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Abstract

Trade-off (aka Pareto) curves are typically used to represent the trade-off among different
objectives in multiobjective optimization problems. Although trade-off curves are exponentially
large for typical combinatorial optimization problems (and infinite for continuous problems), it
was observed in [PY1] that there exist polynomial size ε approximations for any ε > 0, and
that under certain general conditions, such approximate ε-Pareto curves can be constructed in
polynomial time. In this paper we seek general-purpose algorithms for the efficient approxima-
tion of trade-off curves using as few points as possible. In the case of two objectives, we present
a general algorithm that efficiently computes an ε-Pareto curve that uses at most 3 times the
number of points of the smallest such curve; we show that no algorithm can be better than
3-competitive in this setting. If we relax ε to any ε′ > ε, then we can efficiently construct an
ε′-curve that uses no more points than the smallest ε-curve. With three objectives we show
that no algorithm can be c-competitive for any constant c unless it is allowed to use a larger ε
value. We present an algorithm that is 4-competitive for any ε′ > (1 + ε)2 − 1. We explore the
problem in high dimensions and give hardness proofs showing that (unless P=NP) no constant
approximation factor can be achieved efficiently even if we relax ε by an arbitrary constant.

1 Introduction

When evaluating different solutions from a design space, it is often the case that more than one
criterion comes into play. For example, when choosing a route to drive from one point to another,
we may care about the time it takes, the distance traveled, the complexity of the route (e.g. number
of turns), etc. When designing a (wired or wireless) network, we may consider its cost, its capacity
(the load it can carry), its coverage, etc. When solving computational problems we care about their
use of resources such as time, memory, and processors.

Such problems are known as multicriteria or multiobjective problems. The area of multiobjective
optimization has been extensively investigated for many years with a number of conferences and
books (e.g. [Cli, Ehr]). In such problems we are interested in the trade-off between the different
objectives. This is captured by the trade-off or Pareto curve, the set of all feasible solutions
whose vector of the various objectives is not dominated by any other solution. The trade-off curve
represents the range of reasonable possibilities in the design space. Typically we have a small
number of objectives (2, 3, . . .) and we wish to plot the trade-off curve to get a sense of the
design space. Unfortunately, often the trade-off curve has exponential size for discrete optimization
problems even for two objectives (and it is typically infinite for continuous problems).

Recently we started a systematic study of multiobjective optimization based on an approxima-
tion that circumvents the aforementioned exponential size problem [PY1, PY2]. The approach is
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based on the notion of an ε-Pareto curve (for ε > 0), which is a set of solutions that approximately
dominate every other solution. More specifically, for every solution s, the ε-Pareto curve contains
a solution s′ that is within a factor (1+ ε) of s, in all of the objectives. Such an approximation was
studied before for certain specific problems, most notably for multicriteria shortest paths, where
Hansen [Han] and Warburton [Wa] showed how to construct an ε-Pareto curve in polynomial time.

It was shown in [PY1] that every multiobjective optimization problem with a fixed number of
polynomially computable objective functions (as is commonly the case) possesses an ε-Pareto curve
of size polynomial in the size of the instance and 1/ε, for every ε > 0. Generally, however such
an approximate curve may not be constructible in polynomial time. A necessary and sufficient
condition for its efficient computability is the existence of an efficient algorithm for the following
multiobjective version of the Gap problem: Given a vector of values b, either compute a solution
that dominates b, or determine that there is no solution that is better than b by at least a factor of
1 + ε in all objectives. Several classes of problems (including specifically shortest paths, spanning
trees, matching, and others) are shown in [PY1, PY2] to satisfy this property and hence have
polynomially constructible ε-Pareto sets.

Although the theorem and construction of [PY1] yield a polynomial size ε-Pareto set, the set is
not exactly “small”: for d objectives, it has size roughly (m/ε)d−1, and the construction requires
(m/ε)d calls to the Gap routine. Here m is the number of bits used to represent the values in the
objective functions. (We give the precise definitions of the framework and the parameters in the
next section.)

Note that an ε-Pareto set is not unique: many different subsets may qualify and it is quite
possible that some are very small while others are very large (without containing any redundant
points). Having a small approximate Pareto set gives a succinct outline of the trade-offs involved and
is important for many reasons. For example, often the representative set of solutions is investigated
further by humans to assess the different choices and pick a suitable one, based on factors that are
perhaps not quantifiable.

Suppose that our problem instance has a small ε-Pareto set. Can we find one? Furthermore, can
we find one, while spending time that is proportional to the size of the small computed set, rather
than the worst case set? These are the questions we investigate in this paper. We seek general
algorithms that apply in all polynomial cases, i.e. whenever a Gap routine as above is available.

In the next section, we define the framework. In Section 3 we study the case of two objectives.
We present a general algorithm that for any ε > 0 computes an ε-Pareto set that has size at most
3 times k, the size of the smallest ε-Pareto set. This algorithm uses only O(k log(m/ε)) calls to a
Gap routine (this is the dominant factor in the running time). We show a matching lower bound
on the approximation ratio, i.e. there is no general algorithm that can do better than 3. However,
if we relax ε to any ε′ > ε, then we can efficiently construct an ε′-curve that uses no more than k
points.

We also discuss the dual problem: Given a bound, k, on the number of points we are willing to
have, how good of an approximation (how small of an ε) can we get? For example, if k = 1, this is
the so-called knee problem: if we pick one point to minimize the ratio for all objectives, what should
that compromise point be, and what is the ratio? We show that the ratio can be approximated
arbitrarily closely.

In Section 4 we study the case of three objectives. We show that no general algorithm can be
within any constant factor c of the smallest ε-Pareto set unless it is allowed to use a larger ε-value.
We present an algorithm that achieves a factor of 4 for any ε′ > (1 + ε)2 − 1 (≈ 2ε for small ε).
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Furthermore, our algorithm again uses only O(k log(m/(ε′ − 2ε)) Gap calls.
Finally in Section 5 we discuss the case of an arbitrary number of objectives. We show that even

if the solution points are given to us explicitly in the input, we cannot efficiently approximate the size
of the smallest ε-Pareto curve: the problem is equivalent to the Set Cover problem. Furthermore,
no constant factor approximation can be efficiently achieved, even if we relax ε by an arbitrary
constant.

2 Preliminaries

A multiobjective optimization problem has a set of instances, every instance x has a set of solutions
S(x). There are d objective functions, f1, . . . , fd, each of which maps every instance x and solution
s ∈ S(x) to a positive rational number fj(x, s). The problem specifies for each objective whether
it is to be maximized or minimized. We say that a d-vector u dominates another d-vector v if it
is at least as good in all the objectives, i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to
be minimized); the domination is strict if at least one of the inequalities is strict. Similarly, we
define domination between any solutions according to the d-vectors of their objective values. Given
an instance x, the Pareto set P (x) is the set of undominated d-vectors of values of the solutions.
As usual we are also interested in solutions that realize these values, but we will often blur the
distinction and refer to the Pareto set also as a set of solutions that achieve these values.

We say that a d-vector u c-covers another d-vector v if u is at least as good as v up to a factor
of c in all the objectives, i.e. uj ≥ vj/c if fj is to be maximized (uj ≤ cvj if fj is to be minimized).
Given an instance x and ε > 0, an ε-Pareto set Pε(x) is a set of d-vectors of values of solutions
that (1 + ε)-cover all vectors in P (x); i.e., for every u ∈ P (x), there exists a u′ ∈ Pε(x) such that
u′ (1 + ε)-covers u. For a given instance, there may exist many ε-Pareto sets, and they may have
very different sizes.

To study the complexity of the relevant computational problems, we assume as usual that
instances and solutions are represented as strings, that solutions are polynomially bounded and
polynomially recognizable in the size of the instance, and that the objective functions are polyno-
mially computable. In particular this means that each value fj(x, s) is a positive rational whose
numerator and denominator have at most m bits, where m ≤ p(|x|), for some polynomial p. It is
shown in [PY1] that for every multiobjective problem in this framework, for every instance x and
ε > 0 there exists an ε-Pareto set Pε(x) of size at most O((4m/ε)d−1).

Hence, for every multiobjective optimization problem with a fixed number d of objectives, for
every instance x and every ε > 0 there always exists an approximate ε-Pareto set Pε(x) of polynomial
size in the size |x| of the instance x and 1/ε. The issue is thus one of efficient computability. We
say that a multiobjective problem Π has a polynomial time approximation scheme (respectively,
a fully polynomial time approximation scheme) if there is an algorithm, which, given instance x
and a rational number ε > 0, constructs an ε-Pareto set Pε(x) in time polynomial in the size |x| of
the instance x (respectively, in time polynomial in the size |x| of the instance, the size |ε| of ε (i.e.
number of bits in the representation of ε), and in 1/ε).

Let MPTAS (resp. MFPTAS) denote the class of multiobjective problems that have a polyno-
mial time (resp. fully polynomial time) approximation scheme. A necessary and sufficient condition
was shown in [PY1], which relates the efficient computation of an ε-Pareto set for a multiobjective
problem Π with a fixed number d of objectives to the following GAP Problem: given an instance
x of Π, a (positive rational) d-vector b, and a rational ε > 0, either return a solution whose vector
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dominates b or report that there does not exist any solution whose vector is better than b by at
least a (1 + ε) factor in all of the coordinates. As shown in [PY1], a problem Π is in MPTAS (resp.
MFPTAS) if and only if there is a subroutine GAP that solves the GAP problem for Π in time
polynomial in |x| and |b| (resp. in |x|, |b|, |ε| and 1/ε). The one direction of this equivalence is quite
simple: if we can construct an ε-Pareto set Pε(x) in (fully) polynomial time, then the following
simple algorithm solves the GAP problem: construct an ε-Pareto set Pε(x) and check if the given
vector b is dominated by any point of Pε(x); if so, then return the corresponding solution, else
return NO. The other direction is sketched in the next section.

For simplicity, we will usually drop the instance x from the notation and use GAPε(b) to denote
the solution returned by the GAP subroutine. To make the presentation easier, we will also say
that GAP returns YES and that b is a YES point if GAP returns a solution; otherwise we’ll say
that GAP returns NO and b is a NO point.

