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ABSTRACT

We consider the problem of efficiently indexing Disjunctive Nor-

mal Form (DNF) and Conjunctive Normal Form (CNF) Boolean

expressions over a high-dimensional multi-valued attribute space.

The goal is to rapidly find the set of Boolean expressions that eval-

uate to true for a given assignment of values to attributes. A solu-

tion to this problem has applications in online advertising (where

a Boolean expression represents an advertiser’s user targeting re-

quirements, and an assignment of values to attributes represents the

characteristics of a user visiting an online page) and in general any

publish/subscribe system (where a Boolean expression represents

a subscription, and an assignment of values to attributes represents

an event). All existing solutions that we are aware of can only index

a specialized sub-set of conjunctive and/or disjunctive expressions,

and cannot efficiently handle general DNF and CNF expressions

(including NOTs) over multi-valued attributes.

In this paper, we present a novel solution based on the inverted

list data structure that enables us to index arbitrarily complex DNF

and CNF Boolean expressions over multi-valued attributes. An

interesting aspect of our solution is that, by virtue of leveraging

inverted lists traditionally used for ranked information retrieval,

we can efficiently return the top-N matching Boolean expressions.

This capability enables emerging applications such as ranked pub-

lish/subscribe systems [16], where only the top subscriptions that

match an event are desired. For example, in online advertising there

is a limit on the number of advertisements that can be shown on a

given page and only the “best” advertisements can be displayed.

We have evaluated our proposed technique based on data from an

online advertising application, and the results show a dramatic per-

formance improvement over prior techniques.

1. INTRODUCTION
We consider the problem of efficiently indexing Disjunctive Nor-

mal Form (DNF) and Conjunctive Normal Form (CNF) Boolean

expressions (BEs) over a high-dimensional, discrete but multi-valued
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attribute space. An example DNF expression is of the form:

(A ∈ {a1, a2} ∧B 6∈ {b1, b2} ∧C ∈ {c1})∨ (A ∈ {a1, a3} ∧
D 6∈ {d1})
where A, B, C and D are attributes, and a1, a2, a3, b1, b2, c1 and

d1 are attribute values. Similarly, an example CNF expression is of

the form:

(A ∈ {a1, a2} ∨B 6∈ {b1, b2} ∨C ∈ {c1})∧ (A ∈ {a1, a3} ∨
D 6∈ {d1})

Given a large collection of such DNF or CNF expressions, our

goal is to rapidly find the subset of expressions that are satisfied

(i.e., evaluate to true) for a particular assignment of attributes to

values. An example assignment of attributes to values is:

A=a1, B=b1, C=c2, D=d1

which would satisfy the CNF expression above, but not the DNF

expression.

An efficient solution to the above problem has a wide range of

applications in diverse domains. As one example, consider online

display advertising [17, 14, 23], where advertisers target various

user and web page attributes and register them as campaigns1 . Each

campaign specification can be modeled as a Boolean expression,

e.g., (Property∈ {Finance} ∧AgeCategory ∈ {4,5,6}) ∨ (Property

∈ {Sports} ∧ Source 6∈ {ESPN} ∧ UserInterestNFL∈ {True}) be-

cause advertisers only wish to show an advertisement to users who

satisfy all their constraints (and enforcing 6∈ is frequently as impor-

tant, or more important, as ∈ to advertisers in this context). When

a user visits a certain web page, this assignment can be modeled

as an assignment of values to attributes, e.g., Property = Finance

and AgeCategory = 5 and Source = MSN (while only a few user

attributes are shown here for illustration purposes, typically, the

number of possible user attributes is of the order of many hundreds

because of various custom user targeting categories like UserInter-

estNFL above). Given a user visit assignment, the goal is to rapidly

find all matching campaigns for the user so that the right set of ad-

vertisements can be shown to the user. Hence, online display adver-

tising can be mapped to the Boolean expression indexing problem,

whereby the campaigns are indexed and probed for each user visit.

In general, our solution can be used in content-based publish/

subscribe systems [1], which are designed to rapidly match incom-

ing assignments to pre-registered subscriptions. Again, each sub-

scription is typically modeled as a Boolean expression, e.g., (Cat-

egory ∈ {Sports} ∧ Rating ∈ {4,5}) ∨ (Category ∈ {Finance}
∧ Industry 6∈ {Tech}), and each assignment specifies the values

of attributes used in the subscriptions, e.g., Category = Sports and

1Note that display advertising is different from search advertising,
where advertisers target keywords. Display advertising is also a
multi-billion dollar industry.
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Rating = 5 (note that in reality, there will be many tens or even

hundreds of possible assignment attributes). Clearly, having an effi-

cient index over Boolean expressions will enable publish/subscribe

systems to rapidly process assignments in order to determine the

matching subscriptions.

Further applications of our work include expert systems and pat-

tern matching in the AI field [20] and compliance checking [2,

3]. Expert systems match if/then rules against input parameters

to quickly make deductions or choices. In computer security and

trust management systems, compliance checkers are used to deter-

mine whether the credentials of a user match certain access control

policies.

While the Boolean expression indexing problem has many appli-

cations, unfortunately, existing indexing techniques are not capable

of handling such expressions. For example, Le Subscribe [11], one

of the most efficient publish/subscribe implementations, can only

index conjunctive predicates with single valued predicates (e.g.,

A ∈ {a1}, but not A ∈ {a1, a2}); more complex predicates such

as multi-valued predicates (e.g., to represent age ranges as in the

above example) and other operations such as 6∈ are not indexed, but

have to be post-processed. Another state-of-the-art publish/subscribe

system [8] extends the Le Subscribe indexing technique to support

ORs in limited contexts, but again does not support multi-valued

predicates, NOTs, or CNF expressions. Other publish/subscribe

systems based on multi-dimensional tree indices [16] also only sup-

port conjunctive predicates that correspond to convex indexable re-

gions (without NOTs), and also do not scale to a large number of

attributes due to the inherent limitations of high-dimensional index-

ing. Finally, many of the indices used for online search and content

match advertising [21, 26, 5] only support fuzzy matches, and do

not ensure the strict Boolean semantics of expressions.

