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Abstract

In recent years the MapReduce framework has emerged
as one of the most widely used parallel computing
platforms for processing data on terabyte and petabyte
scales. Used daily at companies such as Yahoo!, Google,
Amazon, and Facebook, and adopted more recently by
several universities, it allows for easy parallelization
of data intensive computations over many machines.
One key feature of MapReduce that differentiates it
from previous models of parallel computation is that
it interleaves sequential and parallel computation. We
propose a model of efficient computation using the
MapReduce paradigm. Since MapReduce is designed for
computations over massive data sets, our model limits
the number of machines and the memory per machine
to be substantially sublinear in the size of the input.
On the other hand, we place very loose restrictions on
the computational power of of any individual machine—
our model allows each machine to perform sequential
computations in time polynomial in the size of the
original input.

We compare MapReduce to the PRAM model of
computation. We prove a simulation lemma showing
that a large class of PRAM algorithms can be efficiently
simulated via MapReduce. The strength of MapReduce,
however, lies in the fact that it uses both sequential and
parallel computation. We demonstrate how algorithms
can take advantage of this fact to compute an MST of a
dense graph in only two rounds, as opposed to Ω(log(n))
rounds needed in the standard PRAM model. We show
how to evaluate a wide class of functions using the
MapReduce framework. We conclude by applying this
result to show how to compute some basic algorithmic
problems such as undirected s-t connectivity in the
MapReduce framework.

1 Introduction

In a world in which large data sets are measured in
tera- and petabytes, a new form of parallel computing
has emerged as an easy-to-program, reliable, and dis-
tributed paradigm to process these massive quantities
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of available data. The MapReduce framework was orig-
inally developed at Google [4], but has recently seen
wide adoption and has become the de facto standard
for large scale data analysis. Publicly available statis-
tics indicate that MapReduce is used to process more
than 10 petabytes of information per day at Google
alone [5]. An open source version, called Hadoop, has re-
cently been developed, and is seeing increased adoption
both in industry and academia [14]. Over 70 compa-
nies use Hadoop including Yahoo!, Facebook, Adobe,
and IBM [8]. Moreover, Amazon’s Elastic Compute
Cloud (EC2) is a Hadoop cluster where users can upload
large data sets and rent processor time. In addition, at
least seven universities (including CMU, Cornell, and
the University of Maryland) are using Hadoop clusters
for research [8].

MapReduce is substantially different from previ-
ously analyzed models of parallel computation because
it interleaves parallel and sequential computation. In
recent years several nontrivial MapReduce algorithms
have emerged, from computing the diameter of a graph
[9] to implementing the EM algorithm to cluster mas-
sive data sets [3]. Each of these algorithms gives some
insights into what can be done in a MapReduce frame-
work, however, there is a lack of rigorous algorithmic
analyses of the issues involved. In this work we begin by
presenting a formal model of computation for MapRe-
duce and compare it to the popular PRAM model. We
show that a large subclass of PRAM algorithms, namely
those using O(n2−ε) processors and O(n2−ε) total mem-
ory, for a fixed ε > 0, can be efficiently simulated in
MapReduce. We conclude by demonstrating two basic
techniques for parallelizing using MapReduce and show
their applications by presenting algorithms for MST in
dense graphs and undirected s-t connectivity.

1.1 MapReduce Basics In the MapReduce pro-
gramming paradigm, the basic unit of information is
a 〈key; value〉 pair where each key and each value are
binary strings. The input to any MapReduce algorithm
is a set of 〈key; value〉 pairs. Operations on a set of
pairs occur in three stages: the map stage, the shuffle
stage and the reduce stage, which we discuss in turn.

In the map stage, the mapper µ takes as input a
single 〈key; value〉 pair, and produces as output any



number of new 〈key; value〉 pairs. It is crucial that
the map operation is stateless—that is, it operates on
one pair at a time. This allows for easy parallelization
as different inputs for the map can be processed by
different machines.

During the shuffle stage, the underlying system
that implements MapReduce sends all of the values
that are associated with an individual key to the same
machine. This occurs automatically, and is seamless to
the programmer.

In the reduce stage, the reducer ρ takes all of the
values associated with a single key k, and outputs a
multiset of 〈key; value〉 pairs with the same key, k. This
highlights one of the sequential aspects of MapReduce
computation: all of the maps need to finish before the
reduce stage can begin.

Sine the reducer has access to all the values with
the same key, it can perform sequential computations
on these values. In the reduce step, the parallelism
is exploited by observing that reducers operating on
different keys can be executed simultaneously.

Overall, a program in the MapReduce paradigm
can consist of many rounds of different map and reduce
functions, performed one after another.

1.2 MapReduce Example To better understand
the power of the model, consider the following simple
example of computing the k-th frequency moment of
a large data (multi)-set. Let x be the input string of
length n, and denote by xi the ith symbol in x. To
represent the input as a sequence of 〈key; value〉 pairs,
we look at x as a sequence of n pairs, 〈i;xi〉. Let $ be a
special symbol. The program is as follows:

1. Begin by mapping every tuple to a pair with
the symbol as the key, and the position as the
value. Thus the first mapper, µ1 is defined as:
µ1(〈i;xi〉) = 〈xi; i〉.

2. After the aggregation by the key, the input to each
reducer will be a unique string symbol, and the list
of positions in which this symbol appears. We pro-
ceed to collapse that list into a single number, defin-
ing the first reducer ρ1 as ρ1(〈xi; {v1, . . . , vm}〉) =
〈xi;mk〉.

3. At this point we just want to sum the number of
remaining pairs. First, map each pair to have the
same key: µ2(〈xi; v〉) = 〈$; v〉.

