
Cross-Validation and Mean-Square Stability
Satyen Kale Ravi Kumar Sergei Vassilvitskii

Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089, USA.
{skale, ravikumar, sergei}@yahoo-inc.com

Abstract: A popular practical method of obtaining a good estimate of the error rate of a learning
algorithm is k-fold cross-validation. Here, the set of examples is first partitioned into k equal-sized folds.
Each fold acts as a test set for evaluating the hypothesis learned on the other k − 1 folds. The average
error across the k hypotheses is used as an estimate of the error rate. Although widely used, especially
with small values of k (such as 10), the cross-validation method has heretofore resisted theoretical
analysis due to the fact that the k distinct estimates have inherent correlations between them. With only
sanity-check bounds known, there is no compelling reason to use the k-fold cross-validation estimate
over a simpler holdout estimate.
Conventional wisdom is that the averaging in cross-validation leads to a tighter concentration of the
estimate of the error around its mean. In this paper, we show that the conventional wisdom is essentially
correct. We analyze the reduction in variance of the gap between the cross-validation estimate and the
true error rate, and show that for a large family of stable algorithms cross-validation achieves a near
optimal variance reduction factor of (1+o(1))/k. In these cases, the k different estimates are essentially
independent of each other.
To proceed with the analysis, we define a new measure of algorithm stability, called mean-square sta-
bility. This measure is weaker than most stability notions described in the literature, and encompasses
a large class of algorithms including bounded SVM regression and regularized least-squares regression.
For slightly less stable algorithms such as t-nearest-neighbor, we show that cross-validation leads to an
O(1/

√
k) reduction in the variance of the generalization error.

Keywords: Cross-validation; stability; generalization error

1 Introduction

The primary goal of many machine learning al-
gorithms is to produce a hypothesis that has a low
error rate on unseen examples. However, in many
situations (such as parameter tuning, algorithm se-
lection, etc.), obtaining a good estimate of the error
rate is just as important. This can be easily accom-
plished by splitting the set of input examples into
two parts: a training set, which is used as input
to the learning algorithm, and a holdout test set,
which is used to evaluate the hypothesis. Since the
learning algorithm does not “see” the examples in
the test set before the evaluation, it is easy to prove
that this results in an unbiased estimator of the er-
ror rate. The difference between the estimator and
the true error rate is called the generalization er-
ror. Getting good bounds on the generalization
error is integral to understanding the performance

of a learning algorithm or comparing two different
learning algorithms.

Since labeled data is expensive, there is typi-
cally a tension between allocating enough data to
the training set so that the algorithm can learn a
better hypothesis, and allocating data to the test set
so that one can produce a better estimate of the
error rate. As a compromise, cross-validation is
often employed to provide several (dependent) es-
timates of the error rate. Here, the input is first
randomly partitioned into k parts, called folds, of n
examples each. Then, the algorithm is repeatedly
trained on the data in k − 1 of the folds, and eval-
uated on the remaining n examples. If one uses a
classifier randomly chosen among the k classifiers
found on different folds, then its error rate can be
estimated using the cross-validation estimate: this
is simply the average of the errors obtained in the
k trials.

1

Blum, Kalai, and Langford [2] showed that
for all algorithms satisfying some mild non-
degeneracy conditions, the variance (and other
higher moments) of the error of the cross-
validation estimate is always at most that of the
holdout estimate. They also show that under a very
mild non-degeneracy condition, all the moments
are strictly smaller as well, although they do not
specify by how much. Quantifying the improve-
ment gained by cross-validation has remained an
open problem for the past decade. Were the k dif-
ferent classifiers trained on independently chosen
data sets, one could hope for an O(1/k) reduc-
tion in variance. However, cross-validation intro-
duces intricate correlations between the hypothe-
ses learned on the different folds, and the exam-
ples on which they are evaluated. Unraveling these
dependencies is key to understanding the power of
cross-validation, and a formal analysis even for the
special case of k = 2 has remained elusive.

1.1 Algorithm stability
In the special case of leave-one-out cross-

validation, algorithm stability has been a useful
tool to prove bounds on the generalization error.
In this approach, the algorithm is trained on all but
one of the available examples and tested on the
remaining one. Rogers and Wagner [8] and De-
vroye and Wagner [5] were the first to show that for
some specific learning algorithms, the leave-one-
out cross-validation estimate is close to the true er-
ror rate of the classifier trained on the entire data
set. Implicit in their argument was a notion of sta-
bility of learning algorithms, which quantifies the
change in the algorithm’s performance if a single
training example is changed.