In order to address the above limitations, in this paper, we pro-

pose a new technique for indexing Boolean expressions. The key

idea is to use the inverted list data structure [26], commonly used

for ranked information retrieval, to index Boolean expressions. The

inverted list data structure has many advantages, including impres-

sive scalability properties (commonly used for large-scale search

and information retrieval), and also the ability to handle a very large

number of dimensions (attributes or keywords), all of which are

well-suited to the Boolean expression indexing problem. However,

there are some non-trivial problems that need to be solved in order

to adapt inverted lists for the Boolean expression indexing prob-

lem. First, inverted lists are typically used to index documents that

are viewed as a “bag of words”, without much internal structure,

and certainly not the level of precise structure required for Boolean

expressions. Second, current inverted list processing algorithms

are tailored for score-based pruning of indexed documents, and not

designed to enable precise Boolean expression evaluation on the

indexed objects (Note that there are many inverted list query pro-

cessing algorithms that support complex query expressions [7, 26],

but we are interested in the inverse problem of complex indexed

expressions).

One of the main technical contributions of this paper is a set of

techniques for indexing Boolean expressions using inverted lists,

which address the above challenges. First, we develop a technique

for mapping complex Boolean expressions into “flat” entries in an

inverted list, which can be then reconstructed efficiently at match-

ing time. Second, we develop a query processing technique that

essentially maps Boolean expression evaluation into a scored eval-

uation on an inverted list, thereby reusing the decades of research

in speeding up inverted list scoring algorithms for the Boolean ex-

pression evaluation problem (note that we still guarantee the strict

Boolean semantics of expressions).

Another key technical contribution of this paper — and a key

benefit of using inverted lists — is an extension of the above algo-

rithms to only return the top-N Boolean expression matches (based

on a fairly general notion of scores for Boolean expressions). Such

top-N matches enables an even larger class of applications such as

ranked publish/subscribe [16], whereby only the top few subscrip-

tions that match an assignment are returned. This feature also bet-

ter models applications such as online display advertising, where

only a small number of advertisements (Boolean expressions) can

be shown on a user page due to limited real-estate (in this case,

the score of an advertisement could reflect the relevance of the ad-

vertisement to the user’s profile). Note, however, that the focus of

this paper is on efficiently retrieving the top-N BEs given a scoring

method, and not on developing different scoring methods or evalu-

ating their effectiveness.

We have implemented the proposed algorithms and compared

them with other state-of-the-art techniques such as Le Subscribe [11]

and SIFT [25], using data from an online advertising application.

Our implementation has been designed for high-throughput and

low-latency applications, and consequently, the index data struc-

tures are main-memory resident and optimized for reads; updates

are maintained in a small tail data structure, which is periodically

(offline) merged and then swapped with the main read-optimized

data structure (please see Section 6 for more details). Our per-

formance results indicate that the proposed approaches are com-

petitive with existing approaches for simple Boolean expressions

over a small number of attributes, but are dramatically better for the

cases involving complex expressions, large dimensions, and top-N

results.

In summary, the main contributions of this paper are:

• A technique for indexing and evaluating DNF expressions using

inverted lists (Section 3)

• A technique for indexing and evaluating CNF expressions using

inverted lists (Section 4)

• Incorporating scoring and top-N pruning during DNF and CNF

expression evaluation (Section 5)

• A discussion of how standard techniques for inverted list scal-

ing and updates can be applied to the BE indexing problem

(Section 6)

• Experimental evaluation of the proposed techniques based on

synthetic data from an online advertisement application (Sec-

tion 7)

2. MODEL

2.1 Syntax
A Boolean expression (BE) uses two types of primitives: ∈ and

6∈ predicates. For example, the predicate state ∈ {CA, NY }
means that the state can either be California or New York while

the predicate state 6∈ {CA, NY } means the state cannot be ei-

ther of the two states. Notice that the ∈ and 6∈ primitives subsume

simple = and 6= predicates.

A BE is either a DNF (i.e., disjunctive normal form) or CNF

(i.e., conjunctive normal form) expression of the basic ∈ and 6∈
predicates. For example, a subscription in DNF form could be

(age ∈ {2, 3} ∧ state ∈ {CA}) ∨ (age ∈ {2, 3, 4} ∧ state ∈
{NY }) while a BE in CNF form could be age ∈ {2, 3}∧(state ∈
{CA} ∨ gender ∈ {F}). While the same attribute may occur

in different disjuncts/conjuncts, an attribute does not appear in the

same disjunct/conjunct more than once. Notice that we can easily

express simple conjunctions using either of our two BE formats.

We believe that using DNF/CNF expressions with ∈ and 6∈ predi-
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cates is a simple but rich way to specify conditions. For example,

our DNF expressions with ∈ predicates are more expressive than

DNF expressions with = predicates by being able to add an addi-

tional disjunction layer within a conjunction.

An assignment is a set of attribute name and value pairs {A1 =

v1, A2 = v2, . . .}. For example, a woman in California may have

the assignment {gender = F, state = CA}. An assignment does

not necessarily specify all the possible attributes. Allowing unspec-

ified attributes is important to support high-dimensional data where

the number of attributes may be in the order of hundreds. Conse-

quently, our model does not restrict assignments to use a fixed set

of possible attributes known in advance.

An attribute name and value pair (A, v) is referred to as a key,

and we will use both terms – pairs and keys – interchangeably

throughout the paper.

2.2 BE Matching
A BE is satisfied by an assignment if its logical expression is sat-

isfied. However, in the case where an assignment does not specify

all possible attributes, there may be ambiguities in evaluating a BE.

For example, suppose there is a BE age ∈ {2} ∧ state 6∈ {NY }
and an assignment {age=2}. Depending on the semantics for 6∈,

we can either consider the BE to be satisfied (assuming the assign-

ment contains some default value for the unspecified state) or not

satisfied (because state may in fact be NY). We thus define two

types of 6∈ predicates:

• A WEAK- 6∈ predicate is satisfied if an assignment does not

specify a value for the attribute of the predicate. The attribute is

assumed to have a default value that is different from the values

in the WEAK- 6∈ list.

• A STRONG- 6∈ predicate is violated if an assignment does not

specify a value for the attribute of the predicate. Hence, the

predicate requires a non-NULL attribute value of the assign-

ment to be satisfied.