4. Since all of the pairs now have the same key,
they will all be mapped to the same reducer.
We can simply sum them: ρ2(〈$; {v1, . . . , vl}〉) =
〈$;
∑
i vi〉.

Another major attraction of MapReduce, besides its
ease of parallelization, is its ease of use. As the example

shows, the framework shields the programmer from the
low-level details of parallel programming such as fault
tolerance, data distribution, scheduling, etc. Also, all of
the data shuffling and aggregation are handled by the
underlying system itself. The programmer only needs to
specify the map and reduce functions; the system-level
issues are handled by the underlying implementation.

The drawback of this model is that in order to
achieve this parallelizability, programmers are restricted
to using only map and reduce functions in their pro-
grams [4]. Thus, this model trades off programmer
flexibility for ease of parallelization. This is a complex
tradeoff, and it is not a priori clear which problems can
be efficiently solved in the MapReduce paradigm. The
main contribution of this work is a model for what is
efficiently computable in the MapReduce paradigm.

2 The MapReduce Programming Paradigm

In this section we give a more formal definition of
the MapReduce programming paradigm. We begin by
defining mappers and reducers. We then describe how
the system executes these two functions along with the
shuffle step. As mentioned above, the fundamental unit
of data in map reduce computations is the 〈key; value〉
pair, where keys and values are always just binary
strings.

Definition 2.1. A mapper is a (possibly randomized)
function that takes as input one ordered 〈key; value〉
pair of binary strings. As output the mapper produces a
finite multiset of new 〈key; value〉 pairs.

It is important that the mapper operates on one
〈key; value〉 pair at a time.

Definition 2.2. A reducer is a (possibly random-
ized) function that takes as input a binary string k
which is the key, and a sequence of values v1, v2, ...
which are also binary strings. As output, the re-
ducer produces a multiset of pairs of binary strings
〈k; vk,1〉, 〈k; vk,2〉, 〈k; vk,3〉, .... The key in the output tu-
ples is identical to the key in the input tuple.

One simple consequence of these two definitions is
that that mappers can manipulate keys arbitrarily, but
reducers cannot change the keys at all.

Next we describe how the system executes MapRe-
duce computations. A map reduce program consists of
a sequence 〈µ1, ρ1, µ2, ρ2, . . . , µR, ρR〉 of mappers and
reducers. The input is a multiset of 〈key; value〉 pairs
denoted by U0. To execute the program on input U0:

For r = 1, 2, . . . , R, do:

1. Execute Map: Feed each pair 〈k; v〉 in Ur−1 to
mapper µr, and run it. The mapper will generate



a sequence of tuples, 〈k1; v1〉, 〈k2; v2〉, . . .. Let U ′r
be the multiset of 〈key; value〉 pairs output by µr,
that is, U ′r =

⋃
〈k;v〉∈Ur−1

µr(〈k; v〉).

2. Shuffle: For each k, let Vk,r be the multiset of
values vi such that 〈k; vi〉 ∈ U ′r. The underlying
MapReduce implementation constructs the multi-
sets Vk,r from U ′r.

3. Execute Reduce: For each k, feed k and some
arbitrary permutation of Vk,r to a separate instance
of reducer ρr, and run it. The reducer will generate
a sequence of tuples 〈k; v′1〉, 〈k; v′2〉, . . .. Let Ur be
the multiset of 〈key; value〉 pairs output by ρr, that
is, Ur =

⋃
k ρr(〈k;Vk,r〉).

The computation halts after the last reducer, ρR, halts.
As stated before, the main benefit of this program-

ming paradigm is the ease of parallelization. Since each
mapper µr only operates on one tuple at a time, the
system can have many instances of µr operating on dif-
ferent tuples in Ur−1 in parallel. After the map step,
the system partitions the set of tuples output by vari-
ous instances of µr based on their key. That is, part i of
the partition has all 〈key; value〉 pairs that have key ki.
Since reducer ρr only operates on one part of this parti-
tion, the system can have many instances of ρr running
on different parts in parallel.

3 The MapReduce Class (MRC)
In this section we formally define the MapReduce Class
(MRC). There are three guiding principles that we
wish to enforce in our definitions:

Memory Since MapReduce allows for computation to
be executed on parts of the input in parallel, the
full power of the programming paradigm is realized
when the input is too big to fit into memory on a
single machine. Thus we require that the input to
any mapper or reducer be substantially sublinear in
the size of the data. Otherwise, every problem in P
could be solved in the MapReduce formulation by
first mapping the whole input to a single reducer,
and then having the reducer solve the problem
itself.

Machines In order for the model to have practical rel-
evance, we also limit the total number of available
machines. For example, an algorithm requiring n3

machines, where n is the size of the Web, will not
be practical in the near future. We limit the total
number of machines available to be substantially
sublinear in the data size.

Time Finally, there is a question of the total running
time available. In a major difference from previous

work [6], we do not restrict the power of the
individual reducer, except that we require that
both the map and the reduce functions run in time
polynomial in the original input length in order
to ensure efficiency. Furthermore, we will only
consider programs that require a small number of
Map Reduce rounds, because shuffling is a time
consuming operation.

We are now ready to formally define the classMRC.
The input is a finite sequence of pairs 〈kj ; vj〉, for
j = 1, 2, 3, ..., where kj and vj are binary strings. The
length of the input is n =

∑
j(|kj |+ |vj |).

Definition 3.1. Fix an ε > 0. An algorithm in
MRCi consists of a sequence 〈µ1, ρ1, µ2, ρ2, . . . , µR, ρR〉
of operations which outputs the correct answer with
probability at least 3/4 where:

• Each µr is a randomized mapper implemented
by a RAM with O(log n)-length words, that uses
O(n1−ε) space and time polynomial in n.

