
On Mixtures of Markov Chains

Rishi Gupta∗
Stanford University
Stanford, CA 94305

rishig@cs.stanford.edu

Ravi Kumar
Google Research

Mountain View, CA 94043
ravi.k53@gmail.com

Sergei Vassilvitskii
Google Research

New York, NY 10011
sergeiv@google.com

Abstract

We study the problem of reconstructing a mixture of Markov chains from the
trajectories generated by random walks through the state space. Under mild non-
degeneracy conditions, we show that we can uniquely reconstruct the underlying
chains by only considering trajectories of length three, which represent triples of
states. Our algorithm is spectral in nature, and is easy to implement.

1 Introduction

Markov chains are a simple and incredibly rich tool for modeling, and act as a backbone in numerous
applications—from Pagerank for web search to language modeling for machine translation. While
the true nature of the underlying behavior is rarely Markovian [5], it is nevertheless often a good
mathematical assumption.

In this paper, we consider the case where we are given observations from a mixture of L Markov
chains, each on the same n states, with n ≥ 2L. Each observation is a series of states, and is
generated as follows: a Markov chain and starting state are selected from a distribution S, and then
the selected Markov chain is followed for some number of steps. The goal is to recover S and the
transition matrices of the L Markov chains from the observations.

When all of the observations follow from a single Markov chain (namely, when L = 1), recovering
the mixture parameters is easy. A simple calculation shows that the empirical starting distribution
and the empirical transition probabilities form the maximum likelihood Markov chain. So we are
largely interested in the case when L > 1.

As a motivating example, consider the usage of a standard maps app on a phone. There are a number
of different reasons one might use the app: to search for a nearby business, to get directions from
one point to another, or just to orient oneself. However, the users of the app never specify an explicit
intent, rather they swipe, type, zoom, etc., until they are satisfied. Each one of the latent intents can be
modeled by a Markov chain on a small state space of actions. If the assignment of each session to an
intent were explicit, recovering these Markov chains would simply reduce to several instances of the
L = 1 case. Here we are interested in the unsupervised setting of finding the underlying chains when
this assignment is unknown. This allows for a better understanding of usage patterns. For example:

• Common uses for the app that the designers had not expected, or had not expected to be
common. For instance, maybe a good fraction of users (or user sessions) simply use the app
to check the traffic.

• Whether different types of users use the app differently. For instance, experienced users
might use the app differently than first time users, either due to having different goals, or
due to accomplishing the same tasks more efficiently.

• Undiscoverable flows, with users ignoring a simple, but hidden menu setting, and instead
using a convoluted path to accomplish the same goal.

∗Part of this work was done while the author was visiting Google Research

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

The question of untangling mixture models has received a lot of attention in a variety of different
situations, particularly in the case of learning mixtures of Gaussians, see for example the seminal
work of [7], as well as later work by [4, 10, 14] and the references therein. This is, to the best of our
knowledge, the first work that looks at unraveling mixtures of Markov chains.

There are two immediate approaches to solving this problem. The first is to use the Expectation-
Maximization (EM) algorithm [8]. The EM algorithm starts by guessing an initial set of parameters
for the mixture, and then performs local improvements that increase the likelihood of the proposed
solution. The EM algorithm is a useful benchmark and will converge to some local optimum, but it
may be slow to get there [11], and has are no guarantees on the quality of the final solution.

The second approach is to model the problem as a Hidden Markov Model (HMM), and employ the
machinery for learning HMMs, particularly the recent tensor decomposition methods [1, 2, 9]. As
in our case, this machinery relies on having more observed states than hidden states. Unfortunately,
directly modeling a Markov chain mixture as an HMM (or as a mixture of HMMs, as in [12]) requires
nL hidden states for n observed states. Given that, one could try adapting the tensor decomposition
arguments from [2] to our problem, which is done in Section 4.3 of [13]. However, as the authors note,
this requires accurate estimates for the distribution of trajectories (or trails) of length five, whereas our
results only require estimates for the distribution of trails of length three. This is a large difference in
the amount of data one might need to collect, as one would expect to need Θ(nt) samples to estimate
the distribution of trails of length t.

An entirely different approach is to assume a Dirichlet prior on the mixture, and model the problem
as learning a mixture of Dirichlet distributions [13]. Besides requiring the Dirichlet prior, this method
also requires very long trails.