Using the two types of 6∈ predicates, we can exactly express the

semantics of the BEs. Our algorithms support both types of pred-

icates. The WEAK- 6∈ predicates are naturally supported while for

STRONG- 6∈ predicates, we require default values to be specified in

the assignments (this condition can be satisfied by assigning de-

fault values for the attributes involved in STRONG- 6∈ predicates for

a given assignment). Strong 6∈ is rewritten to a weak 6∈ by using

default (NULL) values. For example, X strong 6∈ a,b is rewritten to

X weak 6∈ a,b,NULL. Also, if an attribute value X is unspecified in

an assignment, we add X = NULL to the assignment.

2.3 Supporting Ranges
Many applications specify ranges of values in their BEs (e.g.,

age < 30). A simple way to use a range predicate in our model

is to convert the range into ∈ and 6∈ predicates by enumerating all

possible values or ranges of values. For example, if the granular-

ity for ages is 10 years, the range age < 30 can exhaustively be

enumerated into age ∈ {0, 1, 2}.
For longer ranges such as ranges of dates, we can combine dif-

ferent units of ranges based on a hierarchy. First, a basic ∈ or 6∈
BE predicate can divide a long range into non-overlapping smaller

ranges of possibly different units. For example, the date range

2006/12 ≤ date ≤ 2009/01 can be expressed as date ∈ {2006/12,

2007(all), 2008(all), 2009/01} given that the hierarchy contains

two units of ranges: year and month. Second, an attribute of an

assignment still has a single value, but is internally expanded to in-

clude all the values in the path from the leaf (which represents the

attribute value) to the root of the hierarchy tree. For example, an

assignment {date = 2008/2} is expanded to {date = 2008/2, date
= 2008} based on the hierarchy. (Notice that date = 2008 was au-

tomatically generated from date = 2008/2.) The assignment then

matches the BE because date = 2008 satisfies date ∈ {2006/12,

2007(all), 2008(all), 2009/01}. A full discussion of constructing

the “best” hierarchy that minimizes the sizes of BEs and assign-

ments is of separate interest, but not covered in this paper.

The advantage of converting range predicates into ∈ and 6∈ pred-

icates is that we can efficiently process BEs as we shall see in our

inverted indexing algorithms.

2.4 Scoring
The score of a BE E reflects the “relevance” of E to an assign-

ment S. For example, a user interested in running might be more

interested in an advertisement on shoes than an advertisement on

flowers. If E is a conjunction of ∈ and 6∈ predicates, the score of

E is defined as

Scoreconj(E, S) =
P

(A,v)∈IN(E)∩S
wE(A, v)× wS(A, v)

where IN(E) is the set of all attribute name and value pairs in

the ∈ predicates of E (we ignore scoring 6∈ predicates, which is a

common approach in IR systems [7]) and wE(A, v) is the weight

of the pair (A, v) in E. Similarly, wS(A, v) is the weight for (A, v)
in S. For example, a BE age ∈ {1, 2} ∧ state ∈ {CA} could be

targeting young people, giving the pair (age,1) a high weight of

10 while giving (age, 2) a lower weight of 5 and (state,CA) a

weight of 3. If there is an assignment {age=1, state=CA}, where

the first pair has a weight of 1 while the second pair 2, the score of

the BE to the assignment is 10×1+3×2 = 16. Hence, our scoring

for conjunctions is similar to vector space scoring in IR systems.

In order to do top-N pruning, we also generate an upper bound

UB(A, v) for each attribute name and value pair (A, v) such that

UB(A, v) ≥max(wE1
(A, v), wE2

(A, v), . . .)

For instance, if UB(age, 1) = 10, then (age, 1) may not con-

tribute more than a weight of 10 regardless of the BE.

DNF Scoring. The score of a DNF BE E is defined as the maxi-

mum of the scores of the conjunctions within E where E.i denotes

the ith conjunction of E and |E| the number of conjunctions in E.

ScoreDNF (E, S) =maxi=1..|E|Scoreconj(E.i, S)

While the score of E could be defined in other ways (e.g., the sum

of the scores of the conjunctions), we believe it is more intuitive to

view a DNF BE as a collection of possible conjunctions where only

one can represent the entire BE at a time.

CNF Scoring. The score of a CNF BE E is similar to Scoreconj

and is defined as the sum of the disjunction scores (using ScoreDNF )

within E where E.i denotes the ith disjunction of E and |E| the

number of disjunctions in E.

ScoreCNF (E,S) = Σi=1..|E|ScoreDNF (E.i, S)

Intuitively, the CNF score combines all the contributions of each

disjunction.

3. DNF ALGORITHM
Before presenting our DNF algorithm, it is important to under-

stand why simple inverted list joining techniques [21] commonly

used in IR systems do not return the matching BEs properly. Sup-

pose that we have a set of two BEs: E1: A ∈ {a} and E2:

A ∈ {a} ∧ B ∈ {b} ∧ C ∈ {c}, and we create an inverted list

with the posting list for a containing both E1 and E2, and the post-

ing list for b (and c) containing only E2. Now suppose that we are
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given an assignment A = a ∧ B = b. If we simply intersect the

posting lists corresponding to a and b, we would get the empty re-

sult set that would miss E1 as a solution. If we simply union the

posting lists corresponding to a and b, we would get both E1 and

E2 as results, which would be incorrect because E2 is not satisfied

by the assignment.

To address the above issues, the DNF algorithm first splits each

DNF BE into conjunctions of ∈ or 6∈ predicates. For example, the

BE E = (age ∈ {3}∧state 6∈ {CA})∨ (age ∈ {3}∧gender ∈
{F}) is split into two conjunctions c1 = age ∈ {3} ∧ state 6∈
{CA} and c2 = age ∈ {3} ∧ gender ∈ {F}. We define the size

of a conjunction to be the number of ∈ predicates (ignoring the 6∈
predicates). For example, c1 above has a size of 1 while c2 has a

size 2. We internally keep the DNF ID within each conjunction so

that we can later on return the IDs of the satisfied DNFs based on

the satisfied conjunctions.