• Each ρr is a randomized reducer implemented
by a RAM with O(log n)-length words, that uses
O(n1−ε) space and time polynomial in n.

• The total space
∑
〈k;v〉∈U ′r

(|k| + |v|) used by
〈key; value〉 pairs output by µr is O(n2−2ε).

• The number of rounds R = O(logi n).

We note that while technically RAMs produce a
sequence of 〈key; value〉 pairs as output, we interpret
the sequence as a multiset of the corresponding pairs.

We allow the use of randomization inMRC, and de-
mand the final correct answer with probability at least
3/4, but there are obvious Las Vegas and deterministic
variants, the latter of which we call DMRC.

We emphasize that mappers process pairs one at a
time, and remember nothing about the previous pairs.
It also is important to remember that each reducer gets
a sequence of values, in some arbitrary (not random)
order. Nonetheless the output of the reducer must be
correct, or must be correct with a certain probability if
the algorithm is randomized, regardless of the order.
Note that both mappers and reducers run in time
polynomial in n, not polynomial in the length of the
input they receive.

At this point a careful reader may complain that the
example algorithm given in Section 1 does not fit into
this model. Indeed, if the string consists of n copies of
the same symbol, then the input to a single reducer will
be at least n, in violation of the space constraints in the
model. We give an MRC algorithm for the frequency
moments problem in Section 6.1.1.



3.1 Discussion We now pause to justify some of the
modeling decisions made above.

3.1.1 Machines As we argued before, it is unrealis-
tic to assume that there are a linear number of machines
available when n large. As such we assume that the to-
tal number of machines available is Θ(n1−ε). We admit
that algorithms with too small an ε will be impracti-
cal should n be large, but it seems unnatural to to tie
one’s hands by limiting the number of machines to an
arbitrary bound of say, O(n1/2).

Recall that each key gets mapped to a unique
reducer instance. Since the total number of distinct
keys may be as large as O(n2−2ε), the total number of
reduce instances may be just as large. Therefore more
than one instance of a reducer may be run on the same
machine.

3.1.2 Memory Restrictions As a consequence of
mappers and reducers running on physical machines,
the total space available to any map or reduce compu-
tation is O(n1−ε). One important consequence of this
memory restriction is that the size of every 〈key; value〉
pair must be O(n1−ε).

Another consequence of this memory restriction is
that the overall amount of memory available across
all machines in the system is O(n2−2ε). Because the
reducers cannot begin executing until after the last
mapper has finished, the key value pairs output by the
mappers have to be stored temporarily. Thus, the total
space taken by all of the 〈key; value〉 pairs in U ′r must be
O(n2−2ε). That the total memory available, across all
machines, is O(n2−2ε) allows one to duplicate the input
somewhat, but not absurdly—one is not restricted to
simply partitioning the input.

In contrast, mappers operate on one tuple at a time,
and therefore they can execute on tuples immediately as
they are emitted by the reducers. As such, there is no
space restriction on the total size of the output of the
reducers.

3.1.3 Shuffle Step In the shuffle step the system
partitions the tuples across the Θ(n1−ε) machines so
that all of the pairs with the same key go to the same
machine. This allows for the reducer to be executed
on that machine. Observe that two pairs (k, Vk,r),
(k′, Vk′,r), with k′ 6= k, may be sent to the same
machine to be executed sequentially by different reduce
instances. The system must ensure that the memory
of no machine is exceeded. Next we prove that the
space restrictions in Definition 3.1 allow the shuffle step
to place all of the values associated with a key on one
machine without violating the memory constraints.

Lemma 3.1. Consider round r of the execution of an
algorithm in MRC. Let Kr be the set of keys in U ′r, let
Vr be the multiset of values in U ′r, and let Vk,r denote
the multiset of values in U ′r that have key k.

Then Kr and Vr can be be partitioned across
Θ(n1−ε) machines such that all machines get O(n1−ε)
bits, and the pair 〈k, Vk,r〉 gets sent to the same ma-
chine.

Proof. For a set of binary strings B denote by s(B) =∑
b∈B |b| the total space used by the strings in B. Since

the algorithm is inMRC, by definition, s(Vr)+s(Kr) ≤
s(U ′r) = O(n2−2ε). Furthermore, the space of the
reducer is restricted to O(n1−ε); therefore for all k,
|k|+ s(Vk,r) is O(n1−ε).

Using Graham’s greedy algorithm for the minimum
makespan scheduling problem [7, 13], we can conclude
that the maximum number of bits mapped to any one
machine is no more than the average load per machine
plus the maximum size of any 〈k, Vk,r〉 pair. Thus,

≤ s(Vr) + s(Kr)
number of machines

+ max
k∈Kr

(|k|+ s(Vk,r))

≤ O(n2−2ε)
Θ(n1−ε)

+O(n1−ε)

≤ O(n1−ε).

�

We emphasize that every memory restriction in Defini-
tion 3.1 is necessary for execution of the shuffle step.

3.1.4 Time Restrictions Just as one can complain
that ε may be too small, resulting in impractical algo-
rithms, one can justifiably object that allowing arbitrary
polynomial time per mapper and reducer is unreason-
able. Our goal in defining MRC is to rigorously de-
fine the limitations imposed on the algorithm designer
by the MapReduce paradigm. Just as before, we ad-
mit that algorithms with polynomial running times of
too high a degree will be impractical should n be large.
However, it seems unnatural to limit the running time
to an arbitrary bound of, say, O(n log n).

Finally, the time per MapReduce round in practice
can be large, so it is important to dramatically limit the
number of rounds. In fact, we strive to find algorithms
inMRC0, but will show that there are many nontrivial
algorithms in MRC1.