Our contributions. We propose and study the problem of reconstructing a mixture of Markov chains
from a set of observations, or trajectories. Let a t-trail be a trajectory of length t: a starting state
chosen according to S along with t− 1 steps along the appropriate Markov chain.

(i) We identify a weak non-degeneracy condition on mixtures of Markov chains and show that under
that non-degeneracy condition, 3-trails are sufficient for recovering the underlying mixture parameters.
We prove that for random instances, the non-degeneracy condition holds with probability 1.

(ii) Under the non-degeneracy condition, we give an efficient algorithm for uniquely recovering the
mixture parameters given the exact distribution of 3-trails.

(iii) We show that our algorithm outperforms the most natural EM algorithm for the problem in some
regimes, despite EM being orders of magnitude slower.

Organization. In Section 2 we present the necessary background material that will be used in the
rest of the paper. In Section 3 we state and motivate the non-degeneracy condition that is sufficient
for unique reconstruction. Using this assumption, in Section 4 we present our four-step algorithm
for reconstruction. In Section 5 we present our experimental results on synthetic and real data. In
Section 6 we show that random instances are non-degenerate with probability 1.

2 Preliminaries

Let [n] = {1, . . . , n} be a state space. We consider Markov chains defined on [n]. For a Markov
chain given by its n× n transition matrix M , let M(i, j) denote the probability of moving from state
i to state j. By definition, M is a stochastic matrix, M(i, j) ≥ 0 and

∑
jM(i, j) = 1. (In general

we use A(i, j) to denote the (i, j)th entry of a matrix A.)

For a matrix A, let A denote its transpose. Every n× n matrix A of rank r admits a singular value
decomposition (SVD) of the form A = UΣV where U and V are n× r orthogonal matrices and Σ
is an r × r diagonal matrix with non-negative entries. For an L× n matrix B of full rank, its right
pseudoinverse B−1 is an n × L matrix of full rank such that BB−1 = I; it is a standard fact that
pseudoinverses exist and can be computed efficiently when n ≥ L.

We now formally define a mixture of Markov chains (M,S). Let L ≥ 1 be an integer. Let
M = {M1, . . . ,ML} be L transition matrices, all defined on [n]. Let S = {s1, . . . , sL} be a
corresponding set of positive n-dimensional vectors of starting probabilities such that

∑
`,i s

`
i = 1.

2

GivenM and S, a t-trail is generated as follows: first pick the chain ` and the starting state i with
probability s`i , and then perform a random walk according to the transition matrix M `, starting from
i, for t− 1 steps.

Throughout, we use i, j, k to denote states in [n] and ` to denote a particular chain. Let 1n be a
column vector of n 1’s.
Definition 1 (Reconstructing a Mixture of Markov Chains). Given a (large enough) set of trails
generated by a mixture of Markov chains and an L > 1, find the parametersM and S of the mixture.

Note that the number of parameters is O(n2 · L). In this paper, we focus on a seemingly restricted
version of the reconstruction problem, where all of the given trails are of length three, i.e., every trail
is of the form i→ j → k for some three states i, j, k ∈ [n]. Surprisingly, we show that 3-trails are
sufficient for perfect reconstruction.

By the definition of mixtures, the probability of generating a given 3-trail i→ j → k is∑
`

s`i ·M `(i, j) ·M `(j, k), (1)

which captures the stochastic process of choosing a particular chain ` using S and taking two steps in
M `. Since we only observe the trails, the choice of the chain ` in the above process is latent. For
each j ∈ [n], let Oj be an n× n matrix such that Oj(i, k) equals the value in (1). It is easy to see
that using O((n3 log n)/ε2) sample trails, every entry in Oj for every j is approximated to within
an additive ±ε. For the rest of the paper, we assume we know each Oj(i, k) exactly, rather than an
approximation of it from samples.

We now give a simple decomposition of Oj in terms of the transition matrices inM and the starting
probabilities in S. Let Pj be the L × n matrix whose (`, i)th entry denotes the probability of
using chain `, starting in state i, and transitioning to state j, i.e., Pj(`, i) = s`i ·M `(i, j). In a
similar manner, let Qj be the L× n matrix whose (`, k)th entry denotes the probability of starting
in state j, and transitioning to state k under chain `, i.e., Qj(`, k) = s`j · M `(j, k). Finally, let
Sj = diag(s1j , . . . , s

L
j) be the L× L diagonal matrix of starting probabilities in state j. Then,

Oj = Pj · S−1j ·Qj . (2)

This decomposition will form the key to our analysis.