We will assume from now on that the polynomial time routine GAP exists, and will present
our algorithms using this subroutine as a black box. We say that an algorithm that uses a GAP
routine as a black box to access the solutions of the multiobjective problem is generic, as it is not
geared to a particular problem, but applies to all of the problems for which we can construct an
ε-Pareto set in (fully) polynomial time. All that our algorithms need to know about the input
instance is bounds on the minimum and maximum possible values of the objective functions. For
example, if the objective functions are rationals whose numerators and denominators have at most
m bits, then an obvious lower bound on the objective values is 2−m and an obvious upper bound
is 2m; however, for specific problems better bounds may be available. Based on the bounds, our
algorithms call the routine GAPδ(b) for certain tolerances δ and points b, and uses the returned
results to compute an approximate Pareto set. In our algorithms the tolerance δ depends only on
ε, and not for example on the size of the objective values in the input instance or the results of
previous GAP calls. In general, however, we can allow a generic algorithm to call the GAP routine
with arbitrary δ and b as long as 1/δ and the size of b are polynomially bounded in 1/ε and the
size of the input, so that the overall algorithm runs in polynomial time.

Note that the GAP problem is monotonic in the input vector b: if a vector b dominates another
vector b′, and there is a solution that dominates b, then there is also a solution (namely the same
solution) that dominates also b′. It will be often convenient to assume that the GAP routine is also
monotone in b, i.e. if it returns a solution on a vector b that dominates b′, then it returns also a
solution on b′. Note that, if a multiobjective problem is in MPTAS (resp. MFPTAS), then it has
a polynomial time (resp. fully polynomial time) monotone GAP routine; for instance, the routine
described above is monotone.

In a general multiobjective problem we may have some minimization and some maximization
objectives. It will be often convenient in the algorithms and the proofs to assume that all objective
are of a particular type, e.g. all are minimization objectives, so that we do not have to consider
all possible combinations. This can be done without loss of generality for the following reasons.
Suppose that we have a problem Π with d objectives, f1, . . . , fd, where the first t objectives are
maximization and the rest minimization objectives. Consider the problem Π′ which has the same
set of instances and feasible solutions, and whose first t objectives are the reciprocals of those of
Π, while the remaining d − t objectives are the same as Π. All objectives of Π′ are minimization
objectives. It follows easily from the definitions that for every instance there is a straightforward
1-1 correspondence between the Pareto sets of the two problems, and between ε-Pareto sets.
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3 Two Objectives

We have a biobjective problem with an associated GAP routine that runs in (fully) polynomial
time. We are given an instance and an ε, and we wish to construct an ε-Pareto set of as small size
as possible. This Section is organized as follows. Section 3.1 concerns lower bounds on the size of
the ε-Pareto set that can be efficiently constructed, as compared to the smallest ε-Pareto set. In
particular, we show that no generic algorithm can guarantee an approximation ratio better than 3.
In Section 3.2 we present a generic algorithm that guarantees ratio 3. In Section 3.3 we show that
for any ε′ > ε, we can compute efficiently an ε′-Pareto set that contains no more points than the
smallest ε-Pareto set. In Section 3.4, we use the latter algorithm to approximate the dual problem:
Given an instance and a number k, find the best k solutions that approximate the Pareto curve as
closely as possible. We give an algorithm that is (1 + θ)-competitive for any θ > 0. For the special
case of k = 1 (i.e. the ’knee’ case) we give an algorithm that works for any number of objectives.
In Section 3.5 we discuss briefly the implications for some concrete multiobjective problems.

We use the following notation in this section. Consider the plane whose coordinates correspond
to the two objectives. Every solution is mapped to a point on this plane. We use x and y as the
two coordinates of the plane. If p is a point, we use x(p), y(p) to denote its coordinates; that is,
p = (x(p), y(p)).

3.1 Lower Bound

To prove a lower bound, we take advantage of the fact that on some inputs the Gap routine can
return either YES or NO. In particular, we will present two Pareto sets which are indistinguishable
from each other using the Gap procedure as a black box, yet whose smallest ε-Pareto sets are of
different sizes.

Theorem 1. There is no generic algorithm that approximates the size of the smallest ε-Pareto
set to a factor better than 3 in the biobjective case. In particular, there is a biobjective problem
with a polynomial time GAP procedure that cannot be approximated within a factor better than 3
in polynomial time unless P=NP.

Proof. Suppose we have minimization objectives (the same holds for maximization or mixed objec-

tives). Fix any rational ε > 0. Consider the following set of points p, q =
(

x(p)(1 + ε) + 1, y(p)
1+ε

)

and r =
(

x(p)(1 + ε) + 1, y(p)−1
(1+ε)

)

. Let P = {p, q} and Q = {p, q, r}. Note that point p (1+ε)-covers

point q. Therefore, the smallest ε-Pareto set for P consists of only one point, p. However, p does
not (1 + ε)-cover r (because of the y coordinate), and neither q nor r (1 + ε)-cover p (because of
the x coordinate). Therefore, the smallest ε-Pareto set for Q must include at least two points.

Let x(p) = y(p) = M be very large integers (exponential in the size of the input). Suppose
that we have a polynomial time generic algorithm. We will argue that such an algorithm cannot
tell the difference between instances P and Q. Here we exploit the fact that there are points b on
which GAPδ(b) is not uniquely defined. Consider the points b where GAPδ(b) can return r; these
are the points which r dominates in both objectives. Now if we throw out the points where GAPδ

can also return q, i.e. the points which both q and r dominate in both objectives, we notice that
for the points remaining GAPδ(b) can return NO as long as (1 + δ)y(r) > y(q), i.e. as long as
1/δ < M − 1. Since we have a polynomial generic algorithm, 1/δ has to be polynomially bounded
in the size of the input, hence polynomial in log M . Therefore, using the GAPδ function as a black
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box, the algorithm cannot say whether or not r is part of the solution, and thus it is forced to take
at least two points, even when it is presented with the set P .

We can make a symmetric observation if instead of q and r we have q′ =
(

x(p)
1+ε , y(p)(1 + ε) + 1

)

and r′ =
(

x(p)−1
(1+ε) , y(p)(1 + ε) + 1

)

. Here again using the GAPδ routine the algorithm cannot detect

if the point r′ is in the solution space or not. Combining the two bad cases, we see that we cannot
tell if the size of the optimal solution is one point, as it is if P = {p, q, q′} or if it is three points, as
it is when P = {p, q, r, q′, r′}.

We can turn the above argument into an NP-hardness proof by defining a suitable biobjective
problem so that the points r, r′ are present iff a given instance of an NP-complete problem has
a solution. For example, define the following artificial problem. An input instance is a Boolean
formula as in the Satisfiability problem. There are 3 solutions mapped to the three points p, q, q′.
In addition, for every truth assignment to the variables, there are two solutions, which are mapped
to r, r′ if the truth assignment satisfies the formula, and to q, q′ if it does not satisfy it. So, there
is a ε-Pareto set with 1 point iff there is no satisfying truth assignment.

For a less artificial example, consider the following biobjective problem Π, a variant of the
Knapsack problem1. We are given a set U = U1 ∪U2 of items, partitioned into a set U1 of items of
type 1 and a set U2 of items of type 2; each item u ∈ U has a positive rational size s(u) and value
v(u). We are also given a size bound C and a value bound D. A solution is a nonempty subset R of
items of the same type such that, either all items are of type 1 and the total size s(R) =

∑

u∈R s(u)
is at most C, or all items are of type 2 and their total value v(R) =

∑

u∈R v(u) is at least D. The
goal is to minimize size and maximize value.

We can solve the GAP problem in fully polynomial time using a fully polynomial approximation
scheme for the Knapsack problem [IK]. This is easy to show and is left to the reader. Furthermore,
we can prove that for any ε > 0, it is NP-hard to approximate the size of the minimum ε-Pareto
set for Π with ratio smaller than 3. In fact, it is NP-hard to determine whether one point suffices
or we need at least 3 points. We will show the NP-hardness part below.

The reduction is from the Partition problem (a special case of the Knapsack problem) [GJ].
Recall that in the Partition problem, we are given a set N of n positive integers a1, . . . , an, and we
wish to determine whether it is possible to partition N into two subsets with equal sum. Given an
instance of the Partition problem, construct an instance of the biobjective problem Π as follows.
Let B =

∑

ai/2 and let H > 2(1 + ε)(B + 1). For each i = 1, . . . , n, we have one item of type 1
with size Hai and value (1 + ε)ai and one item of type 2 with size ai/(1 + ε) and value ai/H. In
addition we have a special item p of type 2 with size B + 1 and value B − 1. Let C = HB and
D = B/H.

We claim that if the instance of the Partition problem has a solution then the smallest ε-Pareto
set must contain at least 3 points, while if there is no solution then one point suffices. Suppose first
that the instance of the Partition problem has no solution, i.e. there is no subset I of {1, . . . , n}
such that

∑

i∈I ai = B. We claim then that the solution consisting of the special item p is a (1+ ε)-
Pareto set. It suffices to show that every solution R of Π has size at least (B +1)/(1+ ε) and value
at most (1+ ε)(B−1). Let R be a solution of Π and let I be the subset of {1, . . . , n} corresponding
to the items of R. If R is a set of items of type 1, then since R is nonempty, its size is at least

1For the standard Knapsack problem, it is easy to show by a similar argument a factor of 2 hardness, i.e., it is
NP-hard to determine for a given instance whether one point suffices to (1 + ε)-cover the cost-value trade-off curve
or whether two points are needed. The same property can be shown for many other common problems.
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H > B + 1. Since its size is at most C = HB, it follows that
∑

i∈I ai ≤ B. Since the Partition
problem has no solution,

∑

i∈I ai ≤ B− 1 and thus v(R) = (1 + ε)
∑

i∈I ai ≤ (1 + ε)(B− 1). If R is
a set of items of type 2 then its value is at most B − 1 + 2B/H < B. If R includes p, then its size
is at least B + 1. If R does not include p then v(R) ≥ B/H implies that

∑

i∈I ai ≥ B. Since the
Partition instance has no solution, it follows that

∑

i∈I ai ≥ (B + 1) hence s(R) ≥ (B + 1)/(1 + ε).
Suppose that the instance of the Partition problem has a solution, i.e. there is a subset I of

{1, . . . , n} such that
∑

i∈I ai = B. Let R (respectively R′) be the set of items of type 1 (resp.
type 2) that correspond to the indices in I. Then R is mapped to the point r = (s(R), v(R)) =
(HB, (1 + ε)B) and R′ is mapped to the point r′ = (s(R′), v(R′)) = (B/(1 + ε), B/H). Point r is
not (1 + ε)-covered by any solution consisting of items of type 2 (because their value is too low),
and point r′ is not (1+ ε)-covered by any solution that includes the special item p or which consists
of items of type 1 (because their size is too high). In addition, the solution {p} that contains only
the special item p is not (1 + ε)-covered by any other solution that does not include p, because
solutions consisting of items of type 1 have too high size and solution consisting only of other items
of type 2 have too low value. Therefore, any ε-Pareto set must contain at least 3 points.