Kearns and Ron [6] (and later, Anthony and
Holden [1] for k-fold cross-validation) prove the
so-called sanity-check bounds. Assuming some
stability of the learning algorithm, they show
that the generalization error between the cross-
validation estimate and the true error rate of the
classifier trained on the entire data set is almost as
small as the error for the resubstitution estimate,
i.e., the empirical error rate obtained by running
the learned classifier on the training set. In a sim-
ilar line of work, Bousquet and Elisseeff [3] and
Kutin and Niyogi [7] showed that a notion of train-
ing stability is necessary and sufficient to obtain
good bounds on the generalization error.

Unfortunately, these results do not seem to gen-
eralize easily to k-fold cross-validation for small
values of k. In practice, leave-one-out cross-
validation is very expensive when the number of
training examples runs into millions and five- or
ten-fold cross-validation may be the only feasible
choice. Such k-fold cross-validation estimates are
widely used to claim superiority of one algorithm
over another. However, there is no theoretical jus-
tification for why the k-fold cross-validation esti-
mate would be much better than simply using one
holdout estimate, since the sanity-check bounds
and the bounds of [2] only show that it is no worse.
The intuition is that the averaging step in k-fold
cross-validation makes the estimate more concen-
trated around its mean, and one might even naı̈vely
expect a k-fold reduction in variance (as would
happen for averaging k independently trained clas-
sifiers). Unlike previous work which focused on
improving generalization error bounds, in this pa-
per, we focus on showing that this intuition is es-
sentially correct: k-fold cross-validation can sig-
nificantly reduce the variance of the generalization
error, even for small k.

Our work is based on developing a new notion
of algorithmic stability, called the mean-square
stability. This is weaker than most of the existing
stability notions and is implied by both the weak-
hypothesis stability of Devroye and Wagner [5]
and the weak-L1 stability of Kutin and Niyogi [7].
Intuitively, this notion limits how much a change
of one example in a typical training set affects the
loss on a randomly chosen test example. Since
the notion is weaker than the previous two, we
can leverage the known literature on the stability
of learning algorithms and show that wide classes
of algorithms have low mean-square stability. For
example, both SVMs [3] and empirical risk mini-
mization (ERM) [7] fall into this category.

Although this notion of stability holds only with
respect to changing a single example, we show
that it is enough to obtain near optimal variance
reduction even for a small number of folds (k =
2, 3, . . .). At first glance this is surprising, since
we do not restrict the algorithm to give stable re-
sults across different folds directly, rather we show
how the stability allows us to reason about the cor-
relation between the different runs.

2

1.2 Contributions
We analyze the variance reduction of the gen-

eralization error due to cross-validation and show
that assuming mean-square stability, one can prove
a near-optimal reduction in variance. Namely,
for many learning algorithms, the variance of the
generalization error obtained using k-fold cross-
validation scales as a (1+o(1)

k)-fraction of the vari-
ance on a single holdout test set. This extends the
theory of stability of learning algorithms, which
was previously only used to prove generaliza-
tion error bounds, to showing variance reduction.
Note that the current techniques can only be used
to show variance reduction; such reductions for
higher moments are beyond the scope of this pa-
per.

Our second contribution is the notion of mean-
square stability used to obtain the results above.
Mean-square stability is weaker than most of the
previously defined stability notions and yet is suf-
ficient to obtain variance reduction.

2 Preliminaries
We have a space of points X and a set of la-

bels Y . Labeled examples are drawn from an un-
known distribution D over Z = X × Y . When-
ever we refer to an example z ∈ Z , we implicitly
assume that it is drawn from D, and, unless spec-
ified otherwise, all probabilities, expectations, and
variances are computed when examples are cho-
sen i.i.d. from D. A hypothesis is a function1

h : X → Y . A learning algorithm A is a func-
tion that takes as input a data set S of examples
from Z , and outputs a hypothesis hA(S).

We assume that the learning algorithm A under
consideration is symmetric, i.e., its output is the
same if the positions of two examples in the in-
put data set are flipped. Such an assumption can
be made without loss of generality since any algo-
rithm can be made symmetric simply by randomly
permuting the input data set prior to running the
algorithm on it.

1This function could be probabilistic, in which case the out-
put of h on some point x ∈ X is some probabilistically chosen
label y ∈ Y . To simplify our exposition, we assume that our
hypotheses are deterministic. Our results hold without change
in the probabilistic case as well. Here, the loss of the hypothe-
sis on an example is defined to be the expected loss of the label
predicted by the hypothesis.