3 Conditions for unique reconstruction

Before we delve into the details of the algorithm, we first identify a condition on the mixture (M,S)
such that there is a unique solution to the reconstruction problem when we consider trails of length
three. (To appreciate such a need, consider a mixture where two of the matrices M ` and M `′ in
M are identical. Then for a fixed vector v, any s` and s`

′
with s` + s`

′
= v will give the same

observations, regardless of the length of the trails.) To motivate the condition we require, consider
again the sets of L × n matrices P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn} as defined in (2).
Together these matrices capture the n2L− 1 parameters of the problem, namely, n− 1 for each of
the n rows of each of the L transition matrices M `, and nL − 1 parameters defining S. However,
together P and Q have 2n2L entries, implying algebraic dependencies between them.
Definition 2 (Shuffle pairs). Two ordered sets X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} of L× n
matrices are shuffle pairs if the jth column of Xi is identical to the ith column of Yj for all i, j ∈ [n].

Note that P andQ are shuffle pairs. We state an equivalent way of specifying this definition. Consider
a 2nL×n2 matrixA(P,Q) that consists of a top and a bottom half. The top half is an nL×n2 block
diagonal matrix with Pi as the ith block. The bottom half is a concatenation of n different nL× n
block diagonal matrices; the ith block of the jth matrix is the jth column of −Qi. A representation
of A is given in Figure 1. As intuition, note that in each column, the two blocks of L entries are the
same up to negation. Let F be the L× 2nL matrix consisting of 2n L× L identity matrices in a row.
It is straightforward to see that P and Q are shuffle pairs if and only if F · A(P,Q) = 0.

Let the co-kernel of a matrix X be the vector space comprising the vectors v for which vX = 0. We
have the following definition.

3

Figure 1: A(P,Q) for L = 2, n = 4. When P and Q are shuffle pairs, each column has two copies
of the same L-dimensional vector (up to negation).M is well-distributed if there are no non-trivial
vectors v for which v · A(P,Q) = 0.

Definition 3 (Well-distributed). The set of matricesM is well-distributed if the co-kernel ofA(P,Q)
has rank L.

Equivalently,M is well-distributed if the co-kernel ofA(P,Q) is spanned by the rows of F . Section 4
shows how to uniquely recover a mixture from the 3-trail probabilitiesOj whenM is well-distributed
and S has only non-zero entries. Section 6 shows that nearly allM are well-distributed, or more
formally, that the set of non well-distributedM has (Lebesgue) measure 0.

4 Reconstruction algorithm

We present an algorithm to recover a mixture from its induced distribution on 3-trails. We assume for
the rest of the section thatM is well-distributed (see Definition 3) and S has only non-zero entries,
which also means Pj , Qj , and Oj have rank L for each j.

At a high level, the algorithm begins by performing an SVD of each Oj , thus recovering both Pj and
Qj , as in (2), up to unknown rotation and scaling. The key to undoing the rotation will be the fact
that the sets of matrices P and Q are shuffle pairs, and hence have algebraic dependencies.

More specifically, our algorithm consists of four high-level steps. We first list the steps and provide
an informal overview; later we will describe each step in full detail.

(i) Matrix decomposition: Using SVD, we compute a decomposition Oj = UjΣjVj and let P ′j = Uj
and Q′j = ΣjVj . These are the initial guesses at (Pj , Qj). We prove in Lemma 4 that there exist
L× L matrices Yj and Zj so that Pj = YjP

′
j and Qj = ZjQ

′
j for each j ∈ [n].

(ii) Co-kernel: Let P ′ = {P ′1, . . . , P ′n}, and Q′ = {Q′1, . . . , Q′n}. We compute the co-kernel of
matrix A(P ′,Q′) as defined in Section 3, to obtain matrices Y ′j and Z ′j . We prove that there is a
single matrix R for which Yj = RY ′j and Zj = RZ ′j for all j.

(iii) Diagonalization: Let R′ be the matrix of eigenvectors of (Z ′1Y
′
1)−1(Z ′2Y

′
2). We prove that there

is a permutation matrix Π and a diagonal matrix D such that R = DΠR′.