Inverted List Construction. We now build an inverted list

data structure on the conjunctions of the BEs. We first partition

all the conjunctions by their sizes. We refer to the partition with

conjunctions of size K as the K-index. For each K-index, we cre-

ate posting lists for all possible attribute name and value pairs (also

called keys) among the conjunctions. A posting list head contains

the key (A, v). (The number next to each (A, v) will be used in

Section 5 for ranking and can be ignored for now). The keys of

the posting lists are stored in a hash table, which will be used to

search posting lists given keys of an assignment. Each entry of a

posting list represents a conjunction c and contains the ID of c and

a bit indicating whether the key (A, v) is involved in an ∈ or 6∈
predicate in c (ignore the third value for now). A posting list en-

try e1 is “smaller” than another entry e2 if the conjunction ID of

e1 is smaller than that of e2. In the case where both conjunction

IDs are the same (in which case e1 and e2 appear in different lists),

e1 is smaller than e2 only if e1 contains a 6∈ while e2 contains an

∈. Otherwise, the two entries are considered the same. Using this

ordering, the entries in a posting list are sorted in increasing en-

try order, while in each K-index, the posting lists themselves are

sorted in increasing entry order of their first entry. (Notice that we

never have two entries with the same conjunction ID within the

same posting list because an attribute is only allowed to occur once

in each conjunction.) Keeping the posting lists sorted in each K-

index reduces the sorting time of posting lists in the Conjunction

Algorithm (shown below).

As a special case, conjunctions of size 0 (e.g., age 6∈ {3} is

a conjunction of size 0 because it has no ∈ predicates) are all in-

cluded in a single posting list called Z. This special posting list

is needed to ensure that zero-sized conjunctions appear in at least

one posting list given an assignment. In addition, each entry in Z
contains an ∈ predicate. This modification ensures that the Con-

junction Algorithm also works for zero-sized conjunctions.

The total number of entries in the inverted list is proportional to

|C| × Pavg where |C| is the number of conjunctions and Pavg is

the average number of predicates per conjunction. Given that each

entry is a few bytes large, the entire index can easily fit in memory

for millions of BEs.

Example. Consider the six conjunctions in Figure 1. The third

column (called K) shows the sizes of the conjunctions (c1, c2, c3, c4

have a size of 2, c5 has a size 1, and c6 has a size 0). The conjunc-

tions are first partitioned according to their sizes. For each partition

K = 0, 1, 2, we construct the K-indexes as shown in Figure 2.

For instance, the key (age, 4) has a posting list inside the parti-

tion K = 1 and contains an entry representing c5. Notice that the

weight for any entry that has a 6∈ is 0 because we do not consider 6∈
predicates for scoring.

Figure 1: A set of conjunctions
ID Expression K

c1 age ∈ {3} ∧ state ∈ {NY } 2
c2 age ∈ {3} ∧ gender ∈ {F} 2
c3 age ∈ {3} ∧ gender ∈ {M} ∧ state 6∈ {CA} 2
c4 state ∈ {CA} ∧ gender ∈ {M} 2
c5 age ∈ {3, 4} 1
c6 state 6∈ {CA, NY } 0

Figure 2: Inverted list for Figure 1
K Key & UB Posting List

0
(state, CA), 2.0 (6, 6∈, 0)
(state, NY ), 5.0 (6, 6∈, 0)
Z, 0 (6,∈, 0)

1
(age, 3), 1.0 (5,∈, 0.1)
(age, 4), 3.0 (5,∈, 0.5)

2

(state, NY ), 5.0 (1,∈, 4.0)
(age, 3), 1.0 (1,∈, 0.1) (2,∈, 0.1) (3,∈, 0.2)
(gender, F ), 2.0 (2,∈, 0.3)
(state, CA), 2.0 (3, 6∈, 0) (4,∈, 1.5)
(gender, M), 1.0 (3,∈, 0.5) (4,∈, 0.9)

Conjunction Algorithm. We now describe how the Conjunc-

tion Algorithm (Algorithm 1) returns all the satisfying conjunctions

given an assignment. Two observations help us efficiently find a

conjunction c that matches an assignment S with t keys:

1. For a K-index (K ≤ t), a conjunction c (with K terms)

matches S only if there are exactly K posting lists where

each list is for a key (A, v) in S and the ID of c is in the list

with an ∈ annotation.

2. For no (A, v) keys in S should there be a posting list where

c occurs with a 6∈ annotation.

For example, the conjunction c = age ∈ {3} ∧ state ∈ {CA}
matches the assignment S = {age = 3, state = CA, gender = M}
because there are exactly two posting lists (for the keys (age,3)
and (state,CA)) that contain the id of c is their lists with an ∈
annotation. On the other hand, if c = age ∈ {3} ∧ state ∈
{CA} ∧ gender 6∈ {M}, then although there are two posting lists

that contain c with an ∈ annotation, c does not match S because

there is also a posting list for (gender,M) that contains the id of c
with an 6∈ annotation.

Algorithm 1 iterates through the K-indexes in the inverted list

(Step 4) and adds the satisfied conjunction IDs into O. Note that

we do not need to look at K-indexes with K > t. Conjunctions in

those indexes have more terms than what can be satisfied by S. For

each conjunction size K, the GetPostingLists(S,K) method is used

to extract the posting lists that match A (Step 6). PLists is thus a

list of posting lists. In the case where K=0, GetPostingLists(S,K)

returns the Z posting list in addition to the other posting lists match-

ing A. Each posting list has a “current entry” (denoted as CurrEn-

try) that is initialized to the first entry in the list (Step 7). If K=0,

we set K=1 (Step 9) once the posting lists are extracted because the

processing of the posting lists for K=0 is identical to that of K=1.

In Step 11, we include an optimization where we skip processing

the conjunction size K if the number of posting lists is smaller than

K because no conjunction can be satisfied.