Error rate and generalization error. To measure
the performance of a hypothesis h, we introduce
a loss function ` : Z → [0,M], where M is a
known upper bound on the loss. The loss of a hy-
pothesis h on an example z = (x, y) is defined to
be `h(z) := `(x, h(x)). The error rate of a hy-
pothesis h is defined to be the expected loss of h
on a random example, viz.

¯̀
h := E

z
[`h(z)].

To estimate the error rate of a hypothesis, we
may use a test set T of examples. The error of h
on T is defined to be

`h(T) :=
1
|T |

∑
z∈T

`h(z).

Note that `h(T) is an unbiased estimator of ¯̀
h. We

measure the closeness of estimation by the gener-
alization error or generalization defect for the hy-
pothesis h w.r.t. a test set T , which is defined to
be

genh(T) := `h(T)− ¯̀
h.

Cross-validation. We now introduce k-fold cross-
validation (CV for short) for some algorithm A.
We start with a set U of m = nk examples drawn
from D. We think of k as being a fixed parame-
ter, and n increasing to infinity. We split up the m
examples randomly into k folds T1, T2, . . . , Tk of
equal size n.

The ith classifier is defined to be the output of
A when supplied with all examples in U except
for those in Ti, viz. hi := A(U \ Ti). We measure
the performance of hi on the test set Ti, and define
the ith holdout estimate to be

hoi := `hi
(Ti).

The generalization error of ith holdout estimate is
then geni := genhi

(Ti) = hoi − ¯̀
hi . We are in-

terested in the variance of geni. Since EU [geni] =
EU\Ti

[ETi
[`hi

(Ti) − ¯̀
hi
| U \ Ti]] = 0, we have

varU [geni] = EU [gen2
i].

The cross-validation classifier is defined to be
one that, for every example x, chooses one of the
k classifiers hi uniformly at random, and uses it to
label x. The error rate of the CV-classifier is thus
¯̀
cv = 1

k

∑k
i=1

¯̀
hi

. The cross-validation estimate

3

for the error rate of the CV-classifier is defined to
be

cv :=
1
k

k∑
i=1

hoi.

The generalization error for the CV-estimate is
gencv = cv − ¯̀

cv = 1
k

∑k
i=1 geni. As before,

we have varU [gencv] = EU [gen2
cv].

Since the CV-estimate averages k other esti-
mates, one might expect it to capture the error
rate of the CV-classifier better than any holdout
estimate can capture the error rate of the corre-
sponding classifier. To quantify this, we would
like to show that varU [gencv] is much smaller than
varU [gen1] (we choose the first classifier with-
out loss of generality, since by symmetry we have
varU [gen1] = varU [geni] for any other i).

What variance reduction might one hope for? If
one averages k classifiers trained on k independent
training sets, then the variance of the generaliza-
tion error of the resulting classifier drops down by
a factor of k compared to the variance of the gener-
alization error of any one classifier. Clearly, this is
the best variance reduction one can achieve, since
the k classifiers available after cross-validation are
not trained on independently drawn training sets:
in fact, the training sets are highly correlated. We
will show that for many well-known learning al-
gorithms, such near-optimal variance reduction is
indeed possible.

3 Mean-square stability
To aid in our analysis we define a new notion of

stability of a learning algorithm:

Definition 1 (Mean-square stability). A learning
algorithm A is β-mean-square stable w.r.t. ` if for
any i ∈ {1, 2, . . . ,m},

E
S,z,z′

[(`A(S)(z)− `A(Si,z′)(z))
2] ≤ β.

Here, S, z, z′ are sampled i.i.d. from D, and Si,z
′

is the data set formed by replacing the ith element
of S by z′.

REMARK 1. The choice of the index i in the
definition of mean-square stability is not important
since the algorithm is assumed to be symmetric.
Hence, without loss of generality, we will assume

that i = m, i.e., only the last example is replaced
by a new one.

REMARK 2. Mean-square stability can also be
viewed as requiring that on average (over a ran-
domly chosen test example z, and a randomly cho-
sen training set S′ of size m − 1), the variance of
the loss on the test example when the mth train-
ing example is chosen randomly is small: this is
because

var
z′

[`A(S′∪z′)(z)|S′, z]

=
1
2 E
z′,z′′

[(`A(S′∪z′)(z)− `A(S′∪z′′)(z))2|S′, z],

and so

E
S,z,z′

[(`A(S)(z)− `A(Si,z′)(z))
2]

= 2 E
S′,z

[
var
z′

[`A(S′∪z′)(z)|S′, z]
]
.

