginal values in [0, 1] and multilin-
ear extension f , one can round a continuous point to
a set: Let X be the matroid base polytope ofM, i.e.
the convex hull of all the indicator vectors of bases of
M. Given a point x ∈ X , Swap-Rounding (Chekuri
et al., 2009) returns a random element of M, say
R = roundM(x), such that E[F (R)] ≥ f(x).

We now take the online stochastic setting, and also as-
sume that in each round, the player can evaluate the
multilinear extension of the submodular utility, as well
as its gradients. With a few modifications of the con-
sistent OGD algorithm, one can design an algorithm
for this discrete case, as described in Algorithm 3.

Algorithm 3 Consistent Online Submodular Maxi-
mization
x1 ← a point in X .
S1 ← rounded set of x1.
r1 ← 0.
for t ∈ [T ] do
Play St and receive loss Ft(St).
xt+1 ← ProjX (xt + ηt∇ft(xt))
rt+1 ← rt + ‖xt+1 − xt‖+

√
t+ 1−

√
t

With probability 1− exp(−(r1+εt+1 − r1+εt ))
Update: set St+1 ← roundM(xt).

Otherwise set St+1 ← St.
end for

It is clear that the same bounds for consistency cost
in the case of DR-Submodular functions holds for this
algorithm as well. To provide the regret bounds, we
first take the expectation w.r.t. the distribution in-
duced by rounding, and then, w.r.t. the probability of
updating. By the property of Swap-Rounding, for any
sequence y1, . . . , yT ∈ X we have

ESt [Ft(St)] ≥ ft(yt)

Also, since sum of submodular functions is submodular
and the multilinear extension is an extension, we have

max
x?∈X

T∑
t=1

ft(x
?) ≥ max

S?∈M

T∑
t=1

Ft(S
?).

Therefore, by summing the inequalities we can get

1

2
max
x?∈X

T∑
t=1

ft(x
?)−

T∑
t=1

ft(yt)

≥ E

{
1

2
max
S?∈M

T∑
t=1

Ft(S
?)−

T∑
t=1

Ft(St)

}
,

which means that the expected value of 1/2-regret for
the discrete setting is upper bounded by the 1/2-regret
of the DR-Submodular setting. Taking expectation

w.r.t. the probabilities of updates, gives the desired
result.
Remark 10. Note that we did not use the fact that the
initial online algorithm has no 1/2-regret. If the initial
algorithm is in general a no β-regret algorithm, with
a decision path length of O(

√
T ), one gets the same

result.