4 Related Work

We begin by comparing the MapReduce framework with
other models of parallel computation. After that we
discuss other works that use MapReduce.



4.1 Comparing MapReduce and PRAMs Nu-
merous models of parallel computation have been pro-
posed in the literature; see [1] for a survey of them.
While the most popular by far for theoretical study is
the PRAM, probably the next two most popular are
LogP, proposed by Culler et al. [2], and BSP, pro-
posed by Valiant [12]. These three models are all ar-
chitecture independent. Other researchers have stud-
ied architecture-dependent models, such as the fixed-
connection network model described in [10].

Since the most prevalent model in theoretical com-
puter science is the PRAM, it seems most appropriate
to compare our MapReduce model to it. In a PRAM,
an arbitrary number of processors, sharing an unbound-
edly large memory, operate synchronously on a shared
input to produce some output. Different variants of
PRAMs deal differently with issues of concurrent read-
ing and concurrent writing, but the differences are in-
significant from our perspective. One usually assumes
that, to solve a problem of some size n, the number of
processors should be bounded by a polynomial in n—
a necessary, but hardly sufficient, condition to ensure
efficiency.

There are two general strands of PRAM research.
The first asks, what problems can be solved in polylog
time on a PRAM with a polynomial number of proces-
sors? Polylog time serves as a gold-standard for parallel
running time, and a polynomial number of processors
provides a necessary condition for efficiency. The class
NC is defined as the set of such problems. The sec-
ond strand of research asks, what algorithms can be
efficiently parallelized? That is, for which problems are
there parallel algorithms which are much faster than the
corresponding sequential ones, yet with processor-time
product close to the sequential running time.

While theoretically appealing, the PRAM model
suffers from the practical drawback that fully shared-
memory machines with large numbers of processors do
not exist to date (though they may in the future) and
simulations are slow. Building a large computer with a
large robust shared memory seems difficult. Moreover,
allowing an arbitrary polynomial number of processors
allows the creation of theoretically beautiful parallel
algorithms which will never be run for any substantial
n.

It seems natural to inquire about the relations
betweenMRC, DMRC, and known complexity classes
such as NC and P. Since the comparisons are cleaner
in the deterministic case, we focus on DMRC here, but
there are analogous questions for MRC.

Strictly speaking, before comparing DMRC to NC
and P, one has to convert the binary string input
〈b1, b2, ..., bn〉 into the MapReduce input format, which

we can do by replacing the bit string by the sequence
〈〈1, b1〉, 〈2, b2〉, ..., 〈n, bn〉〉. In what follows we abuse the
terminology and compare these classes directly.

It is easy to see that DMRC ⊆ P, but is P ⊆
DMRC? Similarly, what is the relationship between
DMRC and NC?

We partially settle the answer to the latter question
in Section 7, showing that a large class of languages
L ∈ NC are in DMRC as well. The answer to the
converse question—is DMRC a subset of NC?—is NO,
unless P = NC, but trivially so.

Theorem 4.1. If P 6= NC then DMRC 6⊆ NC.

Proof. Assume P 6= NC. Then any P-complete lan-
guage, such as Circuit Value is not in NC. Recall
the definition of Circuit Value: given a Boolean cir-
cuit with one output gate, having AND, OR, and NOT
gates, and Boolean values for the inputs, does the circuit
evaluate to TRUE?

We now “pad” inputs to Circuit Value, getting a
new language Padded Circuit Value, which will be
in DMRC − NC. Specifically, define a new language
Padded Circuit Value as follows. To generate all
strings in Padded Circuit Value, take each string
in Circuit Value (for which the output evaluates to
TRUE) and append n2−n zeroes, if the input length was
n. Let N denote the size of the padded input, N = n2.

The key-value language associated to Padded Cir-
cuit Value is clearly in DMRC, for now one needs
only memory roughly

√
N to solve an instance of

Padded Circuit Value of length N on one reducer,
after stripping out the padding.

However, Padded Circuit Value is P-Complete,
as Circuit Value can be reduced to Padded Circuit
Value in log space, and hence does not lie in NC (by
the assumption that P 6= NC). �

While we strongly suspect that the answer to the
question as to whether P ⊆ DMRC is NO, we cannot
prove that there is a language in P whose associated
key-value language lies outside DMRC.

Any language, like all of those in DMRC, solv-
able in polynomial time on a RAM in quadratic space
is, by the generic simulation of RAM’s by Turing ma-
chines, solvable on a Turing machine simultaneously in
space O(n2 log n) and polynomial time. (We are abus-
ing the terminology a bit here, since, strictly speak-
ing, languages are not in DMRC.) It follows that
an obvious candidate for a language in P − DMRC
would be a language which can be solved by a Tur-
ing machine in polynomial time but not simultaneously
with O(n2 log n) space. However, such languages are
not known to exist. Specifically, if L were such a lan-
guage, then L 6∈ LOGSPACE , but L ∈ P. So the



desired L would be in P − LOGSPACE , yet whether
P = LOGSPACE is a long standing open question.

4.2 MapReduce: Algorithms and Mod-
els MapReduce is very well suited for naive
parallelization—for example, counting how many
times a word appears in a data set. However, more
recently algorithms have emerged for nontrivially
parallelizable computations. Kang et al. [9] show how
to use MapReduce to compute diameters of massive
graphs, taking as an example a webgraph with 1.5
billion nodes and 5.5 billion arcs. Tsourakakis et al.
[11] use MapReduce for counting the total number of
triangles in a graph. Motivated by personalized news
results, Das et al. [3] implement the EM clustering
algorithm on MapReduce. Overall, each of these works
gives practical MapReduce algorithms, but does not
rigorously define the framework under which they
should be analyzed.