Kutin and Niyogi [7] have defined several no-
tions of stability of learning algorithms and estab-
lished implications between them indicating which
notion is weaker than which other. While the goal
of their work is to understand the weakest notions
of stability that are sufficient to show good gener-
alization error bounds, unlike our goal of showing
variance reduction, it is nonetheless worthwhile
to understand where our mean-square stability no-
tion fits in the hierarchy of stability notions. We
now give several such implications indicating that
mean-square stability is a very weak notion, al-
though not as weak as the weakest notion of sta-
bility (defined by Kearns and Ron [6]). However,
since mean-square stability is weaker than weak-
L1 stability (see Lemma 4 below), and it is known
(see [7]) that weak-L1 stability is too weak to show
generalization error bounds, it follows that mean-
square stability is also too weak to show general-
ization error bounds. Even so, it is strong enough
to show variance reduction bounds, as we prove
later.

The implications between the various stability
notions will allow us to harness the stability results
already proven for a wide variety of learning algo-
rithms and show how we get near-optimal variance
reduction in these cases.

We begin by defining four more notions of sta-
bility, in increasing order of weakness, using the
same notation as in Definition 1. Note that our

4

naming convention for these notions of stability
mirrors those of Kutin and Niyogi [7]. To under-
stand these definitions, it is best to think of the loss
function ` as being a continuous valued function
like the hinge loss or square loss, rather than a dis-
crete function like the {0, 1} loss. This is because
we measure stability in terms of closeness between
the losses of two hypotheses that are obtained by
training on data sets that differ in only one exam-
ple. For a discrete loss function like the {0, 1}
loss, we end up with either trivialities (closeness
becomes equivalent to identity for some notions of
stability) or degeneracies (different notions of sta-
bility become identical).

The strongest notion of stability is the uniform
stability notion defined by Bousquet and Elisse-
eff [3]:

Definition 2 (Uniform stability). A learning al-
gorithm A is β-uniform stable w.r.t. ` if for any
i ∈ {1, 2, . . . ,m}, we have

max
S,z,z′

|`A(S)(z)− `A(Si,z′)(z)| ≤ β.

The next one is the weak-hypothesis stability
notion defined by Devroye and Wagner [5]:

Definition 3 (Weak-hypothesis stability). A learn-
ing algorithm A is (β, δ)-weak-hypothesis stable
w.r.t. ` if for any i ∈ {1, 2, . . . ,m}, with prob-
ability at least 1 − δ over the choice of S, z′, we
have

max
z
|`A(S)(z)− `A(Si,z′)(z)| ≤ β.

The third one is the weak-L1 stability notion de-
fined by Kutin and Niyogi [7]:

Definition 4 (Weak-L1 stability). A learning algo-
rithm A is (β, δ)-weak-L1 stable w.r.t. ` if for any
i ∈ {1, 2, . . . ,m}, with probability at least 1 − δ
over the choice of S, z′, we have

E
z
[|`A(S)(z)− `A(Si,z′)(z)|] ≤ β.

The only stability notion weaker than weak-L1

stability notion is the weak-error stability notion
defined by Kearns and Ron [6]:

Definition 5 (Weak-error stability). A learning al-
gorithm A is (β, δ)-weak-error stable w.r.t. ` if for

any i ∈ {1, 2, . . . ,m}, with probability at least
1− δ over the choice of S, z′, we have

|¯̀A(S) − ¯̀
A(Si,z′)| ≤ β.

The following lemma shows that mean-square
stability is a weaker notion than weak-hypothesis
stability and weak-L1 stability. The proof fol-
lows directly from the definitions of the notions
of stability, and using the fact that |`A(S)(z) −
`A(Si,z′)(z)| ≤M , and is hence omitted.

Lemma 1. 1. IfA is β-uniform stable, then it is
(β, 0)-weak-hypothesis stable.

2. If A is (β, δ)-weak-hypothesis stable, then it
is (β2 +M2δ)-mean-square stable.

3. If A is (β, δ)-weak-L1 stable, then it is
(Mβ +M2δ)-mean-square stable.

The relation between mean-square stability and
weak-error stability is somewhat unclear, al-
though it seems that weak-error stability is slightly
weaker, as the following lemma shows:

Lemma 2. If A is β-mean-square stable, then for
any β′ > 0, it is (β′, β

β′2)-weak-error stable.