From Step 13, Algorithm 1 starts skipping posting lists for con-

junctions that are guaranteed not to match the assignment. This

skipping is an extension and adaptation of the WAND algorithm [6]

– which is an IR algorithm for top-N document ranking – for the

purpose of evaluating and skipping complex expressions (see Sec-

tion 8 for a detailed comparison). The SortByCurrentEntries(PLists)

method first sorts the list of matching posting lists by their cur-

rent entries. At this point, consider the first entry in the first list
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Algorithm 1 The Conjunction algorithm

1: input: inverted list idx and assignment S
2: output: set of IDs O matching S
3: O← ∅
4: for K=min(idx.MaxConjunctionSize, |S|). . .0 do

5: /* List of posting lists matching A for conjunction size K */

6: PLists← idx.GetPostingLists(S,K)

7: InitializeCurrentEntries(PLists)

8: /* Processing K=0 and K=1 are identical */

9: if K=0 then K ← 1

10: /* Too few posting lists for any conjunction to be satisfied */

11: if PLists.size() < K then

12: continue to next for loop iteration

13: while PLists[K-1].CurrEntry 6= EOL do

14: SortByCurrentEntries(PLists)

15: /* Check if the first K posting lists have the same conjunc-

tion ID in their current entries */

16: if PLists[0].CurrEntry.ID = PLists[K-1].CurrEntry.ID

then

17: /* Reject conjunction if a 6∈ predicate is violated */

18: if PLists[0].CurrEntry.AnnotatedBy( 6∈) then

19: RejectID← PLists[0].CurrEntry.ID

20: for L = K .. (PLists.size()-1) do

21: if PLists[L].CurrEntry.ID = RejectID then

22: /* Skip to smallest ID where ID > RejectID */

23: PLists[L].SkipTo(RejectID+1)

24: else

25: break out of for loop

26: continue to next while loop iteration

27: else /*conjunction is fully satisfied */

28: O← O ∪ {PLists[K-1].CurrEntry.ID}
29: /* NextID is the smallest possible ID after current ID*/

30: NextID← PLists[K-1].CurrEntry.ID + 1

31: else

32: /* Skip first K-1 posting lists */

33: NextID← PLists[K-1].CurrEntry.ID

34: for L = 0. . .K-1 do

35: /* Skip to smallest ID such that ID ≥ NextID */

36: PLists[L].SkipTo(NextID)

37: return O

(PLists[0].CurrEntry). Say this entry has an ∈ annotation and is for

conjunction c. The only way c can match S is if for lists PLists[0]

through PLists[K-1], c happens to be the first entry too. Because

the way the lists are sorted, we can check this condition by only

checking the last list (Step 16). Say the condition is not satisfied

because PLists[K-1].CurrEntry.ID is d(> c). Note that in this case,

we do not need to consider conjunctions c,c+1,. . .d-1: they do not

have the necessary K lists. Thus, we can “skip” ahead to con-

sider conjunction d, as done in lines 33-36. (The SkipTo(NextID)

method advances the current entry of a posting list until the con-

junction ID of the current entry is larger or equal to NextID.) Al-

though the skipping seems minor in the simple example below, the

effect becomes significant for a large number of conjunctions.

If PLists[0] and PLists[K-1] have the same conjunction ID in

their current entries, we check whether any 6∈ predicate of the con-

junction was violated by looking at the current entry of the first

posting list. (Notice that our sorting condition for entries guaran-

tees that we can tell whether a 6∈ predicate of a conjunction has

been violated by only checking the first posting list.) If the con-

junction is violated, we skip all the posting lists with the violated

ID in their current entries to their next entries (Steps 23 and 36). If

the conjunction is not violated, we conclude that the conjunction is

satisfied and add the ID of the conjunction into O. The algorithm

terminates when the Kth posting list is empty (i.e., the current en-

try points to the end of the posting list).

Example. Given the assignment S : {age = 3, state = CA, gender
= M}, the matching posting lists for S from the inverted list of Fig-

ure 2 are shown in Figure 3. Notice that all the weights are omitted

for convenience because we do not score BEs yet.

Figure 3: Posting lists for assignment S
K Key Posting List

0
(state, CA) (6, 6∈)
Z (6,∈)

1 (age, 3) (5,∈)

2
(age, 3) (1,∈) (2,∈) (3,∈)
(state, CA) (3, 6∈) (4,∈)
(gender, M) (3,∈) (4,∈)

We start by retrieving the posting lists for K=2 at Step 6 as

shown in Figure 4. The current entry for each posting list is un-

derlined. PLists now contains three posting lists.

Figure 4: Posting lists for K=2
Key Posting List

(age, 3) (1,∈) (2,∈) (3,∈)

(state, CA) (3, 6∈) (4,∈)

(gender, M) (3,∈) (4,∈)

At Step 16, we observe that the 1st and 2nd posting lists do not

have the same conjunction ID in their current entries (i.e., PLists[0].

CurrEntry.ID = 1 while PLists[1].CurrEntry.ID = 3). Hence, con-

junctions c1 and c2 do not match and we skip the 1st posting list

to conjunction ID 3 (Steps 34∼36). After sorting the posting lists

again at Step 14, the resulting posting lists are shown in Figure 5.

The current entry of the posting list of (age, 3) is now (3,∈). No-

tice that after the sorting, the first and second posting lists have

changed positions within PLists. Now the first two posting lists

have the same conjunction ID in their current entries (Step 16)

and we continue to check if any 6∈ predicates of c3 are violated.

At Step 18, we observe that the current entry of the first posting

list (state,CA) indeed contains a 6∈ so we know that c3 does not

match the assignment.

Figure 5: Posting lists for K=2 after first skipping
Key Posting List

(state, CA) (3, 6∈) (4,∈)

(age, 3) (1,∈) (2,∈) (3,∈)

(gender, M) (3,∈) (4,∈)

We then skip all the posting lists containing conjunction ID=3 in

their current entries to their next entries. After sorting the posting

lists again, we arrive at the posting lists of Figure 6. The current

entry of posting list (age, 3) now points to the end of the list (de-

noted as EOL) while the current entry for the first two posting lists

is (4,∈). This time, conjunction c4 is satisfied because two ∈ pred-

icates are satisfied while no 6∈ predicate is violated. As a result, we

add conjunction ID=4 into O at Step 28. After skipping the first

two posting lists to their next entries, we arrive at the end of list for

all posting lists and thus exit the first for loop of Step 4.

Next, we retrieve the posting list (age,3) for K=1. The con-

junction c5 is satisfied because one ∈ predicate is satisfied (Step

16) while no 6∈ predicate is violated (Step 18). Hence, at Step 28,

we add 5 into O.