Previously, Feldman et al. [6] introduced the notion
of Massively Unordered Distributed (MUD) algorithms,
a model based on the MapReduce framework. While
modeling the same underlying system, their approach
has two crucial differences from ours. First, in the
MUD framework each reducer operates on a stream of
data, whereas, in our model, each reducer has random
access to all of the values associated with the given
key. Second, in MUD, each reducer is restricted to only
using polylogarithmic space. These distinctions gives
our model more power and play an important role in
our algorithms.

5 Finding an MST of a Dense Graph Using
MapReduce

Now that we have formally defined the MapReduce
model, we proceed to describe an algorithm in MRC
for finding the Minimum Spanning Tree (MST) of a
dense graph. As we shall exhibit, this algorithm will
take advantage of the interleaving of sequential and
parallel computation that MapReduce offers algorithm
designers. Thus, given a graph G = (V,E) on |V | = N
vertices and |E| = m ≥ N1+c edges for some constant
c > 0 (n still denoting the length of the input, not
the number of vertices), our goal is to compute the
minimum spanning tree of the graph.

We give a new algorithm for MST and then show
how it can be easily parallelized. Fix a number k, and
randomly partition the set of vertices into k equally
sized subsets, V = V1 ∪ V2 ∪ · · · ∪ Vk, with Vi ∩ Vj = ∅
for i 6= j and |Vi| = N/k for all i. For every pair {i, j},
let Ei,j ⊆ E be the set of edges induced by the vertex
set Vi ∪ Vj . That is, Ei,j = {(u, v) ∈ E | u, v ∈ Vi ∪ Vj}.
Denote the resulting subgraph by Gi,j = (Vi ∪ Vj , Ei,j).

Assume without loss of generality (say, by append-
ing an index to each weight to break ties) that all of the
edge weights are unique. Our algorithm proceeds as fol-
lows. First, for each of the

(
k
2

)
subgraphs Gi,j , compute

the unique minimum spanning forest Mi,j . Then let H
be the graph consisting of all of the edges present in
some Mi,j : H = (V,∪i,jMi,j). Finally, compute M , the
minimum spanning tree of H. The following theorem
proves that this algorithm is correct.

Theorem 5.1. The tree M computed by the algorithm
is the minimum spanning tree of G.

The algorithm works by sparsifying the input graph
and then taking the MST of the resulting subgraph H.
We show that no relevant edge was thrown out, that is,
the minimum spanning trees of G and H are identical.

Proof. Consider an edge e = {u, v} that was discarded,
that is, e ∈ E(G) but e 6∈ E(H); we show that e is not
part of the minimum spanning tree of G. Observe that
any edge e = {u, v} is present in at least one subgraph
Gi,j . If e 6∈Mi,j then by the cycle property of minimum
spanning trees, there must be some cycle C ⊆ Ei,j such
that e is the heaviest edge on the cycle. However, since
Ei,j ⊆ E, we have now exhibited a cycle in the original
graph G on which e is the heaviest edge. Therefore e
cannot be in the MST of G and can safely be discarded.
�

The algorithm presented above is far from the
optimal sequential algorithm; however, it allows for easy
parallelization. Notice that the minimum spanning tree
for the individual subgraphs, Gi,j , can be computed
in parallel. Furthermore, by setting the parameter
k appropriately, we can reduce the memory used by
each MST computation. As we show below, with
high probability the memory used is Õ(m/k) when
computing Mi,j and O(Nk) when computing the final
minimum spanning tree of H. These two facts imply
that the algorithm is in MRC.

Lemma 5.1. Let k = N c/2, then with high probability
the size of every Ei,j is Õ(N1+c/2).

Proof. We can bound the total number of edges in Ei,j
by bounding the total degrees of the vertices. |Ei,j | ≤∑
v∈Vi deg(v) +

∑
v∈Vj deg(v). For the purpose of the

proof only, partition the vertices into groups by their
degree: let W1 be the set of vertices of degree at most 2,
W2, the set of vertices with degree 3 or 4, and generally
Wi = {v ∈ V : 2i−1 < deg(v) ≤ 2i}. There are logN
total groups.

Consider the number of vertices from group Wi

that are mapped to part Vj . If the group has a small



number of elements, that is, |Wi| < 2N c/2 logN , then∑
v∈Wi

deg(v) ≤ 2N1+c/2 logN = Õ(N1+c/2). If the
group is large, that is, |Wi| ≥ 2N c/2 logN , a simple
application of Chernoff bounds says that the number of
elements of Wi mapped into the partition j, |Wi ∩ Vj |
is O(logN) with probability at least 1 − 1

N . Therefore
with probability at least 1− logN

N :∑
v∈Vj

deg(v) ≤
∑
i

∑
v∈Vj∩Wi

deg(v)

≤
∑
i

2N1+c/2 log2N

≤ Õ(N1+c/2).

�

Lemma 5.1 tells us that with high probability each
part has Õ(N1+c/2) edges. Therefore the total input
size to any reducer is O(n1−ε).

The algorithm uses the sequential computation
available to reducers to compute the minimum spanning
tree of the subgraph given to that reducer. There are
N c total parts, each producing a spanning tree with
2N/k − 1 = O(N1−c/2) edges. Thus the size of H is
bounded by Õ(N1+c/2) = O(n1−ε), again being small
enough to fit into the memory of a single machine.

6 An Algorithmic Design Technique For MRC
We begin by describing a basic building block of many
algorithms in MRC called “MRC-parallelizable func-
tions.” We then show how a family of such functions
can used as subroutines of MRC computations. After
that we show how this can be used to compute frequency
moments on large inputs, and s-t connectivity on undi-
rected graphs.