The proof of the theorem showed that a generic algorithm cannot determine whether there
is an ε-Pareto set with 1 point or whether 3 points are needed. If we wish, we can modify the
construction to show that, for any k, it is impossible for a generic algorithm (and it is NP-hard for
some problems) to determine whether the smallest ε-Pareto set has k points or needs 3k points.
The modification involves the replication of the bad configuration of the proof k times. Specifically,
instead of one point p, we have k points p1, . . . , pk, where pi = ((2 + ε)ix(p), (2 + ε)k−iy(p)), and
similarly we have k points corresponding to each one of q, q′, r, r′, obtained by multiplying the
x-coordinate by (2 + ε)i and the y-coordinate by (2 + ε)k−i . Note that no point with index i is
(1 + ε)-covered by any point with a different index. Thus, if the points corresponding to r, r′ are
not present then there is a ε-Pareto set with k points, while if they are present then we need 3k
points.

Note finally that the lower bound above is brittle, in the sense that if the algorithm is allowed
to return an ε′-Pareto set for any ε′ > ε, the proof no longer holds. In fact we will show in Section
3.3, that for any ε′ > ε there is an algorithm that finds an ε′-Pareto set Pε′ , of size no bigger than
the optimal ε-Pareto set.

3.2 2-Objective Algorithms

We assume for concreteness that both objectives are to be minimized; the algorithm is similar in the
other cases. We recall here the original algorithm of [PY1]. To compute an ε-Pareto set, and in fact
prove a polynomial bound on its size, consider the following scheme. Divide the space of objective
values geometrically into rectangles, such that the ratios of the large to the small coordinates is
(1+ε′)=

√
1 + ε in all dimensions; equivalently if we switch to a log-log scale of the objective values,

the plane is partitioned arithmetically into squares of size log(1 + ε′) (≈ ε/2 for small ε). If
√

1 + ε
is not rational, then we let ε′ be a rational that approximates

√
1 + ε − 1 from below, and which

has representation size O(|ε|) (i.e. number of bits in the numerator and denominator). Proceed
to call GAPε′ on all of the rectangle corner points, and keep an undominated subset of all points
returned. It is easy to see that this forms an ε-Pareto set. (To prove that this set cannot be too
large, note that we can discard points until there is at most one remaining in each of the rectangles.)
If m is the maximum number of bits in the numerator and denominator of the objective functions,
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then the ratio of the largest to the smallest possible objective value is 22m, hence the number of
subdivisions in each dimension is 2m/ log(1 + ε′) ≈ 4m/ε for small ε.

This algorithm gives no guarantees on the size of the ε-Pareto set it returns with respect to
P ∗

ε , the smallest ε-Pareto set. It is possible to modify the algorithm in a simple manner so that
it computes a ε-Pareto set of size at most 7|P ∗

ε |, however we will instead give a better algorithm
that achieves an approximation ratio of 3, and which furthermore is more efficient in the number
of calls to the GAP routine.

To compute a 3-approximation to P ∗
ε we will proceed in two phases. In the first phase we will

compute an ε′′-Pareto set for a particular ε′′ < ε. In the second phase we will delete points from
this set until we are left with a small ε-Pareto set.

We describe the first phase now. Let ε′ > 0 be a rational that approximates 4
√

1 + ε − 1 from
below with a representation of size O(|ε|). Thus, (1 + ε′)4 ≤ 1 + ε < (1 + ε′)5. Let δ ≤ ε′ be a
rational, also of size O(|ε|), such that (1 + ε)(1 + δ) < (1 + ε′)5. Note that we can pick ε′, δ so that
1/ε′ = O(1/ε) and 1/δ = O(1/ε).

We will begin again by partitioning the plane of objective values into rectangles, using a finer
grid now with ratio 1 + ε′. We will use the term “corner points” to refer to the points of the grid
(i.e. the corner points of the rectangles). For the lower left corner of the grid we pick a point
x0, y0 that has coordinates less than the smallest possible values of the objective functions. This
determines then the lines of the grid, which we extend one level beyond the maximum possible
values of the objective functions. That is, the upper right corner of the grid has coordinates
x0(1 + ε′)h, y0(1 + ε′)v, for some numbers h, v such that x0(1 + ε′)h−1, y0(1 + ε′)v−1 are at least
as great as the maximum possible objective values. Clearly, the number of horizontal and vertical
lines of the grid is O(m/ log(1 + ε)), which is O(m/ε) for small ε. However, we will not construct
explicitly the whole grid: our algorithm will only generate a subset of the points of the grid as it
needs them.

The first phase of the algorithm consists of two repeating steps that use two operations, ZAG
and ZIG, applied to corner points b of the grid. It is simpler to define first the operations under
the assumption that the GAP routine is monotone, although we will show that the algorithm
works correctly and guarantees ratio 3 even if the GAP routine is not monotone. The operation
ZAG(b) returns a corner point p on the same vertical line as b with minimal y value, such that
GAPδ(p) = YES, if there is such a point; if there is no such point then ZAG(b) returns NO. The
operation ZIG(b) is defined symmetrically: ZIG(b) returns a corner point p on the same horizontal
line as b with minimal x value, such that GAPδ(p) = YES, if there is such a point; if there is no
such point then ZIG(b) returns NO.

We implement ZAG and ZIG as follows. Suppose that GAPδ(b) = YES. Note that GAP returns
NO on all the points on the leftmost line and the bottom line of the grid. To compute ZAG(b) we
do a binary search on the set of corner points that lie below b on the same vertical line. Similarly,
to compute ZIG(b) we do a binary search on the set of grid points that lie left of b on the same
horizontal line. In this case, ZIG and ZAG return a point.

Suppose that GAPδ(b) = NO. If GAPδ returns NO also at the highest point of the vertical
line through b, then ZAG(b) returns NO. Otherwise, compute ZAG(b) by doing a binary search on
the set of corner points that lie above b on the same vertical line. Similarly, ZIG(b) returns NO
if GAPδ returns NO at the rightmost point of the horizontal line through b; otherwise compute
ZAG(b) using a binary search on the set of corner points that lie to the right of b on the same
horizontal line.
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Figure 1: Schematic performance of the ZigZag algorithm

Clearly, if the GAP routine is monotone, then the above implementations of ZIG and ZAG return
the required minimal values according to the definitions. We will use the above implementations
of ZIG and ZAG even if GAP is not monotone. In this case the procedures have the following
properties: Procedure ZAG(b) returns NO iff GAPδ returns NO on point b and on the highest
point of the vertical line through b. Otherwise, ZAG(b) returns a corner point p that lies on the
same vertical line as b (i.e. x(p) = x(b)), such that GAPδ(p) = YES and GAPδ(p

′) = NO, where
p′ = (x(p), y(p)/(1+ ε′)) is the corner point immediately below p. Procedure ZIG(b) returns NO iff
GAPδ returns NO on point b and on the rightmost point of the horizontal line through b. Otherwise,
ZAG(b) returns a corner point p such that y(p) = y(b), GAPδ(p) = YES and GAPδ(p

′) = NO,
where p′ = (x(p)/(1 + ε′), y(p)), is the corner point immediately to the left of p.

The first phase of the algorithm computes a set Q of corner points. It is as follows.

Phase 1: ZIGZAG:
p = top right corner point of the grid
If GAPδ(p) = NO then halt.
q1 = ZIG(ZAG(p))
Q = {q1}
q′1 = (x(q1)/(1 + ε′), y(q1)).
i = 1
While (ZAG(q′i) 6= NO ) do the following.
{ qi+1 = ZIG(ZAG(q′i))

Q = Q ∪ {qi+1}
q′i+1 = (x(qi+1)/(1 + ε′), y(qi+1))
i = i + 1

}

The set of points computed by the algorithm is shown schematically in Figure 1.
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Consider the top right corner point p of the grid. If GAPδ(p) = NO, then there are no feasible
solutions because the coordinates of p exceed by at least 1 + ε′ ≥ 1 + δ the maximum possible
values of the objectives. So in this case we can just terminate the algorithm. So assume that the
solution set is nonempty and hence GAPδ(p) = YES. This implies that ZAG(p) will return a YES
point (i.e. a point for which GAPδ returns YES), and thus ZIG(ZAG(p)) will also return a YES
point q1. The corner point q′1 immediately to the left of q1 is a NO point by the definition of the
procedure ZIG. Similarly, in every iteration of the loop, since ZAG(q′i) 6= NO, ZIG(ZAG(q′i)) will
return a YES point qi+1. The loop terminates when ZAG(q′i) = NO, i.e. if the top corner point on
the vertical line through q′i is a NO point.

Let Q = {q1, . . . , qr} be the set of points computed by the above ZIGZAG algorithm. We shall
prove that the set Q of points (1 + ε′)(1 + δ)-covers the set P of all solution points. We prove first
some useful properties.

Lemma 2. The x coordinates of the points q1, . . . , qr of Q form a strictly decreasing sequence, and
the y coordinates form a strictly increasing sequence.

Proof. Since q′i is a NO point immediately to the left of qi, ZAG(q′i) has strictly smaller x-coordinate
and strictly larger y-coordinate than qi. Hence, the same is true for qi+1 = ZIG(ZAG(q′i)) which is
equal to or lies to the left of ZAG(q′i).