Proof. Using the β mean-square stability ofA and
Jensen’s inequality we get

E
S,z′

[(¯̀A(S) − ¯̀
A(Si,z′))

2]

= E
S,z′

[(E
z
[`A(S)(z)]− E

z
[`A(Si,z′)(z)])

2]

≤ E
S,z,z′

[(`A(S)(z)− `A(Si,z′)(z))
2] ≤ β.

Using the fact that ES,z′ [¯̀A(S) − ¯̀
A(Si,z′)] = 0,

we thus get that

var
S′,z′

[¯̀A(S) − ¯̀
A(Si,z′)]

= E
S,z′

[(¯̀A(S) − ¯̀
A(Si,z′))

2] ≤ β,

and hence by Chebyshev’s inequality we get

Pr
S′,z′

[|¯̀A(S) − ¯̀
A(Si,z′)| > β′] ≤ β

β′2
.

4 Variance reduction via cross-
validation

In this section, we show our main result regard-
ing the variance reduction possible using k-fold
cross-validation.

5

We first state a key tool that will be used in our
analysis.

Theorem 1 (Steele’s inequality [9]). Let F :
Xn → R be a function defined on data sets of size
n. Let T be a data set of n i.i.d. examples drawn
from some unknown distribution D. Let T i be the
data set formed from T by replacing the ith ele-
ment of T by a new independently drawn example
z′. Then we have

var
T

[F (T)] ≤ 1
2

n∑
i=1

E
T,z′

[(F (T)− F (T i))2].

Note that if F is a symmetric function of T , then
the above inequality can be simplified to

var
T

[F (T)] ≤ n

2 E
T,z′

[(F (T)− F (T̃))2],

where T̃ is formed by replacing a random element
of T by z′. Since all learning algorithms we will
consider are symmetric, we can directly use the
simplified form of Steele’s inequality.

We next state and prove our main result.

Theorem 2. Suppose the learning algorithm A is
β-mean-square stable w.r.t `. Then

var
U

[gencv] ≤
1
k

var
U

[gen1]

+
(

1− 1
k

)√
β varU [gen1]

2
.

Proof. We start with massaging varU [gencv] into
a more manageable form. The analysis which
follows allows decoupling of the correlations that
arise due to the averaging over the k-folds without
much loss. We have

var
U

[gencv] (1)

= var
U

[
1
k

k∑
i=1

geni

]
=

1
k2

var
U

[
k∑
i=1

geni

]

=
1
k2

k∑
i=1

k∑
j=1

cov
U

(geni, genj)

=
1
k2

(
k∑
i=1

var
U

(geni)

+
k∑
i=1

∑
j 6=i

cov
U

(geni, genj)

=
1
k

var
U

(gen1) +
(

1− 1
k

)
cov
U

(gen1, gen2).

(2)

Here we used the facts that for any i we have
varU [geni] = varU [gen1], and for any i 6= j,
covU (geni, genj) = covU (gen1, gen2), by sym-
metry. The first term, 1

k varU (gen1) is the optimal
variance reduction one can expect to get by averag-
ing k classifiers trained on independent data sets.
To bound the excess variance, we need to bound
covU (gen1, gen2).

We first note that at this stage we can recover the
first variance reduction result of Blum, Kalai, and
Langford [2]. By the Cauchy–Schwarz inequality,
we have

cov
U

(gen1, gen2) ≤
√

var
U

[gen1] var
U

[gen2]

= var
U

[gen1], (3)

implying, in conjunction with (2) the result of [2]
that varU [gencv] ≤ varU [gen1].

We now turn to a more nuanced analysis. To do
this, we introduce some notation. Let T be the first
fold, T ′ the second, and let S = U \ (T ∪ T ′).
Using the law of total covariance, conditioning on
S, T we get

cov
U

(gen1, gen2) (4)

= E
S,T

[
cov
T ′

(gen1, gen2|S, T)
]

+ cov
S,T

(E
T ′

[gen1|S, T], E
T ′

[gen2|S, T])

= E
S,T

[
cov
T ′

(gen1, gen2|S, T)
]

(∵ E
T ′

[gen1|S, T] = 0)

≤ E
S,T

[√
var
T ′

[gen1|S, T] var
T ′

[gen2|S, T]
]

(By Cauchy–Schwarz)

≤
√

E
S,T

[
var
T ′

[gen1|S, T]
]

E
S,T

[
var
T ′

[gen2|S, T]
]

(By Cauchy–Schwarz)

=
√

E
S,T

[
var
T ′

[gen2|S, T]
]
var
U

[gen1]. (5)

6

The final equality follows by the law of total
variance:

var
U

(gen1) = E
S,T

[var
T ′

[gen1|S, T]]

+ var
S,T

[E
T ′

[gen1|S, T]]

= E
S,T

[var
T ′

[gen1|S, T]].