Definition 6.1. Let S be a set. Call a function f on
S MRC-parallelizable if there are functions g and h so
that:

1. For any partition T = {T1, T2, . . . , Tk} of S,
where ∪iTi = S and Ti ∩ Tj = ∅ for i 6=
j (of course), f can be expressed as: f(S) =
h(g(T1), g(T2), . . . , g(Tk)).

2. g and h can be expressed in O(log n) bits.
3. g and h can be computed in time polynomial in |S|

and every output of g can be expressed in O(log n)
bits.

Intuitively, this definition says that if one wants to
evaluate f on a set S, one could do so by partitioning
S arbitrarily, applying g to each part of the partition,
and then applying h to the results. Next we show how
a family of such functions can be computed under the
memory restrictions imposed by MRC.

Lemma 6.1. Consider a universe U of size n and a
collection S = {S1, . . . , Sk} of subsets of U , where
Si ⊆ U ,

∑k
i=1 |Si| ≤ n2−2ε, and k ≤ n2−3ε. Let

F = {f1, . . . , fk} be a collection of MRC-parallelizable
functions. Then the output f1(S1), . . . , fk(Sk) can be
computed using O(n1−ε) reducers each with O(n1−ε)
space.

This lemma says that a family of MRC-
parallelizable functions defined over subsets of the same
universe can be computed as a subroutine of a MapRe-
duce computation where the original input size is n.
Since O(n2−2ε) is be the global amount of memory avail-
able to any MapReduce program, the lemma requires
that the input has few enough subsets that they fit in
memory, and that the sum of the sizes of the subsets also
fits into memory. The power of theMRC-parallelizable
functions lemma is that it allows an algorithm designer
to focus on the structure of the problem and the in-
put; the lemma will handle how to distribute the input
across the reducers in such a way as to not overflow the
memory of any one reducer.

At a high level, we would like to assign a reducer
for each set Si, map both the elements of Si and the
function fi itself to the same reducer and compute the
output. There is two technical challenge which we
need to be wary of. The Si may be too large to fit
on one reducer. In particular if |Si| > n1−ε then the
computation of fi(Si) needs to be spread across several
reducers. To deal with these issues we use the fact that
functions fi are MRC-parallelizable to our advantage.
In the first round we partition the set of reducers into t
different blocks. Each set Si is then partitioned across
the reducers in its assigned block, which computes the
intermediate values gi(Si). This partitioning ensures
that the input to any individual reducer is not too large.
In the second round, we map all of the intermediate
results of block Si to the same reducer, and compute
the final output using the function hi. The mapping in
this step will again ensure that no reducer is inundated
with an input that is larger than its memory.

Input The input to the subroutine consists of pairs
of the form 〈i;u〉 indicating that u ∈ Si, and the
individual functions gi and hi for all i ∈ [k].

Initialize Let M = n1−ε denote the number of reduc-
ers the subroutine will use. Partition them into
blocks of size B = Θ(nε). Let t = dM/Be be the
total number of blocks. Construct universal hash
functions, hash1 and hash2 : [k]→ [t].

Map 1: For each 〈i;u〉, output 〈r; (u, i)〉 where r is
chosen uniformly at random among the reducers
in block Bhash1(i). Map each function gi and hi to



〈b; (gi, i)〉 and 〈b; (hi, i)〉, for every b in the block
Bhash1(i).

Reduce 1: The input to this reducer is of the
form 〈r; ((u1, i), . . . , (uk, i), (gi, i), (hi, i))〉, where
{u1, u2, . . . , uk} = Tj ⊆ Si is one of the parts in
the partition of Si induced by Map 1. The reducer
computes gi(Tj) and outputs 〈r; (gi(Tj), i, hi)〉.

Map 2: The input to the mapper is of the form
〈r; (gi(Tj), i, hi)〉. The mapper outputs 〈hash2(i);
(gi(Tj), hi))〉.

Reduce 2: The input to the final reducer
is 〈hash2(i); ((gi(T1), hi), (gi(T2), hi), . . . ,
(gi(TB), hi))〉, where the set {T1, T2, . . . , TB} forms
a partition of Si. The reducer computes hi and
outputs 〈hash2(i); hi(gi(T1), gi(T2), . . . , gi(TB))〉 =
〈hash2(i); fi(Si)〉.

The next lemma shows that hash1 prevents any
reducer in the Reduce 1 phase from overflowing its
memory.

Lemma 6.2. Each reducer in step Reduce 1 will have
Õ(n1−ε) elements mapped to it with high probability.

We prove the Lemma by showing that each nε-sized
block of reducers gets Õ(n) elements mapped to it with
high probability. Since the individual reducer for each
element is selected uniformly at random from those in a
block, an easy application of Chernoff bounds completes
the Lemma.

Proof. Partition the sets Si into groups, such that group
Gj = {Si ∈ S : 2j−1 < |Si| ≤ 2j}. Since |Si| is bounded
by n, there are at most log n such groups. Define the
volume of group j as Vj = |Gj | · 2j . Groups having
volume less than O(n log n) could all be mapped to
one block without violating the space restrictions of the
reducers. We now focus on groups with Vj > n log n.
Let Gj be such a group; then Gj contains between
n logn

2j and 2n logn
2j elements. Fix a particular block

of reducers. Since the size of the block is nε, there
are n1−2ε such blocks. Since hash1 is universal, the
probability that any set S ∈ Gj maps to a particular
block is exactly n2ε−1. Therefore, in expectation, the
number of elements of Gj mapping to this block is ν =
2n2ε logn

2j . A bad event happens if more than δ = n1−2ε

elements map to this block, as that would result in a
total volume of Ω(n log n). However Chernoff bounds
tell us that the probability of such an event happening
is less than 2−(1+δ)ν = O(1/n2). Taking a union bound
over all n1−ε blocks and log n groups, we can conclude
that the probability of any block, and therefore any
reducer, being overloaded is bounded below by 1− 1/n.
�

Lemma 6.3. With high probability, each reducer in step
Reduce 2 will have at most n1−ε values of gi mapped to
it.