Finally, we retrieve the two posting lists for K=0. However, we

know that c6 is violated because the entry of the first posting list
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Figure 6: Posting lists for K=2 after second skipping
Key Posting List

(state, CA) (3, 6∈) (4,∈)

(gender, M) (3,∈) (4,∈)

(age, 3) (1,∈) (2,∈) (3,∈) EOL

contains a 6∈. After exiting the for loop at Step 4, Algorithm 1

terminates by returning O={4,5}.

Complexity. The number of posting lists to process is bounded

by the size of the assignment S (i.e., the number of attribute name

and value pairs). In the worst case, we need to sort PLists after

advancing one posting list by one entry in Step 36. The sorting

in Step 14 takes O(log(|S|)) because the inverted list is initially

sorted, and we only need to bubble down one posting list in PLists

using a heap for each posting list skipped. Since the total number of

entries is bounded by the total number of ∈ and 6∈ predicates of all

conjunctions, the complexity becomes O(log(|S|) × |C| × Pavg)
where |C| is the number of conjunctions and Pavg is the average

number of predicates per conjunction. Notice that this complexity

is higher than that of a linear scan of BEs, O(|C| × Pavg). In

practice, however, the Conjunction algorithm is efficient because

|S| is small (i.e., only a few posting lists containing a fraction of all

possible entries are processed), and skipping the posting lists saves

a significant amount of time.

4. CNF ALGORITHM
The CNF algorithm returns the IDs of the CNF BEs that are sat-

isfied by an assignment. Again, we do not consider scoring for now

(which is done in Section 5). The intuition of the CNF algorithm

is to extend the Conjunction algorithm to run on the outer conjunc-

tions of the CNF BEs. Although the CNF algorithm is similar to

the DNF algorithm in building an inverted index and processing

posting lists, the key differences are as follows:

1. The CNF BEs are not split into disjunctions, but are pro-

cessed as their full expressions.

2. The size of a CNF BE is defined as the number of disjunc-

tions in the BE with no 6∈ predicates. For example, the CNF

c = (A ∈ {1} ∨ B ∈ {2}) ∧ (C 6∈ {3} ∨D ∈ {4}) has a

size 1 because the second disjunction contains a 6∈ predicate.

Notice that this definition is a natural extension from the size

of a conjunction.

3. We now keep a “disjunction ID” in each posting list entry.

For example, c from above has two disjunction IDs 0 and

1, and an entry for (A, 1) would contain disjunction ID 0 in

addition to the CNF ID, ∈ or 6∈ annotation, and the weight.

The purpose is to make sure all the disjunctions in the CNF

are satisfied. As an exception, the posting list entries in the

zero posting list Z have a disjunction ID of -1.

4. We maintain the number of 6∈ predicates in each disjunction

of a CNF in a structure separate from the inverted list data

structure. For example, we save the array [0,1] for c above

because the first disjunction contains 0 6∈ predicates while

the second disjunction contains 1 6∈ predicate. The 6∈ pred-

icate counts are used to keep track of the 6∈ predicates of a

disjunction that are satisfied, and can be set while the CNFs

are loaded into the inverted list

Inverted List Construction. In comparison to the inverted list

for conjunctions, a posting list entry for key (A, v) now contains

the ID of the disjunction containing the predicate of (A, v). As a

result, there may be multiple entries for one CNF in the same post-

ing list with different disjunction IDs. Since the CNF algorithm

below requires each posting list to contain at most one entry per

CNF (to prevent “false negatives” where a matching CNF is mis-

takenly rejected having too few posting lists), we store entries with

the same CNF ID in different posting lists with the same key. (In

the case where there are duplicate entries for more than one CNF,

we create posting lists with the same key until any posting list has

at most one entry per CNF, and assign entries to the first posting

list available in a greedy fashion.)

Example. Consider the six CNF BEs in Figure 7. The CNFs are

first partitioned according to their sizes (c1 through c4 have a size

2, c5 has a size 1, and c6 has a size 0). For each partition K=0,1,2,

we construct the K-indexes as shown in Figure 8. Each posting list

entry now contains its disjunction ID as its 3rd value (the 4th value

contains the weight, which will not be used in this example). For

example, the only entry in the (A, 2) posting list indicates that the

predicate for (A, 2) is in the first disjunction of c4. Also notice that

for c4, the key (A, 1) appears in both of its disjunctions. Hence, the

posting list (A, 1) is duplicated where the first list contains entry

(4,∈, 0, 0.1) while the second list contains (4,∈, 1, 0.1). For the

other entries of (A, 1) we simply add them to the first posting list

of (A, 1) in a greedy fashion.

Figure 7: A set of CNF expressions
ID Expression

c1 (A ∈ {1} ∨ B ∈ {1}) ∧ (C ∈ {1} ∨ D ∈ {1})
c2 (A ∈ {1} ∨ C ∈ {2}) ∧ (B ∈ {1} ∨ D ∈ {1})
c3 (A ∈ {1} ∨ B ∈ {1}) ∧ (C ∈ {2} ∨ D ∈ {1})
c4 (A ∈ {1} ∨ B ∈ {1}) ∧ (A ∈ {1, 2} ∨ D ∈ {1})
c5 (A ∈ {1} ∨ B ∈ {1}) ∧ (C 6∈ {1, 2} ∨ D 6∈ {1} ∨ E ∈ {1})
c6 A 6∈ {1} ∨ B ∈ {1}

Figure 8: Inverted list for Figure 7
K Key & UB Posting List

0
(A, 1), 0.5 (6, 6∈, 0, 0)
(B, 1), 1.5 (6,∈, 0, 0.1)
Z, 0 (6,∈,−1, 0)

1

(C, 1), 2.5 (5, 6∈, 1, 0)
(C, 2), 3.0 (5, 6∈, 1, 0)
(D, 1), 3.5 (5, 6∈, 1, 0)
(A, 1), 0.5 (5,∈, 0, 0.1)
(B, 1), 1.5 (5,∈, 0, 0.7)
(E, 1), 4.5 (5,∈, 1, 3.9)

2

(A, 1), 0.5 (1,∈, 0, 0.1)(2,∈, 0, 0.3)(3,∈, 0, 0.3)(4,∈, 0, 0.1)
(B, 1), 1.5 (1,∈, 0, 0.3)(2,∈, 1, 0.5)(3,∈, 0, 0.3)(4,∈, 0, 0.5)
(C, 1), 2.5 (1,∈, 1, 0.2)
(D, 1), 3.5 (1,∈, 1, 2.1)(2,∈, 1, 2.5)(3,∈, 1, 1.7)(4,∈, 1, 1.9)
(C, 2), 3.0 (2,∈, 0, 2.5)(3,∈, 1, 2.7)
(A, 1), 0.5 (4,∈, 1, 0.1)
(A, 2), 1.0 (4,∈, 0, 0.1)

CNF Algorithm. We describe how the CNF algorithm (Algo-

rithm 2) returns all the satisfying CNF BEs given an assignment.