It only remains to bound ES,T [varT ′ [gen2|S, T]]
appropriately.

To do this we use Steele’s inequality. Fix S, T ,
and define the function F : Zn → R as F (T ′) =
genA(S∪T ′)(T) = gen2. We use the notation T̃ ′ to
represent the data set obtained from T by replacing
a random element in it with a new independently
sampled example z′. By Steele’s inequality, we
have

2
n
· E
S,T

[
var
T ′

[gen2|S, T]
]

≤ E
S,T

[
E

T ′,z′
[(F (T ′)− F (T̃ ′))2 | S, T]

]
= E
S,T,T ′,z′

[((
1
n

∑
z∈T

`A(S∪T ′)(z)− ¯̀A(S∪T ′)

)

−

(
1
n

∑
z∈T

`A(S∪T̃ ′)(z)− ¯̀
A(S∪T̃ ′)

))2

= E
S,T ′,z′

[
E
T

[((
1
n

∑
z∈T

`A(S∪T ′)(z)− ¯̀A(S∪T ′)

)

−

(
1
n

∑
z∈T

`A(S∪T̃ ′)(z)− ¯̀
A(S∪T̃ ′)

))2

∣∣∣S, T ′, z′]]

= E
S,T ′,z′

[
var
T

[(
1
n

∑
z∈T

`A(S∪T ′)(z)

− 1
n

∑
z∈T

`A(S∪T̃ ′)(z)

) ∣∣∣∣∣ S, T ′, z′
]]

,

because ET
[

1
n

∑
z∈T `A(S∪T ′)(z)

]
= ¯̀A(S∪T ′).

Continuing, since the examples in T are i.i.d.,
we get that the RHS of above equals (for a new

randomly chosen example z)

E
S,T ′,z′

[
1
n

var
z

[(
`A(S∪T ′)(z)− `A(S∪T̃ ′)(z)

)
| S, T ′, z′

]]
≤ E
S,T ′,z′

[
1
n

E
z

[(
`A(S∪T ′)(z)− `A(S∪T̃ ′)(z)

)2

| S, T ′, z′
]]

=
1
n
· E
S,T ′,z′,z

[(
`A(S∪T ′)(z)− `A(S∪T̃ ′)(z)

)2
]

≤ β

n
,

where the last inequality follows because the
mean-square stability of A is β. This, combined
with inequalities (2) and (5), gives us the desired
variance reduction result.

5 Discussion of the variance reduction
bound

As we mentioned before, in a previous work,
Blum, Kalai, and Langford [2] showed that
varU [gencv] ≤ varU [gen1]. This falls out of
our analysis as well, see (3). They also gave some
very mild conditions under which the inequality is
strict.

Given this bound, we now wish to understand
situations where our results along with the assump-
tions on the mean-square stability give better quan-
titative variance reduction bounds. Generally to
get a quantitative variance reduction bound from
Theorem 2, we must get a handle on varU [gen1].
First, note that

var
U

[gen1] = E
S,T

[var
T ′

[gen1|S, T]]

=
1
n

E
S,T

[var
z

[`A(S∪T)(z)− ¯̀A(S∪T)]]

=
1
n

var
U,z

[`A(S∪T)(z)].

We distinguish between two cases: the noisy
setting, where the above quantity is bounded away
from 0, and the noise-free (or realizable) setting.

Definition 6 (Volatility). An instance of the cross-
validation problem composed of the algorithm A,

7

the loss function `, and the distribution D is δ-
volatile if var

U,z
[`A(S∪T)(z)] = Ω(δ).

We note that the Ω(·) notation is allowed to have
dependence on complexity parameters of the hy-
pothesis space (such as the VC dimension) as long
as they are fixed and not growing withm, the num-
ber of samples chosen.

5.1 Variance reduction under the noisy set-
ting

In this setting we consider instances that are δ-
volatile for some δ > 0. This is a mild assump-
tion, and easily satisfied under various models of
noise that corrupt the label y of an example (or its
feature vector x). Consider the classification set-
ting, where the loss of a hypothesis h on an exam-
ple z = (x, y) is 0 if h(x) = y and 1 otherwise.
If the labels of every example are flipped due to
noise with some constant probability, then the set-
ting is Ω(1)-volatile. Similarly, in the linear re-
gression setting, if examples (x, y) are generated
as y = w? · x + ε, where w? is an unknown pa-
rameter vector, and ε is zero-mean noise (such as
the unit Gaussian), then most loss functions such
as squared loss, (w · x− y)2, lead to Ω(1)-volatile
instances.