Proof. Since hash2 is universal, in expectation the
number of sets mapped to a block in Reduce 2 is k

t .
If k < t then each set can be mapped to its own block.
If k ≥ t then k

t ≤
n2−3ε

n1−2ε = n1−ε. Denote by Nb the
number of sets mapped to block b. By the Chernoff
bound,

Pr
[
Nb > (1 + log n)

k

t

]
< 2−(1+logn) kt ≤ 1/n.

Since there are t = Θ(n1−2ε) blocks, applying the
union bound shows that the probability any reducer gets
overloaded is O( 1

n2ε ). �

A similar argument to Lemma 6.3 shows that the
reducers have enough memory to store the gi and hi
functions. This combined with Lemmas 6.2 and 6.3 and
the fact that gi and hi are polynomial-time computable
prove Lemma 6.1.

6.1 Applications of the Functions Lemma As
mentioned above the power of the functions lemma is
that it allows the algorithm designer to think of parallel
algorithms without the worry of overloading a particular
reducer. The memory restrictions of Lemma 6.1 allow it
to be used as a subroutine when the size of input of the
calling MRC algorithm is n. Because the subroutine
uses O(n1−ε) reducers each with O(n1−ε) memory, it
does not violate any constraints specified by the MRC
class when original input size is n. Next we show two
explicit examples of the use of this subroutine. The first
uses Lemma 6.1 twice to compute frequency moments
where the fi are identical. The second uses Lemma 6.1
as a subroutine where the fi are different for each i.

6.1.1 Frequency Moments Suppose we would like
to compute the kth frequency moment of a string. Let L
be the string alphabet, and represent a length-n string
as a set of pairs 〈i, `i〉 where i ∈ [N ] represents the
position and `i ∈ L is the symbol at position i. This set
of pairs is also the universe U . For every element ` ∈ L,
denote by S` ⊆ U the set of pairs in U containing letter
`. To compute frequency moments we need to compute
f` = |S`|k. Summing the values of the f` returns the
frequency moment. It is easy to see that f` is anMRC-
parallelizable function. Define g as the size function,
g({t1, t2, . . . , tk}) = k, and h as h(i1, i2, . . . , im) =
(i1 + i2 + · · ·+ im)k. For any partition T = (T1, . . . , Tm)
of S`, h(g(T1), g(T2), . . . , g(Tm)) = |S`|k. Thus, one
application of the functions lemma yields the values of



the f`(S`). We can then use another simple application
of the functions lemma to compute the overall frequency
moment:

∑
`∈L f`(S`).

6.1.2 Undirected s-t connectivity Suppose we are
given an N -node graph G = (V,E) and two nodes
s, t ∈ V and we are asked whether there exists a path
from s to t. Note that this problem can be efficiently
computed by PRAMs, thus we can use the Simulation
Theorem (Theorem 7.1) to achieve such an algorithm.
In this section, however, we give a more direct approach.

In the case that the graph is relatively dense, with
|E| = N1+Ω(1), we can use matrix multiplication to
compute the N th power of the adjacency matrix in
O(logN) rounds1. If, however, the graph is sparse, the
full adjacency matrix will not fit into memory across all
of the machines (recall that the total memory available
is N2−2ε, whereas the full matrix will be of size N2) and
we need to resort to other methods.

In what follows we give a simple labeling algorithm
that computes s-t connectivity on sparse graphs in
O(logN) rounds2. We first give the high level details
and then describe how to implement it in MapReduce.

Throughout the algorithm, each node v ∈ V main-
tains a label `(v), describing the connected component
it is in. Denote by Lv ⊆ V as the set of vertices with
label v. Lv represents the connected component con-
taining v. Following standard notation, we define Γ(v)
to be the set of neighbors of v. For a set S, denote by
Γ(S) the set of neighbors of all nodes in S themselves
not in S. Finally, denote by Γ′(v) = Γ(Lv). Let π
denote an arbitrary total order on the vertices.

1. Begin with every node v ∈ V being active with
label `(v) = v.

2. For i = 1, 2, 3, ..., O(logN) do:

(a) Call each active node a leader with probability
1/2.

(b) For every active non-leader node w, find the
smallest (according to π) node w∗ ∈ Γ′(w).

(c) If w∗ is not empty, mark w passive and relabel
each node with label w by w∗.

3. Output true if s and t have the same labels, false
otherwise.

Lemma 6.4. At any point of the algorithm, if any two
nodes s and t have the same label, then there is a path
from s to t in G.

1Dense matrix multiplication is trivial in MRC—partition
each matrix into blocks and multiply the blocks before aggregating

the results.
2We suspect that this is a standard connectivity algorithm in

the PRAM literature.

Proof. The proof proceeds by induction. At the begin-
ning of the algorithm every node has its own label and
the statement is vacuously true.

Suppose the statement is true at the beginning of
round i. The only interesting case is when `(s) 6= `(t)
before the iteration and `(s) = `(t) after the iteration.
Consider a non-leader node w, and a node w∗ as
described in the algorithm. Assume without loss of
generality that s ∈ Lw and t ∈ Lw∗ . By induction,
there exist paths from s to w and from w∗ to t. The
definition of Γ′(v) ensures that there exists a node u,
with `(u) = `(w), and the edge (u,w∗) ∈ E. Thus the
path s → w → u → w∗ → t is in G (the w → u path
existing because l(u) = l(w)). �

Lemma 6.5. Every connected component of G has a
unique label after O(logN) rounds with high probability.