Lemma 3. 1. The point q1 (1+ε′)(1+δ)-covers all of the solution points in P that have x-coordinate
at least x(q1)/(1 + ε′)(1 + δ).

2. For each i = 2, . . . , r, the point qi (1 + ε′)(1 + δ)-covers all of the solution points in P that
have their x-coordinate between x(qi)/(1 + ε′)(1 + δ) and x(qi−1)/(1 + ε′)(1 + δ) .

3. There are no solution points with x-coordinate smaller than x(qr)/(1 + ε′)(1 + δ).

Proof. 1. Let p be the top right corner point of the grid as in the algorithm, and let s be the corner
point immediately below ZAG(p); x(s) = x(p) and y(s) = y(q1)/(1 + ε′). By the definition of the
procedure ZAG, s is a NO point. Suppose that there exists a solution point t with x(t) ≥ x(q1)/(1+
ε′)(1+δ) such that t is not (1+ε′)(1+δ)-covered by q1. Then we must have y(t) < y(q1)/(1+ε′)(1+δ),
and hence y(t) < y(s)/(1 + δ). By our definition of the rightmost line of the grid, we have also
x(t) ≤ x(p)/(1 + ε′) ≤ x(s)/(1 + δ). Therefore, GAPδ(s) cannot return NO, a contradiction.

2. Suppose that there exists a solution point t whose x-coordinate satisfies x(qi)/(1+ε′)(1+δ) ≤
x(t) < x(qi−1)/(1 + ε′)(1 + δ) and such that t is not (1 + ε′)(1 + δ)-covered by qi. Then we must
have y(t) < y(qi)/(1 + ε′)(1 + δ). Let s be the corner point immediately below ZAG(q′i−1). From
the definition of ZAG, s is a NO point. The coordinates of s are x(s) = x(q′i−1) = x(qi−1)/(1 + ε′)
and y(s) = y(qi)/(1 + ε′). Thus, x(t) ≤ x(s)/(1 + δ) and y(t) < y(s)/(1 + δ). Therefore, GAPδ(s)
cannot return NO, a contradiction.

3. Suppose that there is a solution point t with x-coordinate x(t) < x(qr)/(1 + ε′)(1 + δ). Let
s be the top corner point in the vertical line of q′r. By the termination condition of the algorithm,
s is a NO point. The x-coordinate of s is x(s) = x(q′r) = x(qr)/(1 + ε′), hence x(t) < x(s)/(1 + δ).
¿From the definition of the top line of the grid, we have also y(t) ≤ y(s)/(1 + δ). Therefore, again
GAPδ(s) cannot return NO, a contradiction.

The preceding lemma implies immediately now the claimed property for the set Q.

Lemma 4. The ZIGZAG algorithm above returns a set Q that (1 + ε′)(1 + δ)-covers the set P of
all solution points.
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We bound now the size of the computed set Q, so that we can bound later on the complexity
of the algorithm.

Lemma 5. The size of Q returned by ZIGZAG above, is no more than 11 times the size of the
smallest ε-Pareto set, P ∗

ε .

Proof. Let P ∗
ε be the smallest ε-Pareto set, and let p∗ be a point in P ∗

ε . Since all the points of Q
are YES points, i.e. are dominated by some solution point, all points of Q are (1 + ε)-covered by
the points in P ∗

ε . We charge those points in Q that are (1 + ε)-covered by p∗ to the point p∗.
Let s be a point in Q that (1 + ε′)(1 + δ)-covers p∗. Let q be a point in Q that is (1 + ε)-

covered by p∗. Since the points in Q are incomparable (do not dominate each other), either q = s
or x(q) < x(s) or y(q) < y(s). If x(q) < x(s), then since x(q) ≥ x(p∗)/(1 + ε) it follows that
x(q) ≥ x(s)/(1 + ε)(1 + ε′)(1 + δ) > x(s)/(1 + ε′)6, i.e. x(q) = x(s)/(1 + ε′)i where i=1,2,3,4 or 5.
Since the points of Q do not dominate each other, it follows that there are at most 5 points q ∈ Q
with x(q) < x(s) that are (1+ ε)-covered by p∗. Similarly, if y(q) < y(s) then we can conclude that
y(q) = y(s)/(1+ ε′)i where i=1,2,3,4 or 5, and thus there at most 5 points q of Q with y(q) < y(s).
Therefore, there are at most 11 points of Q that are (1+ ε)-covered by p∗. Hence |Q| ≤ 11|P ∗

ε |.

In the second phase we reduce the set Q to a subset Q′ that (1+ε)-covers all the solution points,
and return the set of solution points R = GAPδ(Q

′) = {GAPδ(q)|q ∈ Q′}. Since the points of R
dominate the corresponding points in Q′, it follows that R is an ε-Pareto set.

Let c = (1 + ε)/(1 + ε′)(1 + δ). Note that if Q′ is any c-cover of the points in Q, then for any
point in the original solution space, there is some point in Q that (1+ ε′)(1+δ)-covers it, and hence
there is a point in Q′ that (1 + ε)-covers it. We will compute the smallest c-cover Q′ of Q. This
can be done easily by a simple greedy algorithm. Recall that the points of the set Q = {q1, . . . , qr}
computed in Phase 1 are sorted in decreasing order of their x-coordinate and increasing order of
y-coordinate.

In words, the greedy algorithms works as follows: Starting from q1 we find a point qi ∈ Q with
the maximum i (i.e. smallest x- and largest y-coordinate) that c-covers q1. Since q1 has the largest
x-coordinate among all points of Q, we only need to check the y-coordinate: qi is the last point
whose y-coordinate is at most cy(q1). Include qi into the set Q′, remove all the points that are
c-covered by q1, and iterate. Note that qi c-covers all points q1, . . . , qi and perhaps some points qj

with j > i, namely those points whose x-coordinate is at least x(qi)/c.

Phase 2: Cleanup:
Q′ = ∅
i = 1
v = y(q1)
While (i ≤ r) do the following:
{ if (i < r and y(qi+1) ≤ cv) then i = i + 1

else if (Q′ 6= ∅ and x(qi) ≥ x(q)/c) then i = i + 1
else { Q′ = Q′ ∪ {qi}

q = qi

if (i < r) then v = y(qi+1)
i = i + 1

}
}
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Return R = {GAPδ(q)|q ∈ Q′}.

Lemma 6. The set Q′ computed by the Cleanup algorithm is a minimum c-cover of Q.

Proof. It is easy to see that Q′ is a c-cover of Q. To show that it has minimum size, consider any
subset Q′′ of Q that c-covers Q. It is easy to show by induction that for i = 1, . . . , r, the set Q′′

contains at least as many points as Q′ among the first i points q1, . . . , qi of Q. For the basis, i = 1,
suppose that q1 ∈ Q′. Then q2 does not c-cover q1 because its y-coordinate is too large. Hence the
same is true for all other points of Q as well, and Q′′ must also include q1.

For the induction step, suppose that the claim is not true for i, but holds for smaller indices.
Then qi ∈ Q′ − Q′′. Since qi /∈ Q′′, it is c-covered by some other point qj of Q′′. If j > i, then
y(qj) ≤ cy(qi), which implies that y(qi+1) ≤ cy(qi) ≤ cv, where v is the value of the variable
at iteration i, and thus qi should not have been added to Q′. If j < i, then, by the induction
hypothesis, the set Q′ must include at least some point among qj, . . . , qi−1; that point also c-covers
qi and hence qi should not have been added to Q′ in this case too.

Lemma 7. The size of the smallest c-cover of Q is no more than 3 · |P ∗
ε |.

Proof. First observe that c = (1 + ε)/(1 + ε′)(1 + δ) ≥ (1 + ε′)2. Consider any point p∗ in P ∗
ε , and

let s be a point of Q that (1 + ε′)(1 + δ) covers p∗. By the analysis of Lemma 4, there are at most
11 points of Q that are (1 + ε)-covered by p∗: point s, at most 5 points that are above and to the
left of s that have x-coordinate x(s)/(1 + ε′)i where 1 ≤ i ≤ 5, and at most 5 points that are below
and to the right of s and have y-coordinate y(s)/(1 + ε′)i where 1 ≤ i ≤ 5.

Three points suffice to c-cover all the points of Q that are (1 + ε)-covered by p∗: Point s covers
itself, the points above it with x-coordinate x(s)/(1 + ε′)i, i = 1, 2, and the points below it with
y-coordinate y(s)/(1 + ε′)i, i = 1, 2. Then we only need to take (at most) one more point above s
and one point below s to c-cover the other points that are not c-covered by s.

Therefore, there is a subset of Q with at most 3 · |P ∗
ε | elements that c-covers all points of Q.

It follows from Lemmas 6 and 7 that the size of the set R computed by the algorithm is
|R| = |Q′| ≤ 3|P ∗

ε |.
We now proceed to analyze the running time of the algorithm. Let k be the total number of

points in the optimal ε-Pareto set, k = |P ∗
ε |. Recall that m denotes the number of bits in the

objective functions. To avoid clutter in the expressions below, we will use ε in place of log(1 + ε),
which is a valid approximation for small ε (for large ε simply drop this factor). In the end of the first
phase we produce O(k) points. To find each point, we called one execution of ZIG and one of ZAG.
Both of these are implemented as binary searches on O(m/ε) points. Therefore, the runtime of the
first phase is bounded by O(k log(m/ε)) GAPδ calls. The greedy algorithm of Phase 2 is linear,
and its time is subsumed by that of the first phase. Therefore the overall runtime is O(k log(m/ε))
GAPδ calls. We summarize the properties of the algorithm in the following theorem.

Theorem 8. The ZIGZAG-&-Cleanup algorithm as described above computes a 3-approximation
to the smallest ε-Pareto set in time O(k log(m/ε)) GAPδ calls, where 1/δ = O(1/ε).
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3.3 Algorithm for Relaxed ε

The lower bound on the competitive ratio is brittle, and even a small relaxation to ε allowes us to
circumvent it. Intuitively, the lower bound comes from the area where Gap can return either YES
or NO. However, we can reduce the size of this area if we are required to produce a ε′-Pareto set
for ε′ > epsilon and have time on the order of (ε′ − ε)−1.