The work of Bousquet and Elisseeff [3] and
Kutin and Niyogi [7] showed that several learn-
ing algorithms satisfy notions of stability that are
stronger than the mean-square stability. Using
Lemma 1 and Theorem 2, we can directly translate
those stability conditions into variance reduction
bounds for the learning algorithms.

Near-optimal variance reduction from uniform
stability. In their seminal work on stability and
generalization bounds, Bousquet and Elisseeff [3]
focused on uniform stability and proved that sev-
eral learning algorithms are O(1/m)-uniform sta-
ble. By Lemma 1, all of these algorithms are
β = O(1/m2)-mean-square stable. We then get
the following variance reduction bound from The-
orem 2:

Lemma 3. IfA isO(1/m)-uniform stable, then in
an ω(1/n)-volatile setting,

var
U

[gencv] ≤ (1 + o(1)) · 1
k

var
U

[gen1].

This shows the surprising result that the CV es-
timate is almost as tightly concentrated as the aver-
age of k holdout estimates of classifiers trained on
independent data sets. This is the strongest general
form of variance reduction that one can expect to
get.

We highlight the fact that this bound holds for all
k. For Ω(1)-volatile settings, the o(1) term grows
as O(1/

√
n) and allows us to achieve almost opti-

mal variance reduction even for small k such that
3, 4, etc., a setting that is widely used in practice.

Bousquet and Elisseeff [3] have shown
that many regularized learning algorithms are
O(1/m)-uniform stable. Such algorithms include
(see [3] for details) risk minimization in Hilbert
spaces with Tikhonov regularization (bounded
SVM regression, regularized least-squares regres-
sion, etc.), and risk minimization with relative
entropy regularization. Note that the loss functions
used here are regularized losses (see [3]), not the
{0, 1} loss.

Variance reduction from weak-hypothesis or
weak-L1 stability. Uniform stability is a very
restrictive concept; most classification algorithms
can only have the trivial uniform stability of M .
For this reason, weaker notions of stability such as
weak hypothesis and weak-L1 stability were de-
fined and algorithms shown to satisfy these weaker
notions. For instance, Devroye and Wagner [5]
show that t-local rules (such as t-nearest neigh-
bor) are (O(

√
t/m), O(

√
t/m))-weak-L1 stable.

Lemma 1, implies that an (O(1/m), O(1/m))-
weak-L1 stable algorithm is (β = O(1/m))-
mean-square stable. We get the following variance
reduction bound from Theorem 2.

Lemma 4. If A is either (O(1/m), O(1/m))-
weak-hypothesis or weak-L1 stable, then in an
Ω(1)-volatile setting,

var
U

[gencv] ≤
O(1)√
k

var
U

[gen1].

This variance reduction bound shows that the
cross-validation estimate is almost as tightly con-
centrated as the average of approximately

√
k

holdout estimates of classifiers trained on inde-
pendent data sets. Thus, this reduction is not as
strong as the one we get via uniform stability. Fur-
thermore, the O(1) constant in the variance reduc-

8

tion bound depends on the problem parameters (al-
though it is fixed even if m grows); hence, we get
variance reduction only for moderately large k.

5.2 Variance reduction in the noise-free set-
ting

In the noise-free (or realizable) setting, exam-
ples are generated to be consistent with a fixed
hypothesis h0 : X → Y . We assume now that
Y = {0, 1}, and we have the {0, 1}-loss, i.e., if
z = (x, y) is an example, and h is a hypothesis,
then `h(z) = |h(x)− y|.

These instances may be 0-volatile and the re-
sults above would not apply. However, if the hy-
pothesis classH has low complexity (measured by
its VC-dimension), then the empirical risk min-
imization (ERM) procedure converges to a good
hypothesis extremely fast. This yields some form
of variance reduction as well; this time with addi-
tive error (over the average of k independent hold-
out estimates) rather than multiplicative.

Kutin and Niyogi [7, Corollary 7.4] show that if
the VC dimension of H is finite, then ERM over
H is (0, e−Ω(m))-CV stable2, which translates it
to being O(e−Ω(m), e−Ω(m))-weak-L1 stable us-
ing their Theorem 5.9 [7] with α(m) = e−Ω(m).
Lemma 1 implies that the algorithm has mean-
square stability e−Ω(m). Then, using Theorem 2,
we get the following variance reduction bound:

Lemma 5. Let VC-dimension of H be finite. If A
does ERM overH, then we have

var
U

[gencv] ≤
1
k

var
U

[gen1]+
√
e−Ω(m) var

U
[gen1].