(iv) Two-trail matching: Given Oj it is easy to compute the probability distribution of the mixture
over 2-trails. We use these to solve for D, and using D, compute R, Yj , Pj , and Sj for each j.

4.1 Matrix decomposition

From the definition, both P ′j and Q′j are L× n matrices of full rank. The following lemma states that
the SVD of the product of two matrices A and B returns the original matrices up to a change of basis.

4

Lemma 4. Let A,B,C,D be L × n matrices of full rank, such that AB = CD. Then there is an
L× L matrix X of full rank such that C = X−1A and D = XB.

Proof. Note that A = ABB−1 = CDB−1 = CW for W = DB−1. Since A has full rank, W must
as well. We then get CD = AB = CWB, and since C has full column rank, D = WB. Setting
X = W completes the proof.

Since Oj = Pj(S
−1
j Qj) and Oj = P ′jQ

′
j , Lemma 4 implies that there exists an L× L matrix Xj of

full rank such that Pj = X−1j P ′j and Qj = SjXjQ
′
j . Let Yj = X−1j , and let Zj = SjXj . Note that

both Yj and Zj have full rank, for each j. Once we have Yj and Zj , we can easily compute both Pj
and Sj , so we have reduced our problem to finding Yj and Zj .

4.2 Co-kernel

Since (P,Q) is a shuffle pair, ((YjP
′
j)j∈[n], (ZjQ

′
j)j∈[n]) is also a shuffle pair. We can write the

latter fact as B(Y,Z)A(P ′, Q′) = 0, where B(Y,Z) is the L× 2nL matrix comprising 2n matrices
concatenated together; first Yj for each j, and then Zj for each j. We know A(P ′, Q′) from the
matrix decomposition step, and we are trying to find B(Y,Z). By well-distributedness, the co-kernel
of A(P,Q) has rank L. Let D be the 2nL × 2nL block diagonal matrix with the diagonal entries
(Y −11 , Y −12 , . . . , Y −1n , Z−11 , Z−12 , . . . , Z−1n). Then A(P ′, Q′) = DA(P,Q). Since D has full rank,
the co-kernel of A(P ′, Q′) has rank L as well.

We compute an arbitrary basis of the co-kernel of A(P ′, Q′)),2 and write it as an L× 2nL matrix
as an initial guess B(Y ′, Z ′) for B(Y, Z). Since B(Y,Z) lies in the co-kernel of A(P ′, Q′), and has
exactly L rows, there exists an L× L matrix R such that B(Y, Z) = RB(Y ′, Z ′), or equivalently,
such that Yj = RY ′j and Zj = RZ ′j for every j. Since Yj and Zj have full rank, so does R. Now our
problem is reduced to computing R.

4.3 Diagonalization

Recall from the matrix decomposition step that there exist matrices Xj such that Yj = X−1j and
Zj = SjXj . Hence Z ′jY

′
j = (R−1Zj)(Yj R−1) = R−1SjR−1. It seems difficult to compute R

directly from equations of the form R−1SjR−1, but we can multiply any two of them together to get,
e.g., (Z ′1Y

′
1)−1(Z ′2Y

′
2) = RS−11 S2R−1.

Since S−11 S2 is a diagonal matrix, we can diagonalize RS−11 S2R−1 as a step towards computing
R. Let R′ be the matrix of eigenvectors of RS−11 S2R−1. Now, R is determined up to a scaling and
ordering of the eigenvectors. In other words, there is a permutation matrix Π and diagonal matrix D
such that R = DΠR′.

4.4 Two-trail matching

First, Oj1n = PjS
−1
j Qj1n = Pj1L for each j, since each row of S−1j Qj is simply the set of

transition probabilities out of a particular Markov chain and state. Another way to see it is that both
Oj1n and Pj1L are vectors whose ith coordinate is the probability of the trail i→ j.

From the first three steps of the algorithm, we also have Pj = YjP
′
j = RY ′jP

′
j = DΠR′Y ′jP

′
j .

Hence 1LDΠ = 1LP1(R′Y ′1P
′
1)−1 = O11n(R′Y ′1P

′
1)−1, where the inverse is a pseudoinverse.