Suppose that we are allowed to return an ε′-Pareto set for a value ε′ > ε. Let δ be a suitably
small rational and c = (1 + δ)j a power of 1 + δ such that (1 + ε′) ≥ c(1 + δ)2 = (1 + δ)j+2 and
1 + ε ≤ c/(1 + δ) = (1 + δ)j−1. For example, we can choose δ to be a rational with O(|ε| + |ε′|)
representation such that (1 + δ)4 approximates from below (1 + ε′)/(1 + ε). Define c = (1 + δ)j

where j satisfies (1 + δ)j−2 < 1 + ε ≤ (1 + δ)j−1. Obviously, 1 + ε ≤ c/(1 + δ), and (1 + ε′) ≥
(1 + ε)(1 + δ)4 > (1 + δ)j+2.

Divide the space of the objective values using a grid with the coordinate ratio of (1 + δ). The
algorithm is given below.

Relaxed ZIGZAG:
p = top right corner point of the grid
If GAPδ(p) = NO then halt.
u1 = ZAG(p)
v1 = (x(u1), cy(u1))
q1 = ZIG(v1))
Q = {q1}
w1 = (x(q1)/[c(1 + δ)], y(q1)/(1 + δ)).
i = 1
While (ZAG(wi) 6= NO ) do the following.
{ ui+1 = ZAG(wi)

vi+1 = (x(ui+1)(1 + δ), cy(ui+1))
qi+1 = ZIG(vi+1)
Q = Q ∪ {qi+1}
wi+1 = (x(qi+1)/[c(1 + δ)], y(qi+1)/(1 + δ))
i = i + 1

}
Return R = GAPδ(Q) = {GAPδ(q)|q ∈ Q}

As in the previous section, if GAPδ(p) = NO, then there are no feasible solutions, and there is
nothing to compute. So assume there exist solutions. It is easy to see that all the points defined
in the algorithm are well-defined, i.e., when a point is assigned the value returned by the ZIG or
ZAG procedure, then the procedure indeed returns a point. Let Q = {q1, . . . , qr} be the set of
corner points computed by the algorithm. The following two lemmas and their proofs are similar
to corresponding lemmas from the previous subsection.

Lemma 9. The x coordinates of the points q1, . . . , qr of Q form a strictly decreasing sequence, and
the y coordinates form a strictly increasing sequence.

Proof. Consider two successive elements qi, qi+1 of Q. Since the point immediately to the left of qi

is a NO point, it follows that wi is also a NO point. The point ui+1 is thus strictly above wi. Hence
y(qi+1) ≥ cy(ui+1) ≥ cy(qi). Since ui+1 is a YES point, it follows that vi+1 is also a YES point.
Hence qi+1 = ZIG(vi+1) exists and is at or to the left of vi+1. Thus, x(qi+1) ≤ x(vi+1) ≤ x(qi)/c.
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Lemma 10. 1. The point q1 (1 + ε′)-covers all of the solution points in P that have x-coordinate
at least x(q1)/(1 + ε′).

2. For each i = 2, . . . , r, the point qi (1 + ε′)-covers all of the solution points in P that have
their x-coordinate between x(qi)/(1 + ε′) and x(qi−1)/(1 + ε′).

3. There are no solution points with x-coordinate smaller than x(qr)/(1 + ε′).

Proof. 1. Let p be the top right corner point of the grid as in the algorithm, and let s be the
corner point immediately below u1 = ZAG(p); x(s) = x(p) and y(s) = y(u1)/(1 + δ). By the
definition of the procedure ZAG, s is a NO point. Suppose that there exists a solution point t
with x(t) ≥ x(q1)/(1 + ε′) such that t is not (1 + ε′)-covered by q1. Then we must have y(t) <
y(q1)/(1+ ε′) = cy(u1)/(1+ ε′) ≤ y(u1)/(1+δ)2, and hence y(t) < y(s)/(1+δ). By our definition of
the rightmost line of the grid, we have also x(t) ≤ x(s)/(1 + δ). Therefore, GAPδ(s) cannot return
NO, a contradiction.

2. Suppose that there exists a solution point t whose x-coordinate satisfies x(qi)/(1 + ε′) ≤
x(t) < x(qi−1)/(1 + ε′) and such that t is not (1 + ε′)-covered by qi. Then we must have y(t) <
y(qi)/(1 + ε′). Let s be the corner point immediately below ui. From the definition of ZAG, s is a
NO point. The coordinates of s are x(s) = x(ui) = x(qi−1)/c(1+δ) and y(s) = y(ui)/(1+δ). Thus,
x(t) < x(qi−1)/(1+ε′) ≤ x(qi−1)/c(1+δ)2 ≤ x(s)/(1+δ) and y(t) < y(qi)/(1+ε′) = cy(ui)/(1+ε′) ≤
y(ui)/(1 + δ)2 = y(s)/(1 + δ). Therefore, GAPδ(s) cannot return NO, a contradiction.

3. Suppose that there is a solution point t with x-coordinate x(t) < x(qr)/(1 + ε′). Let s be
the top corner point in the vertical line of wr. By the termination condition of the algorithm, s is
a NO point. The x-coordinate of s is x(s) = x(wr) = x(qr)/c(1 + δ), hence x(t) < x(qr)/(1 + ε′) ≤
(qr)/c(1 + δ)2 = x(s)/(1 + δ). ¿From the definition of the top line of the grid, we have also
y(t) ≤ y(s)/(1 + δ). Therefore, again GAPδ(s) cannot return NO, a contradiction.

We show now that any ε-Pareto set must contain at least r = |Q| points.

Theorem 11. Let P ∗
ε = {p1, . . . , pk} be an optimal ε-Pareto set, where its points pi are ordered in

increasing order of their y- and decreasing order of their x-coordinate. Then k ≥ r and x(qi) <
x(pi)(1 + δ)2 for every i = 1, . . . , r.

Proof. We prove by induction that if there is a qi (i.e. i ≤ r), then there is also a pi (i.e., i ≤ k)
and x(qi) < x(pi)(1 + δ)2.

Basis (i = 1). Consider the solution point t1 = GAPδ(u1). We have y(t1) ≤ y(u1) = y(q1)/c ≤
y(q1)/[(1 + δ)(1 + ε)]. Point t1 is covered by some element of P ∗

ε ; point p1 has the smallest y-
coordinate among the points of P ∗

ε , therefore, y(p1) ≤ y(t1)(1 + ε) ≤ y(q1)(1 + δ). Since the point
immediately to the left of q1 is a NO point (by the definition of ZIG), we must have x(p1) >
x(q1)/(1 + δ)2.

Induction step. Suppose the claim holds for indices smaller than i; we will prove it for i.
The proof is similar to the basis case. Consider the solution point ti = GAPδ(ui). We have
y(ti) ≤ y(ui) = y(qi)/c ≤ y(qi)/[(1 + δ)(1 + ε)]. Also, x(ti) ≤ x(ui) = x(wi−1) = x(qi−1)/c(1 +
δ) ≤ x(qi−1)/(1 + ε)(1 + δ)2. All the previous points p1, . . . pi−1 of P ∗

ε have x-coordinate strictly
greater than x(qi−1)/(1 + δ)2 ≥ x(ti)(1 + ε) by the induction hypothesis, and therefore they do
not (1 + ε)-cover point ti. Hence P ∗

ε must have at least i points, and ti is (1 + ε)-covered by one
of the remaining points pi, . . .. Point pi has the smallest y-coordinate among them. Therefore,
y(pi) ≤ y(ti)(1 + ε) ≤ y(qi)/(1 + δ). Since the point immediately to the left of qi is a NO point, we
must have x(pi) > x(qi)/(1 + δ)2.
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Combining the previous lemmas we have the following theorem.

Theorem 12. For any ε′ > ε > 0, we can construct an ε′-Pareto set R whose size is bounded by
the size k of the smallest ε-Pareto set P ∗

ε . The time complexity of the algorithm is O(k log(m/δ))
GAPδ calls, where 1/δ = O(1/(ε′ − ε)).

3.4 Computing the best k solutions

Now let’s consider the dual problem: We want to compute a set of k solutions that collectively
approximate as closely as possible the Pareto curve. That is, we wish to find a set S of k solutions
that minimizes the value of the ratio ρ such that S ρ-covers the whole set P of solutions. For
k = 1, this solution is the “knee” of the Pareto set. It is a point which in some sense offers the best
compromise between the different objectives.

Finding the knee (and more generally the best k points) is NP-hard even in simple cases.
However, as we will show, we can approximate the optimal ratio, within any degree of accuracy
1 + θ in time polynomial in the input and 1/θ, provided that we have the GAP routine. In fact, in
the knee (k = 1) case the result holds for any number of objectives.

We give first the algorithm for the k = 1 case (and any number d of objectives), and then
present the algorithm for arbitrary k (and 2 objectives).

Theorem 13. For any multiobjective optimization problem with a polynomial time GAP routine,
and for any θ > 0, we can compute a solution point that approximates the minimum ratio achieved
by the knee within a factor 1 + θ in time O(d log(m/δ)) GAPδ calls, where 1/δ = O(1/θ) and d is
the number of objectives.

Proof. We give the algorithm and proof for an arbitrary number d of objective functions f1, . . . , fd.
Assume again without loss of generality that all the objectives are to be minimized. For each
i = 1, . . . , d, let c∗i be the minimum value of fi achieved by any solution of the given instance. Let
δ > 0 be a suitable small rational such that (1 + δ)4 approximates from below 1 + θ.

Compute first for each i = 1, . . . , d a value ci such that c∗i ≤ ci < c∗i (1 + δ)2. We do this using a
similar method to ZIG (and ZAG): Take a point p = (p1, . . . , pd) that exceeds the maximum possible
values of all the objective functions by a factor (1 + δ). For each i = 1, . . . , d do the following.
Consider the line through p parallel to the ith axis as being geometrically subdivided with ratio
(1 + δ), i.e. subdivided by ”grid” (corner) points with the ith coordinate equal to pi/(1 + δ)j , for
j = 0, 1, . . . , 2m/ log(1 + δ) + 1. Point p is a YES point (i.e. GAPδ(p)=YES) while the lowest
grid point on the line is a NO point. Do a binary search along the grid points of the line to find
a minimal YES grid point, i.e. a YES point such that the one below it is a NO point. Let ci be
the ith coordinate pi/(1 + δ)j of the minimal YES point. Then, by the definition of GAP we know
that c∗i ≤ ci and c∗i > ci/(1 + δ)2.