Let us interpret the various quantities in this
bound intuitively to get an understanding of how
much variance reduction we obtain. Since we
are in the realizable setting, ERM over S ∪
T returns a hypothesis A(S ∪ T) that has no
training error. Let d be the VC-dimension of
H. By Vapnik’s uniform convergence theo-
rem [10], A(S ∪ T) is expected to have error
rate about ¯̀A(S∪T) ≈ O(

√
d ln(m/d)/m), with

very high probability. Since we have {0, 1}-
loss, varz[`A(S∪T)(z)|S, T] = ¯̀A(S∪T)(1 −
¯̀A(S∪T)) ≈ O(

√
d ln(m/d)/m), and hence

varU [gen1] ≈ O(
√
d ln(m/d)

n
√
m

). In comparison, the

2Not defined in this paper, refer to [7] for the definition.

second term on the RHS of Lemma 5 is negligibly
small. The overall effect is again of averaging k
independent holdout estimates.

We note here that finite VC-dimension is not al-
ways necessary for the bound of Lemma 5 to hold.
Kutin and Niyogi [7] give an example (see Exam-
ple 9.18) of a language learning algorithm whose
hypothesis class has infinite VC-dimension, and
yet it has strong (and hence, weak) hypothesis sta-
bility O(0, e−Ω(m)). This gives the same variance
reduction bound as in Lemma 5.

6 Conclusions and open problems

In this paper, we defined the new notion of
mean-squared stability and showed that for mean-
square stable learning algorithms, the variance of
the k-fold cross-validation estimate drops dramat-
ically compared to the variance of the holdout es-
timate. We showed that many widely used learn-
ing algorithms have the requisite stability to almost
achieve the optimal factor k reduction in variance.
Our results hold for small values of k as well, jus-
tifying the wide use of k-fold cross-validation in
practice, and lending theoretical support to con-
ventional wisdom.

Several questions remain open. Is our notion of
mean-square stability the most general one that can
be used to prove near-optimal variance reduction
bounds? There is evidence that the weaker no-
tion of weak-error stability of Kearns and Ron is
too weak to imply near-optimal variance reduction,
but a formal proof is lacking. Similarly, there is
evidence that the O(

√
β varU [gen1]) term in the

bound of Theorem 2 can be tightened further. Both
of these improvements would be significant steps
towards finding the necessary and sufficient stabil-
ity notion for variance reduction. Another open
question is whether it is possible to obtain similar
reduction for higher moments. Such a reduction
would be useful in obtaining strong tail bounds on
the tightness of the cross-validation estimate.

Finally, for unstable algorithms, bagging [4] has
been shown to markedly improve algorithm perfor-
mance. Extending the techniques in this work to
unravel the dependencies created by bagging pre-
dictors remains an interesting open problem.

9

References
[1] M. Anthony and S. B. Holden. Cross-validation

for binary classification by real-valued functions:
theoretical analysis. In Proc. 11th COLT, pages
218–229, 1998.

[2] A. Blum, A. Kalai, and J. Langford. Beating the
hold-out: Bounds for k-fold and progressive cross-
validation. In Proc. 12th COLT, pages 203–208,
1999.

[3] O. Bousquet and A. Elisseeff. Stability and gener-
alization. JMLR, 2:499–526, 2002.

[4] L. Breiman. Bagging predictors. Mach. Learn.,
24(2):123–140, 1996.

[5] L. P. Devroye and T. J. Wagner. Distribution-free
performance bounds. IEEE TOIT, 25:601–604,
1979.

[6] M. J. Kearns and D. Ron. Algorithmic stability
and sanity-check bounds for leave-one-out cross-
validation. Neural Computation, 11(6):1427–
1453, 1999.

[7] S. Kutin and P. Niyogi. Almost-everywhere algo-
rithmic stability and generalization error. Tech-
nical Report TR-2002-03, University of Chicago,
Computer Science Department, 2002.

[8] W. Rogers and T. Wagner. A finite sample
distribution-free performance bound for local dis-
crimination rules. Annals of Statistics, 6(3):506–
514, 1978.

[9] J. M. Steele. An Efron–Stein inequality for
nonsymmetric statistics. Annals of Statistics,
14(2):753–758, 1986.

[10] V. Vapnik. Estimation of Dependences Based on
Empirical Data. Springer-Verlag, 1982.

10