We arbitrarily fix Π, from which we can compute D, R, Yj , and finally Pj for each j. From the
diagonalization step (Section 4.3), we can also compute Sj = R(Z ′jY

′
j)R for each j.

Note that the algorithm implicitly includes a proof of uniqueness, up to a setting of Π. Different
orderings of Π correspond to different orderings of M ` inM.

2For instance, by taking the SVD of A(P ′, Q′), and looking at the singular vectors.

5

5 Experiments

We have presented an algorithm for reconstructing a mixture of Markov chains from the observations,
assuming the observation matrices are known exactly. In this section we demonstrate that the
algorithm is efficient, and performs well even when we use empirical observations. In addition, we
also compare its performance against the most natural EM algorithm for the reconstruction problem.

Synthetic data. We begin by generating well distributed instances M and S. Let Dn be the
uniform distribution over the n-dimensional unit simplex, namely, the uniform distribution over
vectors in Rn whose coordinates are non-negative and sum to 1.

For a specific n and L, we generate an instance (M, S) as follows. For each state i and Markov chain
M `, the set of transition probabilities leaving i is distributed as Dn. We draw each s` from Dn as
well, and then divide by L, so that the sum over all s`(i) is 1. In other words, each trail is equally
likely to come from any of the L Markov chains. This restriction has little effect on our algorithm,
but is needed to make EM tractable. For each instance, we generate T samples of 3-trails. The results
that we report are the medians of 100 different runs.

Metric for synthetic data. Our goal is exact recovery of the underlying instanceM. Given two
n × n matrices A and B, the error is the average total variation distance between the transition
probabilities: error(A,B) = 1/(2n) ·

∑
i,j |A(i, j) − B(i, j)|. Given a pair of instances M =

{M1, . . . ,ML} and N = {N1, . . . , NL} on the same state space [n], the recovery error is the
minimum average error over all matchings of chains in N toM. Let σ be a permutation on [L], then:

recovery error(M,N) = min
σ

1

L

∑
`

error(M `, Nσ(`)).

Given all the pairwise errors error(M `, Np), this minimum can be computed in time O(L3) by the
Hungarian algorithm. Note that the recovery error ranges from 0 to 1.

Real data. We use the last.fm 1K dataset3, which contains the list of songs listened by heavy users
of Last.Fm. We use the top 25 artist genres4 as the states of the Markov chain. We consider the ten
heaviest users in the data set, and for each user, consider the first 3001 state transitions that change
their state. We break each sequence into 3000 3-trails. Each user naturally defines a Markov chain on
the genres, and the goal is to recover these individual chains from the observed mixture of 3-trails.

Metric for real data. Given a 3-trail from one of the users, our goal is to predict which user the
3-trail came from. Specifically, given a 3-trail t and a mixture of Markov chains (M,S), we assign t
to the Markov chain most likely to have generated it. A recovered mixture (M,S) thereby partitions
the observed 3-trails into L groups. The prediction error is the minimum over all matchings between
groups and users of the fraction of trails that are matched to the wrong user. The prediction error
ranges from 0 to 1− 1/L.

Handling approximations. Because the algorithm operates on real data, rather than perfect obser-
vation matrices, we make two minor modifications to make it more robust. First, in the diagonalization
step (Section 4.3), we sum (Z ′iYi)

−1(Z ′i+1Yi+1)−1 over all i before diagonalizing to estimate R′,
instead of just using i = 1. Second, due to noise, the matrices M that we recover at the end need not
be stochastic. Following the work of [6] we normalize the values by first taking absolute values of all
entries, and then normalizing so that each of the columns sums to 1.

Baseline. We turn to EM as a practical baseline for this reconstruction problem. In our implementa-
tion, we continue running EM until the log likelihood changes by less than 10−7 in each iteration;
this corresponds to roughly 200-1000 iterations. Although EM continues to improve its solution past
this point, even at the 10−7 cutoff, it is already 10-50x slower than the algorithm we propose.