Let ρ∗ be the minimum ratio achieved by the optimal knee solution point s∗. Since all solution
points are ρ∗-covered by s∗, we must have s∗i ≤ ρ∗c∗i for all i = 1, . . . , d. Let c be the point
(c1, . . . , cd). Of course c may not be a solution point. If c is a YES point, then return s = GAPδ(c).
Clearly, s < s∗(1 + δ)2, hence s approximates the minimum ratio within a factor (1 + δ)2 ≤ 1 + θ.

Assume that c is a NO point. Consider the set of points c(1+δ)j , j = 0, 1, . . . , 2m/ log(1+δ)+1.
The last point is clearly a YES point. Do a binary search among these points to find a minimal YES
point, i.e. a YES point c(1 + δ)j such that c(1 + δ)j−1 is a NO point. Return t = GAPδ(c(1 + δ)j).
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Since c(1 + δ)j−1 is a NO point, c(1 + δ)j−2 is not dominated by s∗, hence for at least one
coordinate i we have s∗i > ci(1 + δ)j−2. Thus, ρ∗c∗i > ci(1 + δ)j−2, hence ρ∗ > (1 + δ)j−2. On the
other hand, for all coordinates i we have, ti ≤ ci(1 + δ)j < c∗i (1 + δ)j+2. Therefore, the computed
solution point t ρ-covers all solution points, where ρ = (1 + δ)j+2 < ρ∗(1 + δ)4 ≤ ρ∗(1 + θ).

The time complexity of the algorithm is clearly O(d log(m/δ)) GAPδ calls, and 1/δ = O(1/θ).

We address now the case of an arbitrary number k of points and 2 objectives. Let ρ∗ = 1 + ε∗

be the minimum ratio that can be achieved by k solution points. We will compute a set R of at
most k solution points that achieves ratio ρ ≤ ρ∗(1 + θ).

Theorem 14. We can approximate the smallest ratio ρ∗ = 1 + ε∗ for which the ε∗-Pareto set has
at most k points to a factor of 1 + θ in time O(k log2(m/δ)) GAPδ calls, where 1/δ = O(1/θ).

Proof. Let δ > 0 be a suitable small rational such that (1 + δ)4 approximates from below 1 + θ.
Consider the following set of candidate ratios ρi = (1+ δ)i, i = 0, 1, . . . , 2m/ log(1+ δ)+1. Clearly,
when i is the maximum value 2m/ log(1 + δ) + 1, then any single solution point ρi-covers all other
solution points, i.e. any one point suffices. Do a binary search among the candidate ratios ρi to
identify a minimal value i∗ of i ≥ 4 such that the relaxed ZIGZAG algorithm of the last subsection
returns a ε′-Pareto set with at most k points when it is called with parameters 1 + ε′ = ρi∗ and δ,
with c = (1+ δ)i∗−2 = (1+ ε′)/(1+ δ)2. Our algorithm returns this ε′-Pareto set R for the minimal
such i∗.

Clearly the algorithm returns a set R of at most k points. The approximation ratio ρ of R with
respect to the Pareto curve is at most ρi∗ = (1 + δ)i∗. If i∗ = 4, then ρ ≤ 1 + θ.

So suppose that i∗ > 4. Then the Relaxed ZIGZAG algorithm returns for i = i ∗ −1, i.e., for
c = (1+δ)i∗−3, a set with more than k elements. By the results of the previous subsection we know
that the smallest ε-Pareto set for 1+ ε ≤ c/(1+ δ) = (1+ δ)i∗−4 has more than k points. Therefore,
ρ∗ = 1 + ε∗ > (1 + δ)i∗−4 ≥ ρ/(1 + δ)4, and hence ρ ≤ ρ∗(1 + θ).

The number of calls to the Relaxed ZIGZAG algorithm is 2m/ log(1 + δ) = O(m/δ) (for small
δ). In order to limit the running time, we do not let the calls run to completion if they try to
generate more than k points, but terminate them as soon as they try to generate a (k +1)th point.
With this modification, each call takes time O(k log(m/δ)) GAPδ calls. Thus, the total running
time is O(k log2(m/δ)) GAPδ calls.

3.5 Applications

Our results can be applied to all of the problems which have the required GAP routine, e.g. the
classes of problems shown in [PY1, PY2], including multiobjective flows and other convex problems,
shortest path, spanning tree, matching, and cost-time trade-offs in query evaluation.

In some cases, better complexity bounds can be obtained by using a sharper routine than GAP.
We discuss briefly the case of shortest paths, with two objectives, cost and length. A stronger variant
of the GAP problem in this case is the well-studied Restricted Shortest Path (RSP) problem: given
a bound on the cost of the path, minimize the length of the path subject to the bound on the cost.
This problem has been studied in a number of papers [Wa, Has, LR, GR+, ESZ]. The problem is
NP-hard, but it has a fully polynomial time approximation scheme. The best current algorithms
approximate the optimal restricted path within factor 1 + ε in time O(en/ε) for acyclic graphs
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[ESZ], and time O(en(log log n+1/ε)) for general graphs [LR], where n is the number of nodes and
e the number of edges.

One call to the RSP routine can be obviously used to solve the GAP problem. Moreover, we can
use the RSP routine directly to implement (with one call) the ZIG and the ZAG operations in the
algorithm. Hence, we can approximate within a factor of 3 the smallest ε-Pareto set for bicriteria
shortest paths in time O(enk(log log n+1/ε)) (or O(enk/ε for acyclic graphs), where k is the size of
the smallest ε-Pareto set. Also, for any ε′ > ε, we can compute in time O(enk(log log n+1/(ε′−ε)))
an ε′-Pareto set whose size is no more than k, the size of the smallest ε-Pareto set.

4 Three Objectives

4.1 Lower Bound

Theorem 15. Any polynomial generic algorithm computing the smallest ε-Pareto set for a problem
with more than two objective functions cannot be c-competitive for any constant c.

Proof. Suppose again that we have minimization objectives; the same arguments hold for maxi-
mization or mixed objectives. Fix any rational ε > 0 and pick any (rational) ε′ > ε. Just like in the
case of 2 objectives we will exploit the fact that GAPδ(b) is not uniquely defined for some points b.
Again we will construct two sets, P and Q such that GAPδ cannot distinguish between them, and
the size of the optimal ε-Pareto set for P has one point, and for Q has arbitrarily many points.

We will use x, y, z for the three coordinates corresponding to the three objectives. Consider a

point p = (x(p), y(p), z(p)), and let qi =
(

x(p)(1 + ε′)i, y(p)(1 + ε′)k−i, z(p)
1+ε

)

for i = 0 . . . k. Let P =

{p, q0, . . . , qk}. Clearly, {p} is an ε-Pareto set for P . Let ri =
(

x(p)(1 + ε′)i, y(p)(1 + ε′)k−i, z(p)−1
(1+ε)

)

for i = 1, . . . , k, and let Q = {p, q0, . . . qk, r0, . . . , rk}, Notice that p is not (1 + ε)-covered by any of
the qi’s, ri’s, hence p must belong to any ε-Pareto set for Q. Furthermore, ri is not (1 + ε)-covered
by any other point of Q except only for qi. Therefore, every ε-Pareto set for Q must contain at
least one of qi, ri for all i = 1, . . . , k. Hence, the smallest ε-Pareto set for Q will have k + 1 points.

Suppose that we have a polynomial generic algorithm. Let x(p), y(p), z(p) = M be large integers
(exponentially large in 1/ε and the input). Again GAPδ for δ > 1/(M − 1), cannot distinguish
between the two cases, since for all b where GAPδ(b) can return ri it can either return qi or return
NO. Therefore, we cannot conclude if the size of the optimal solution is one point, or k+1 points for
arbitrary k. Again, we can turn this argument into an NP-hardness proof by specifying a suitable
3-objective problem.

In order to beat the lower bound above, we are forced to search for algorithms which will return
ε′-Pareto sets, for ε′ > ε when the original problem has 3 or more objectives.

4.2 Three Objectives Algorithm

We will present an algorithm that is 4-competitive and returns an ε′-Pareto set for (1+ε′) > (1+ε)2.
Choose a suitable small rational δ > 0 such that (1 + ε′) > (1 + ε)2(1 + δ)4. For small ε, ε′, we can
pick δ so that 1/δ = O(1/(ε′ − 2ε)).

It is convenient for the algorithm and the proof to have (1+ε) be a power of (1+δ). This can be
assumed without loss of generality. To see this, pick δ̂ such that (1 + ε′) > (1 + ε)2(1 + δ̂)6, and let
1+ε̂ be the smallest power of (1+δ̂) that is at least as large as (1+ε). Then (1+ε′) > (1+ε̂)2(1+δ̂)4.
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Apply the algorithm that we will describe with ε̂ in place of ε and δ̂ in place of δ. Then the algorithm
will construct an ε′-Pareto set of size at most 4 times the size of the smallest ε̂-Pareto set. But,
since ε̂ ≥ ε, the smallest ε̂-Pareto set is no larger than the smallest ε-Pareto set. Therefore, the
constructed ε′-Pareto set has the required property.

Assume for concreteness again that all objectives are to be minimized; the algorithm is similar in
the other cases. As before, we will be working with a geometric grid of the space of objective values
(equivalently, an arithmetic grid in the log scale). We let the ratio of the grid in the x dimension
be (1 + δ) and in the y, z dimensions be (1 + ε)(1 + δ). Let C be the set of all corner points of
the grid where GAPδ returns a solution. (We will not be computing these points explicitly). We
assume in this subsection that the GAPδ routine is monotonic, i.e., if p ≥ q and GAPδ(p) = NO
then also GAPδ(q) = NO.

We will outline first the algorithm, then prove its correctness, and finally sketch an efficient
implementation.