Proof. To prove the running time we show that the
number of labels in any connected component decreases
by a constant factor (in expectation) in every round, un-
til, of course, every vertex in the connected component
has the same label. Fix an active node u (note that the
total number of distinct labels is equal to the number of
active nodes.). If the component containing u has more
than one label, then there must exist a node v′ ∈ Γ′(u)
with a different label from u. Let `(v′) = v. With prob-
ability 1/4 the active node v is selected as a leader and u
is a non-leader. Then v′ ∈ Γ′(u), and u will be relabeled
as v and marked passive. Therefore, the probability of
any node’s surviving a round while there is more than
one label in a connected component is at most 3/4. An
application of Chernoff bounds concludes the proof. �

So far we have proven that the above algorithm is
correct; we now show how to implement it in MapRe-
duce. The key to the parallelization is that leader se-
lection, follower selection and the relabeling can all be
done in parallel. To make this more precise we turn
again to the Functions Lemma.

Selecting the set of leaders in parallel is trivial.
To select the followers, let hash1 : V → {0, 1} be a
universal hash function; the set of leaders is precisely
those active v ∈ V with hash1(v) = 1. The next
task is for every non-leader node w to compute the
node w∗ that it will be following. Observe that w∗

depends on Γ′(w) ⊆ V , in fact the algorithm requires
the minimum label from nodes in Γ′(w). Since min is
anMRC-parallelizable function, it fits the conditions of
the Theorem. The only thing that remains is computing
the individual sets Γ′(w). We achieve this by scanning
through all of the edges. For an edge {u, v} we can
check if the labels of the endpoints agree. If not,
then `(v) ∈ Γ(`(u)) and `(u) ∈ Γ(`(v)), where abusing



notation we use `(v) to refer to the node that v is labeled
with.

Finally, we describe the relabeling step. Let w and
w∗ be as in the description of the algorithm. We need
to relabel all of the nodes with the label `w to have the
label `w∗ . For the subset Lw, let fw be such a relabel
function. It is easy to check that the family of sets {Lw}
and the family of functions {fw} satisfies the conditions
of the Lemma 6.1.

7 Simulating PRAMs via MapReduce

Theorem 7.1. Any CREW PRAM algorithm using
O(n2−2ε) total memory, O(n2−2ε) processors and t =
t(n) time can be run in O(t) rounds in DMRC.

In this proof we will show that such a PRAM
algorithm can be simulated by an algorithm in DMRC.
At a high level we will use O(n2−2ε) reducers where
one reducer simulates each processor used in the PRAM
algorithm and another reducer simulates each memory
location used by the PRAM algorithm. Conceptually,
we will use the mappers to route memory requests and
ship the relevant memory bits to the reducer responsible
for the particular processor. Each reducer will then
perform one step of computation for each of the PRAM
processors assigned to it, write out memory updates,
and request new memory positions. The process then
repeats. The authors of [6] give a similar simulation
algorithm in their work.

Proof. We reduce the simulation problem to only keep-
ing track of updated memory locations. Therefore we
ensure that every memory location is updated every
round by modifying the PRAM algorithm to have an ex-
tra O(n2−2ε) processors (one for each location in mem-
ory). At every time step each of these “dummy” pro-
cessors requests a unique memory address and attempts
to write the same value back to it. If at any point in
time there are two writes to the same memory location,
the dummy value gets overwritten.

We now describe the simulation. At time t of the
PRAM algorithm let bti denote the 〈address, value〉 pairs
that processor i reads from. Let bti = ∅ if processor i
does not read from a memory location at time t. Let
wti be the 〈address, value〉 pair that processor i writes
to at time t. Let wti = ∅ if processor i does not write to
a memory location at time t.

We will show how the computation at time t is
executed by a constant number of MapReduce steps.
Assume inductively that reducer ρt1 has as input 〈i; bti〉.
Then ρt1 will simulate one step of the computation for
the processor and output 〈i; rt+1

i , wti〉, where rt+1
i is the

memory address that processor i will need during the

next time step; and wti is the 〈address; value〉 pairs that
were written to during time t.

The next mapper µt1 will take as input 〈i; rt+1, wti〉.
The mapper outputs 〈rt+1; i〉 signifying the memory
location requested by processor i. Moreover, let wti =
(a, v) where a is an address and v the value written to
it, then the mapper also outputs 〈a;wti , i〉 signifying the
update to the state of the memory.

The next reducer ρt2 takes as input tuples of two
types. The first type has form 〈aj ; (aj , vj), i〉 which
represents that the new value for address aj is vj . It
will get such values for all writes that were done to
address aj . Since the PRAM algorithm is CREW,
this tuple will only occur once per memory address aj .
The second type of input it will take has form 〈aj ; i〉.
This represents that processor i would like the value in
address aj . Thus, ρt2 fulfills this request by outputting
〈aj ; (aj , vj), i〉. Finally map µt2 makes sure that the
processor i gets the new value for aj by taking as input
〈aj ; (aj , vj), i)〉 and outputting 〈i; aj , vj〉. �

8 Conclusion

We have presented a rigorous computational model for
the MapReduce paradigm. By restricting both the total
memory per machine and the total number of machines
to O(n1−ε) we ensure that the programmer must paral-
lelize the computation and that the number of machines
used must remain relatively small. The combination of
these two characteristics were not previously captured
in the PRAM model. We strived to be parsimonious
in our definitions, and therefore specifically did not re-
strict the time available for a reducer to be, for example,
linear. Rather we simply require that mappers, as well
as reduces run in polynomial time.
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