5.1 Recovery and prediction error

3http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-1K.tar.gz
4http://static.echonest.com/Lastfm-ArtistTags2007.tar.gz

6

http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-1K.tar.gz
http://static.echonest.com/Lastfm-ArtistTags2007.tar.gz

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e9

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
e
d
ia

n
 R

e
co

v
e
ry

 E
rr

o
r

Alg

EM

4 5 6 7 8 9 10
L

0.00

0.05

0.10

0.15

0.20

0.25

M
e
d
ia

n
 R

e
co

v
e
ry

 E
rr

o
r

Alg
EM 100
EM 1000

4 5 6 7 8 9 10
L

0.0

0.2

0.4

0.6

0.8

1.0

M
e
d
ia

n
 P

re
d
ic

ti
o
n
 E

rr
o
r

Alg
EM 1000

(a) (b) (c)

Figure 3: (a) Performance of EM and our algorithm vs number of samples (b) Performance of EM
and our algorithm vs L (synthetic data) (c) Performance of EM and our algorithm (real data)

5 10 15 20 25 30
n

0.00

0.05

0.10

0.15

0.20

M
e
d
ia

n
 R

e
co

v
e
ry

 E
rr

o
r

l=3

l=5

l=7

l=9

Figure 2: Performance of the algorithm
as a function of n and L for a fixed num-
ber of samples.

For the synthetic data, we fix n = 6 and L = 3, and
for each of the 100 instances generate a progressively
larger set of samples. Recall that the number of unknown
parameters grows as Θ(n2L), so even this relatively sim-
ple setting corresponds to over 100 unknown parameters.
Figure 3(a) shows the median recovery error of both ap-
proaches. It is clear that the proposed method significantly
outperforms the EM approach, routinely achieving errors
of 10-90% lower. Furthermore, while we did not make
significant attempts to speed up EM, it is already over
10x slower than our algorithm at n = 6 and L = 3, and
becomes even slower as n and L grow.

In Figure 3(b) we study the error as a function of L. Our
approach is significantly faster, and easily outperforms
EM at 100 iterations. Running EM for 1000 iterations results with prediction error on par with our
algorithm, but takes orders of magnitude more time to complete.

For the real data, there are n = 25 states, and we tried L = 4, . . . , 10 for the number of users. We run
EM for 500 iterations and show the results in Figure 3(c). While our algorithm slightly underperforms
EM, it is significantly faster in practice.

5.2 Dependence on n and L

To investigate the dependence of our approach on the size of the input, namely n and L, we fix the
number of samples to 108 but vary both the number of states from 6 to 30, as well as the number
of chains from 3 to 9. Recall that the number of parameters grows as n2L, therefore, the largest
examples have almost 1000 parameters that we are trying to fit.

We plot the results in Figure 2. As expected, the error grows linearly with the number of chains. This
is expected — since we are keeping the number of samples fixed, the relative error (from the true
observations) grows as well. It is therefore remarkable that the error grows only linearly with L.

We see more interesting behavior with respect to n. Recall that the proofs required n ≥ 2L.
Empirically we see that at n = 2L the approach is relatively brittle, and errors are relatively high.
However, as n increases past that, we see the recovery error stabilizes. Explaining this behavior
formally is an interesting open question.

6 Analysis

We now show that nearly allM are well-distributed (see Definition 3), or more formally, that the set
of non well-distributedM has (Lebesgue) measure 0 for every L > 1 and n ≥ 2L.

We first introduce some notation. All arrays and indices are 1-indexed. In previous sections, we
have interpreted i, j, k, and ` as states or as indices of a mixture; in this section we drop these
interpretations and just use them as generic indices.

7

For vectors v1, . . . , vn ∈ RL, let v[n] denote (v1, . . . , vn), and let ∗(v1, . . . , vn) denote the vi’s
concatenated together to form a vector in RnL. Let vi[j] denote the jth coordinate of vector vi.

We first show that there exists at least one well-distributed P for each n and L.
Lemma 5 (Existence of a well-distributed P). For every n and L with n ≥ 2L, there exists a P for
which the co-kernel of A(P,Q) has rank L.

Proof. It is sufficient to show it for n = 2L, since for larger n we can pad with zeros. Also, recall
that F · A(P,Q) = 0 for any P , where F is the L× 2nL matrix consisting of 2n identity matrices
concatenated together. So the co-kernel of any A(P,Q) has rank at least L, and we just need to show
that there exists a P where the co-kernel of A(P,Q) has rank at most L.

Now, let e` be the `th basis vector in RL. Let P∗ = (P ∗1 , . . . , P
∗
n), and let p∗ij denote the jth column

of P ∗i . We set p∗ij to the (i, j)th entry of

e1 e2 · · · eL e1 e2 · · · eL
eL e1 · · · eL−1 eL e1 · · · eL−1
...