The algorithm computes a set of corner points Q such that GAPδ(Q) = {GAPδ(q) | q ∈ Q}
is an ε′-Pareto set of size at most 4 times the size of the optimal ε-Pareto set P ∗

ε . We say that a
corner point r ∈ C is ineligible at some time during the algorithm if there is a point q ∈ Q such that
x(q) ≤ x(r)(1 + ε)2(1 + δ)2, y(q) ≤ y(r)(1 + ε)(1 + δ) and z(q) ≤ z(r)(1 + ε)(1 + δ); the conditions
are asymmetric because of the asymmetry in the grid ratios. The corner point r is called eligible
otherwise, and we let C/Q denote the set of eligible corner points. For a set S of points, we use
minx S to denote the subset of points of S that have minimum x coordinate, similarly define miny S
and minz S.

Q = ∅
While C/Q 6= ∅ do the following:
{ Find the point p← miny minx minz C/Q.

S(p) = {s ∈ C : x(s) ≤ x(p)(1 + ε)(1 + δ), y(s) ≤ y(p), z(s) ≤ z(p)(1 + ε)(1 + δ)}.
T (p) = {t ∈ C : x(t) ≤ x(p), y(t) ≤ y(p)(1 + ε)(1 + δ), z(t) ≤ z(p)(1 + ε)(1 + δ)}.
Let s(p) ∈ miny S(p) and t(p) ∈ minx T (p) be points in the corresponding sets.
Update Q← Q ∪ {s(p), t(p)}.

}
Return R = GAPδ(Q) = {GAPδ(q) | q ∈ Q}

Theorem 16. Let P ∗
ε be the optimal ε-Pareto set. The set R computed by the above algorithm

forms a ε′-Pareto set, and |R| ≤ 4|P ∗
ε |.

Proof. We will charge each point of Q (and R) to a point of the optimal ε-Pareto set P ∗
ε so that

every point p∗ ∈ P ∗
ε is charged with at most 4 points of Q.

Note that if a corner point r satisfies r ≥ p∗(1 + δ), then GAPδ(r) returns a solution, hence
r ∈ C. Let p̂∗ denote the corner point obtained by rounding up each coordinate of p∗(1 + δ) to the
grid. Then p̂∗ ∈ C. Note that if p∗ (1 + ε)-covers a corner point p then p̂∗ ≤ p(1 + ε)(1 + δ). The
reason is that p∗ ≤ p(1 + ε) implies that p∗(1 + δ) ≤ p(1 + ε)(1 + δ); the right hand side is a corner
point (since p is), thus rounding up the left hand side to the nearest corner point p̂∗ preserves the
inequality.

Let Z−(p∗) be the set of corner points in C that are (1 + ε)-covered by p∗ and have a lower z
value than p̂∗, and let Z+(p∗) be the set of corner points in C that are (1 + ε)-covered by p∗ and
have an equal or higher z value than p̂∗. We will charge a pair of points s(p), t(p) of Q to p∗ if p is
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(1 + ε)-covered by p∗. We will argue that at most one pair of points is charged to p∗ from a point
p ∈ Z−(p∗) and at most one pair from a point p ∈ Z+(p∗) .

Consider first Z−(p∗). Since the ratio in the z direction is (1 + ε)(1 + δ), all points of Z−(p∗)
must have the same z coordinate, specifically z(p̂∗)/(1 + ε)(1 + δ). Look at the first time (if
any) that a point of Z−(p∗) is selected as the point p by the algorithm. We will show that s(p)
(1+ ε)(1+ δ)-covers all of the remaining eligible points q in Z−(p∗) (i.e. not already covered by Q).

As noted above, every other point q ∈ Z−(p∗) has z(q) = z(p). This implies that x(p) ≤ x(q),
since p was selected instead of q. Suppose that y(p̂∗) > y(p). Then y(p) ≤ y(p̂∗)/(1 + ε)(1 + δ)
because of the grid ratio along the y dimension, and we know that y(p̂∗)/(1 + ε)(1 + δ) ≤ y(q)
because q is (1 + ε)-covered by p∗; hence y(p) ≤ y(q). Thus, if y(p̂∗) > y(p) then every other
remaining corner point in Z−(p∗) is dominated by p. Since p ∈ S(p) by the definition, the point
s(p) (1 + ε)(1 + δ)-covers p, and hence also all of the remaining points q in Z−(p∗).

Suppose that y(p̂∗) ≤ y(p). Then p̂∗ ∈ S(p), and therefore y(s(p)) ≤ y(p̂∗) ≤ y(q)(1 + ε)(1 + δ).
Since p dominates q in the other two coordinates x, z, it follows that s(p) (1 + ε)(1 + δ)-covers all
of the remaining points q of Z−(p∗) in this case also.

Now consider Z+(p∗). Let p be the first point in Z+(p∗) (if any) selected by the algorithm.
Then every other remaining eligible point q has z(q) ≥ z(p). We distinguish two cases, depending
on the x coordinates of p and p̂∗.

Suppose that x(p) ≤ x(p̂∗). If y(p̂∗) > y(p) then all eligible corner points q that are (1 + ε)-
covered by p∗ must have y(q) ≥ y(p); since p ∈ S(p), it follows that y(s(p)) ≤ y(p) ≤ y(q) in
this case. If y(p̂∗) ≤ y(p) then p̂∗ ∈ S(p), and therefore y(s(p)) ≤ y(p̂∗) ≤ y(q)(1 + ε)(1 + δ).
Further, z(s(p)) ≤ z(p)(1 + ε)(1 + δ) ≤ z(q)(1 + ε)(1 + δ). And, x(s(p)) ≤ x(p)(1 + ε)(1 + δ) ≤
x(p̂∗)(1 + ε)(1 + δ) ≤ x(q)(1 + ε)2(1 + δ)2. Thus, s(p) makes ineligible every remaining point q of
Z+(p∗). Note furthermore that x(p̂∗) ≤ x(p∗)(1 + δ)2, and therefore s(p) (1 + ε)2(1 + δ)3-covers all
solution points (not just corner points) that are (1 + ε)-covered by p∗.

Suppose that x(p) > x(p̂∗). Since z(p) ≥ z(p̂∗), we must have y(p) < y(p̂∗). For, otherwise
p̂∗ would dominate p, and either p̂∗ was already made ineligible by Q, in which case p was also
ineligible, or else the algorithm should have selected p̂∗ in place of p because it has at least as small
z coordinate and strictly smaller x coordinate. We will show that t(p) (1 + ε)(1 + δ)-covers every
remaining point q ∈ Z+(p∗). Note that p̂∗ ∈ T (p), hence x(t(p)) ≤ x(p̂∗) ≤ x(q)(1+ ε)(1+δ). Since
y(p) < y(p̂∗) and because of the ratio in the y dimension we have y(t(p)) ≤ y(p)(1 + ε)(1 + δ) ≤
y(p̂∗) ≤ y(q)(1 + ε)(1 + δ). Finally, z(p) ≤ z(q) for still eligible q in Z+(p∗)/Q, since p was selected
by the algorithm before q, hence z(t(p)) ≤ z(q)(1 + ε)(1 + δ). Thus, t(p) will (1 + ε)(1 + δ)-cover
Z+(p∗). Since the algorithm took both s(p) and t(p), we can charge these two points to cover all
of those in Z+(p∗).

Overall we have charged 4 points of Q to cover all of the corner points (1 + ε)-covered by p∗.
At the end of the algorithm every corner point r ∈ C is ineligible, i.e., there is a point q ∈ Q

that is within a factor (1 + ε)2(1 + δ)2 in the x dimension and within (1 + ε)(1 + δ) in the y, z
dimensions. For every solution point u, let û be the corner point obtained by rounding u(1 + δ) up
to the nearest corner point. Then û is in C and it is within a factor (1+δ)2 of u in the x dimension
and within (1 + ε)(1 + δ)2 in the y, z dimensions. Since (1 + ε′) > (1 + ε)2(1 + δ)4, it follows that
every solution point u is (1+ ε′)-covered by some point of Q, and hence also by some solution point
of R.

We discuss now the implementation of the algorithm. For a given (corner) point p, let S′(p)
be the subset of p where the inequalities on x and z are satisfied with equality, i.e., S′(p) = {s ∈
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C : x(s) = x(p)(1 + ε)(1 + δ), y(s) ≤ y(p), z(s) = z(p)(1 + ε)(1 + δ)}, and let T ′(p) = {t ∈ C :
x(t) ≤ x(p), y(t) = y(p)(1 + ε)(1 + δ), z(s) = z(p)(1 + ε)(1 + δ)} be the subset of T (p) where the
inequalities on y and z are satisfied with equality. By the monotonicity of the GAP routine we
have miny S(p) = miny S′(p) and minx T (p) = minx T ′(p). Note that the points of S′(p) lie on a
line parallel to the y axis, and similarly the points of T ′(p) lie on a line parallel to the x axis. Thus,
we can compute s(p) and t(p) in O(log(m/δ)) GAPδ calls using the binary search technique, as in
the 2-objective case.

The question remains of how to efficiently find p← miny minx minz C/Q. An obvious solution
is to scan through the z values from smallest to largest, and at each z value use the 2 objective
algorithm to find p. Ignore the point if it is already covered (made ineligible) by another point in
Q and continue. However, this involves both a linear scan through all z values (of cost at least
O(m/δ)) and potentially many points p which are covered by others in Q. The following lemma
provides a more efficient method.

Lemma 17. We can compute p← miny minx minz C/Q using O(log(m/δ)) GAPδ calls.

Proof. Since we consider points in increasing z value, we only need to consider the x-y projection
of the points in Q and maintain the frontier F of points undominated in x and y. These points
are sorted in increasing order by their x coordinate, as q1, . . . , ql. A remaining point is ineligible

iff its projection is dominated by one of the points q′i =
(

x(qi)
(1+ε)2(1+δ)2 , y(qi)

(1+ε)(1+δ)

)

. Thus, the set of

ineligible points is the region of points that lie at or above and to the right of a rectilinear curve that
passes through the points q′i (see Figure 2). The set of eligible points is the set of YES corner points
that lie in the region strictly below this curve; equivalently, it is the set of YES points that lie at
or below and to the left of the rectilinear curve obtained by shifting left by a factor 1+ δ (the ratio
along the x dimension) and down by a factor (1 + ε)(1 + δ) (the ratio along the y dimension). The

convex corners of the region are cj =
(

x(qj+1)
(1+ε)2(1+δ)3

,
y(qj)

(1+ε)2(1+δ)2

)

, j = 0, . . . , l. (We let y(c0), x(cl)

be the maximum possible values of the objectives, and omit the points whose values are below the
minimum.)