The following observation helps us efficiently find a CNF c that

matches an assignment S: For a K-index, a necessary (but not suf-

ficient) condition for CNF c (with K disjunctions without 6∈ pred-

icates) to match S is that there are at least K posting lists where

each list is for a key (A, v) in S and the ID of c is in the list. For

conjunctions, the analogous property was necessary and sufficient

and required exactly K lists. In the CNF case, a key may now ap-

pear in several disjunctions of a CNF and satisfy the expression.

The new condition requires two changes: First, we modify Step 4

of Algorithm 1 to consider all possible K-indexes regardless of |S|.
Specifically, we change the line “for K=min(idx.MaxConjunction

Size, |S|). . .0 do” to “for K=idx.MaxConjunctionSize. . .0 do.” Sec-

ond, once we find a CNF with K matching lists, we must perform

additional checks, as detailed below.
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Algorithm 2 The CNF algorithm

1: [Steps 1∼15 of Algorithm 1 except for Step 4]

2: if PLists[0].CurrEntry.ID = PLists[K-1].CurrEntry.ID then

3: /* For each disjunction in the current CNF, one counter is

initialized to the negative number of 6∈ predicates */

4: Counters.Initialize(PLists[0].CurrEntry.ID)

5: for L = 0. . .(PLists.size()-1) do

6: if PLists[L].CurrEntry.ID = PLists[0].CurrEntry.ID then

7: /* Ignore entries in the Z posting list */

8: if PLists[L].CurrEntry.DisjID = -1 then

9: continue to next for loop

10: if PLists[L].CurrEntry.AnnotatedBy( 6∈) then

11: Counters[PLists[L].CurrEntry.DisjID]++

12: else /*Disjunction is satisfied */

13: Counters[PLists[L].CurrEntry.DisjID]← 1

14: else

15: break

16: Satisfied← true

17: for L = 0. . .Counters.size()-1 do

18: /* No ∈ or 6∈ predicates were satisfied */

19: if Counters[L] = 0 then

20: Satisfied← false

21: if Satisfied = true then

22: O← O ∪ {PLists[K-1].CurrEntry.ID}
23: [Steps 29∼37 of Algorithm 1]

Algorithm 2 is similar to Algorithm 1 where the first 16 steps (we

have kept Step 16 of Algorithm 1 in Algorithm 2 for convenience)

and the last 9 steps are identical code (with the exception of Step 4

in Algorithm 1). Hence, we only elaborate on the new code (Steps

3∼22 in Algorithm 2), which checks whether all the disjunctions

of a CNF are satisfied. The new code is only invoked for a CNF c
where there are at least K posting lists that have c’s ID in their cur-

rent entries (Step 2). We then initialize an array of integer counters

(Step 4) where each integer corresponds to a disjunction of c and

is initialized to the negative number of 6∈ predicates in that disjunc-

tion. For instance, if c = (A ∈ {1}∨B ∈ {2})∧(C 6∈ {3}∨D ∈
{4}) ∧ (E 6∈ {5} ∨ F 6∈ {6}), Counters is initialized to [0,-1,-2].

(Recall that the number of 6∈ predicates per disjunction is saved in

a structure separate from the inverted list during load time.)

At Step 5 in Algorithm 2 (all the steps from now on in this section

refer to Algorithm 2) we know there are K posting lists containing

c’s id, but there could actually be more than K. Thus, we now scan

all lists in the K-index, looking for ID c. Suppose when we look

at list L, its current entry contains disjunction ID d. We then either

increase Counter[d] (Step 11) if the entry has a 6∈ annotation or set

Counter[d] to 1 (Step 13) if the entry has an ∈ annotation. In Steps

17∼20, we check if all the disjunctions of c have been satisfied by

looking at the counters. A positive counter value means that at least

one ∈ predicate has been satisfied for disjunction d while a negative

counter value means that at least one 6∈ predicate has been satisfied.

Hence, the only case where a disjunction is not satisfied is when the

counter value is 0 (i.e., no ∈ predicates have been satisfied and all

6∈ predicates, if they exist, have been violated).

Example. Given the assignment S : {A = 1, C = 2}, the match-

ing posting lists for S from the inverted list of Figure 8 are shown

in Figure 9. The weights are omitted for convenience because we

do not score BE’s yet.

Since the posting list skipping is similar to the example in Sec-

tion 3, we focus on the disjunction checking for CNFs. When K=2,

the CNFs that are checked in Steps 3∼22 are c2, c3, c4 (notice that

Figure 9: Posting lists for assignment S
K Key Posting List

0
(A, 1) (6, 6∈, 0)
Z (6,∈,−1)

1
(C, 2) (5, 6∈, 1)
(A, 1) (5,∈, 0)

2
(A, 1) (1,∈, 0) (2,∈, 0) (3,∈, 0) (4,∈, 0)
(C, 2) (2,∈, 0) (3,∈, 1)
(A, 1) (4,∈, 1)

c1 is skipped because there is only one posting list for c1). Starting

from c2, we initialize the Counter array to [0,0] (both disjunctions

of c2 contain no 6∈ predicates) and scan posting lists (A, 1) and

(C, 2). Since the entries for c2 in both posting lists refer to dis-

junction 0, the final state of the counters is [1,0]. Since the second

counter is 0, c2 is not satisfied. We then start processing c3. This

time, the two entries for c3 in posting lists (A, 1) and (C, 2) refer

to disjunction IDs 0 and 1, respectively. Hence, the final state of

the counters is [1,1], and we accept c3 into O. Finally, c4 is a case

where one key (A, 1) satisfies both disjunctions of the CNF. The

final state of the counters is also [1,1] and we accept c4 into O.