...
...

...
e2 e3 · · · e1 e2 e3 · · · e1
e1 e2 · · · eL eL e1 · · · eL−1
eL e1 · · · eL−1 eL−1 eL · · · eL−2
...

...
...

...
e2 e3 · · · e1 e1 e2 · · · eL

.

Formally, p∗ij =

{
ej−i+1 if i ≤ L or j ≤ L
ej−i, if i, j > L

, where subscripts are taken mod L. Note that we can

split the above matrix into four L× L blocks
(
E E
E E′

)
where E′ is a horizontal “rotation” of E.

Now, let a[n], b[n] be any vectors in RL such that v = ∗(a1, . . . , an, b1, . . . , bn) ∈ R2nL is in the
co-kernel of A(P∗,Q∗). Recall this means v · A(P∗,Q∗) = 0. Writing out the matrix A, it is not
too hard to see that this holds if and only if 〈ai, p∗ij〉 = 〈bj , p∗ij〉 for each i and j.

Consider the i and j where p∗ij = e1. For each k ∈ [L], we have ak[1] = bk[1] from the upper
left quadrant, ak[1] = bL+k[1] from the upper right quadrant, aL+k[1] = bk[1] from the lower left
quadrant, and aL+k[1] = bL+(k+1 (mod L))[1] from the lower right quadrant. It is easy to see that
these combine to imply that ai[1] = bj [1] for all i, j ∈ [n].

A similar argument for each l ∈ [L] shows that ai[l] = bj [l] for all i, j and l. Equivalently, ai = bj
for each i and j, which means that v lives in a subspace of dimension L, as desired.

We now bootstrap from our one example to show that almost all P are well-distributed.
Theorem 6 (Almost all P are well-distributed). The set of non-well-distributed P has Lebesgue
measure 0 for every n and L with n ≥ 2L.

Proof. Let A′(P,Q) be all but the last L rows of A(P,Q). For any P , let h(P) =

det |A′(P,Q)A′(P,Q)|. Note that h(P) is non-zero if and only if P is well-distributed. Let P∗ be
the P∗ from Lemma 5. Since A′(P∗,Q∗) has full row rank, h(P∗) 6= 0. Since h is a polynomial
function of the entries of P , and h is non-zero somewhere, h is non-zero almost everywhere [3].

7 Conclusions

In this paper we considered the problem of reconstructing Markov chain mixtures from given
observation trails. We showed that unique reconstruction is algorithmically possible under a mild
technical condition on the “well-separatedness” of the chains. While our condition is sufficient, we
conjecture it is also necessary; proving this is an interesting research direction. Extending our analysis
to work for the noisy case is also a plausible research direction, though we believe the corresponding
analysis could be quite challenging.

8

References

[1] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. JMLR, 15(1):2773–2832, 2014.

[2] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and
hidden Markov models. In COLT, pages 33.1–33.34, 2012.

[3] R. Caron and T. Traynor. The zero set of a polynomial. WSMR Report, pages 05–02, 2005.
[4] K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and

independence. In COLT, pages 9–20, 2008.
[5] F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlos. Are web users really Markovian? In

WWW, pages 609–618, 2012.
[6] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral

learning of latent-variable PCFGs. In NAACL, pages 148–157, 2013.
[7] S. Dasgupta. Learning mixtures of Gaussians. In FOCS, pages 634–644, 1999.
[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.
[9] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.

JCSS, 78(5):1460–1480, 2012.
[10] A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In

FOCS, pages 93–102, 2010.
[11] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood, and the EM algorithm.

SIAM Review, 26:195–239, 1984.
[12] C. Subakan, J. Traa, and P. Smaragdis. Spectral learning of mixture of hidden Markov models.

In NIPS, pages 2249–2257, 2014.
[13] Y. C. Sübakan. Probabilistic time series classification. Master’s thesis, Boğaziçi University,

2011.
[14] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. JCSS, 68(4):841–

860, 2004.

9

	Introduction
	Preliminaries
	Conditions for unique reconstruction
	Reconstruction algorithm
	Matrix decomposition
	Co-kernel
	Diagonalization
	Two-trail matching

	Experiments
	Recovery and prediction error
	Dependence on n and L

	Analysis
	Conclusions