Observe that every eligible point dominates one of the cj ’s. For each j let hj = minimum z

such that GAPδ

(

x(qj+1)
(1+ε)2(1+δ)3

,
y(qj)

(1+ε)2(1+δ)2
, z

)

returns YES. We can compute hj via a binary search

in O(log(m/δ)) GAPδ calls for each j. We maintain the hj ’s in a priority queue H, breaking ties
according to the index j (equivalently, according to the x-coordinate of cj). When we add a new
point to Q, we may eliminate some of the elements of the frontier F (if they become dominated on
the x−y plane by the new point), and we will create at most two more intervals. The computation
of two more hj values can be done in the time allotted.

Now, instead of doing a linear scan through the z values, we can perform an Extract min
operation on the priority queue H to obtain the next smallest z = hj value where we will be
guaranteed to find a point in C/Q. Once we find the smallest z = hj value and the index j, we
limit our search to the set of points that lie on the hyperplane z = hj and whose x-y projection
dominates cj . We seek the YES corner point in this quarter-plane that has minimum x coordinate,
with ties broken according to the y coordinate. This is a 2-dimensonal problem now, and we can
find the desired point p of C/Q by calling ZAG(ZIG(cj)).

Theorem 18. The algorithm to compute the ε′-Pareto set of size at most 4k, where k is the size
of the smallest ε-Pareto set, can be implemented to run in time O(k log(m/δ)) GAPδ calls, where
1/δ = O(1/(ε′ − 2ε)).
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5 d Objectives

We have shown that for d ≥ 3 objectives we are forced to compute an ε′ > ε-Pareto set, if we are
to have a guarantee on its size. In fact, we can easily find a log n-competitive algorithm for the
problem, if we are willing to spend time that grows with the dth power of the number of bits. Let
δ be such that (1 + ε′) ≥ (1 + ε)(1 + δ)2.

Theorem 19. For any ε′ > ε we can compute an ε′-Pareto set Q such that |Q| ≤ (d log(m/δ))|P ∗
ε |

using O((m/δ)d) GAP calls.

Proof. The algorithm will proceed in two stages. In the first stage, we will compute a δ-Pareto
set, by using the original algorithm of [PY1]. Break up the solution space using a geometric grid
of size

√
1 + δ and call GAP√

1+δ on all of the corner points, while keeping an undominated subset

R. Note that |R| ≤ O(m/δ)d−1. Now we can phrase the problem as a set cover problem. Let
the universe be all of the points in R, and for each r ∈ R associate a set Sr = { the points that
(1+ ε)(1+ δ)-cover r}. The smallest set cover, will comprise an (1+ ε)(1+ δ)2-Pareto set, Q. Since
we can compute a log n approximation for the Set Cover problem on a universe of size n, the result
follows.

Unfortunately, the algorithm above is the best that we know of for d > 3. There are two
aspects in which this algorithm is inferior to the ones we presented earlier (even for fixed d): The
approximation ratio is not constant, and the running time grows with m rather than log m.

We show that, even if all the solution points are given explicitly as input, we cannot do better
than the Set Cover problem in high dimensions.

Theorem 20. Even if all the solution points are given explicitly in the input, for any ε > 0, we
cannot approximate the smallest ε-Pareto set on d objectives in polynomial time to within c ln d for
any constant c < 1 unless NP is contained in DTIME(nlog log n).

Proof. We will prove this via a gap-preserving reduction from SetCover. In a set cover instance
we are given a universe of elements U with n elements and subsets S1, . . . , Sl ⊆ U . We are then
asked to select a minimum number of subsets Si such that their union is U . It is well known that
the Set Cover problem is hard to approximate [LY, Fei].

Our reduction is as follows: for each element ui ∈ U add a point pi in the solution space, whose
ith coordinate is 1/(1 + ε) and all other coordinates are at ∞. For each set Sj we add a point qj

such that the ith coordinate of qj is 1 if ui ∈ Sj and (1 + ε)3 otherwise. Finally, we add a point r
with value (1 + ε) in all dimensions.

Let Pε be the smallest ε-Pareto set. Since r cannot be (1+ε)-covered by any other points, r must
be part of the final solution. Since every point pi is (1 + ε)-covered in Pε, the sets corresponding
to the qis must form a valid set cover. Finally it is easy to see that this approximation is gap
preserving and the theorem follows from the hardness of the Set Cover problem.

Observe that the above reduction above breaks down if we are allowed to relax the ε value,
since for (1 + ε′) = (1 + ε)2 the ε′-Pareto set will always contain just the single point r. We show
below that in high dimensions we cannot achieve a constant factor approximation to the ε-Pareto
set, even if we are allowed to relax ε by an arbitrary constant.
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Theorem 21. Let (1+ ε′) < (1+ ε)log
∗ d/3. Even if all the solution points are given explicitly in the

input, it is impossible to compute in polynomial time an ε′-Pareto set whose size is within a log∗d
factor of the smallest ε-Pareto set unless NP ⊆ DTIME(nlog log n).

Proof. We will use a reduction from asymmetric k-center along with a recent result by Chuzhoy
et al. [CG+] to finish the proof. In the asymmetric k-center problem we are given a set of nodes
V with distances, dist(u, v) that must satisfy the triangle inequality, but may be asymmetric:
i.e. dist(u, v) 6= dist(v, u). We are asked to find a subset U ⊆ V , |U | = k, that minimizes
dist∗ = max

v∈V
min
u∈U

dist(u, v). It is shown in [CG+] that this problem cannot be approximated in

polynomial time within any constant factor unless P=NP, and cannot be approximated within
a factor log∗ n − α, for some constant α unless NP ⊆ DTIME(nlog log n). Furthermore, even if
we are allowed to use k log∗ n centers we cannot approximate the optimal distance dist∗ within
log∗ n/2 − α unless NP ⊆ DTIME(nlog log n) [Chu]. We remark also that the distances dist(u, v)
in the construction of [CG+] are distances in an unweighted directed graph, i.e. they are small
integers or ∞.

Let us choose a value dist′ which we will specify later, and encode the asymmetric k-center
problem as follows. We have one coordinate (objective) for each node i ∈ V . For each node i ∈ V
create a point pi such that, the ith coordinate of pi is 1, and the jth coordinate, for each j 6= i, is
(1 + ε)[distij/dist′].

Notice that if distij ≤ dist′ then pi (1 + ε) covers pj. That is, for every coordinate l, (pi)l ≤
(1 + ε)(pj)l. This is clearly true for l = i and l = j. For the other coordinates, the triangle
inequality implies distij + distjl ≥ distil. Therefore, (pi)l = (1 + ε)[distil/dist′] ≤ (1 + ε)[distij/dist′] ·
(1 + ε)[distjl/dist′] ≤ (1 + ε)(pj)l.

Conversely, if pi (1 + ε)-covers pj then (pi)j = (1 + ε)[distij/dist′] ≤ (1 + ε)(pj)j = (1 + ε), hence
distij ≤ dist′.

Thus, if dist′ = dist∗ then the smallest ε-Pareto set will contain precisely k points and corre-
spond to the optimal solution. In a similar way if we can compute a (1 + ε)a-Pareto set of size less
than ck then we can approximate dist∗ to a factor of a while using less than ck centers. Thus, if we
try every pairwise distance distij for dist′ (or we do a binary search) to find the lowest distance that
still uses fewer than ck centers, we can obtain an (a, c) approximation to the asymmetric k-center
problem. However, this problem is hard to approximate to a factor of log∗ n/3 even when using
k log∗ n centers.

Note that the theorem implies also the hardness of approximation for the dual problem of
computing the best k points that approximate the Pareto curve as closely as possible (with the
minimum ratio 1 + ε). The theorem implies that the optimal ratio cannot be approximated within
a power log∗ n/3 of the ratio, and this holds even if we use k log∗ n points.

Conversely, we can reduce the dual problem of finding the best k points to an asymmetric
k-center problem.

Theorem 22. Suppose that there is an ε-Pareto curve that contains k points. Then for any δ > 0,
we can compute k points which approximate the Pareto curve with ratio (1 + ε′)O(log∗ k) using
O((m/δ)d) GAP calls, where 1 + ε′ = (1 + ε)(1 + δ)2.

Proof. Suppose first that we are given explicitly a set P of points in d dimensions and a parameter
k. Assume without loss of generality that all objectives are minimization objectives. Construct
an instance of the asymmetric k-center problem that contains a node u for each point u ∈ P
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and define the distances between the nodes as follows: distuv = max(maxi{log(ui/vi)}, 0). Note
that by definition, point u 2distuv -covers point v. It is easy to see that the distances satisfy the
triangle inequality: For every triple of points (nodes) u, v,w and every coordinate i, the inequalities
ui ≤ 2distuvvi and vi ≤ 2distvwwi imply that ui ≤ 2distuv+distvwwi, hence distuw ≤ distuv + distvw.

The asymmetric k-center problem can be approximated with ratio O(log∗ k) [Ar, PV]. We can
use this algorithm to find a set of k centers, which correspond to a set of k points of P . If the optimal
ratio that can be achieved with k points in the original Pareto problem is 1 + ε, then the optimal
distance in the asymmetric k-center problem is dist∗ = log(1 + ε). Every node is within distance
O(log∗ k log(1 + ε)) from one of the k centers, hence every point of P is (1 + ε)O(log∗ k)-covered by
one of the selected k points.

For a general multiobjective problem where the solution points are not given explicitly, we
impose a geometric

√
1 + δ grid, call GAP√

1+δ at the grid points, and then apply the above
algorithm to the set of points returned. Then the set of k points computed by the algorithm
provide a (1 + ε′)O(log∗ k)-cover of the Pareto curve, where 1 + ε′ = (1 + ε)(1 + δ)2.
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