We now illustrate entries with 6∈ annotations when K=1. Since

c5 has two posting lists with entries for c5, we start checking the

disjunctions of c5 from Step 4. Since c5 has one disjunction with

zero 6∈ predicates and another with two 6∈ predicates, the coun-

ters are initialized to [0,-2]. We then view the current entry of the

posting list (A, 1) from Step 6 and set Counter[0] to 1 at Step 13.

For the next posting list (C, 2), we increment Counter[1] to -1 at

Step 11 because the current entry is annotated by a 6∈. The final

Counter is thus [1,-1]. The first disjunction is satisfied because one

∈ predicate is satisfied while the second disjunction is also satisfied

because one 6∈ predicate is satisfied. We thus accept c5 into O.

Finally, we illustrate the handling of Z when K=0. Since c6

has two posting lists with entries for c6, we start checking its dis-

junctions from Step 4. Since c6 only has one disjunction with one

6∈ predicate, Counter is initialized as [-1]. When viewing the cur-

rent entry of the posting list (A, 1), we increment the counter to 0.

However, we ignore the next posting list Z. Since the final counter

is 0, we do not accept c6. The final solution O is thus {3, 4, 5}.

Complexity. Compared to the Conjunction algorithm, the CNF

algorithm has the additional step of scanning posting lists (Steps

5∼15), which takes O(|S|) each time PLists[0].CurrEntry.ID =

PLists[K-1].CurrEntry.ID (Step 2). Hence, the total complexity is

O(|S| × |C| × Pavg) where |C| is the number of CNFs and Pavg

is the average number of predicates per disjunction.

5. RANKING BOOLEAN EXPRESSIONS
The ranking algorithms for DNF and CNF BEs return the top-N

matching BEs based on the BE scoring defined in Section 2.4. We

do not present the code for the scoring algorithms, but only explain

the necessary changes to Algorithms 1 and 2. Notice that our focus

is on efficiently retrieving the top-N BEs given a scoring method,

and not on developing different scoring methods or evaluating their

effectiveness.

A naive solution is to maintain the top-N matching BEs in a heap

while running the algorithms in Sections 3 and 4. As each new

matching BE is found, we would compute its score and place it

to the heap if it beats a previous BE. In this section, we discuss

pruning techniques that can improve the performance of the naive

solution.

DNF Ranking Algorithm. Ranking DNF BEs can be done

with the Conjunction Algorithm (Algorithm 1) by maintaining a

top-N queue of conjunctions and restricting them to have unique
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DNF IDs within the queue. Since the score of a DNF BE is the

maximum score of its conjunction scores, we only need to keep the

highest conjunction score for each DNF ID.

We now use the weights in the inverted list to rank BEs. In

Figure 2, the number next to each posting list key (A, v) denotes

the upper bound weight UB(A, v). In each posting list entry, the

third value denotes the weight wc(A, v) for conjunction c. For

example, the key (age, 4) in Figure 2 has a posting list inside

the partition K = 1 and contains an entry representing c5 where

wc5(age,4) = 0.5 and UB(age,4) = 3.0. The upper bound

UB(Z) is defined as 0. In addition, each entry in Z has weight 0.

We extend Algorithm 1 by adding the following two pruning

techniques.

1. After sorting the posting lists in Step 14, the sum of UB(A, v)×
wS(A, v) for every posting list PLists[L] such that PLists[L].

CurrentEntry.ID≤ PLists[K-1].CurrentEntry.ID is an upper-

bound for the score of the conjunction PLists[K-1].CurrentEntry.

ID. If the upperbound is less than the Nth highest conjunction

score, we can skip all the posting lists with CurrentEntry.ID

less than or equal to PLists[K-1].CurrentEntry.ID and con-

tinue to the next while loop at Step 13.

2. Before processing PLists from Step 7, the sum of the top-K
UB(A, v)×wS(A, v) values for all the posting lists in PLists

is an upperbound of the score for all the matching conjunc-

tions with size K. If the upperbound is less than the Nth

highest conjunction score, we can skip processing PLists for

the current K-index and continue to the next for loop at

Step 4.

Example. Given the assignment S :{age = 3, state = NY, gender
= F}, the matching posting lists for K=2 from the inverted lists

of Figure 2 are shown in Figure 10. Notice that we also added

the assignment weights in the first column, assuming we are given

wS(age, 3) = 0.8, wS(state,NY ) = 1.0, and wS(gender,F ) =

0.9. Suppose that we set N=1 (i.e., we only maintain the conjunc-

tion with the highest score). The conjunction c1 is first accepted in

Step 28 of Algorithm 1 because two posting lists have current en-

tries for c1. The score of c1 is w1(state,NY )×wS(state,NY )+
w1(age, 3) × wS(age,3) = 4.0×1.0 + 0.1×0.8 = 4.08. The Nth

highest score is thus set to 4.08.

Figure 10: Posting lists for S where K=2
wS Key & UB Posting List

1.0 (state, NY ), 5.0 (1,∈, 4.0)

0.8 (age, 3), 1.0 (1,∈, 0.1) (2,∈, 0.1) (3,∈, 0.2)

0.9 (gender, F ), 2.0 (2,∈, 0.3)

The first pruning technique is illustrated in Figure 11 where the

posting lists are sorted (Step 14, Algorithm 1) after accepting c1.

Before we check whether the first and second posting lists have the

same conjunction in their current entries (Step 16), we compute the

upperbound score of c2 by computing UB(age, 3)×wS(age, 3)+
UB(gender,F ) × wS(gender,F ) = 1.0×0.8 + 2.0×0.9 = 2.6.

Since 2.6 is smaller than the Nth score 4.08, we can immediately

skip the first two posting lists to conjunction ID 2+1 = 3 without

invoking Step 16 and continue to the next while loop at Step 13. We

eventually finish processing the posting lists for K=2 and continue

to K=1 from Step 4.

The second pruning technique is illustrated in Figure 12, which

shows the posting lists for K=1. Before we process the posting lists

from Step 6, we first derive the upperbound score for all the con-

junctions in the K-index by computing UB(age, 3)×wS(age, 3)
= 1.0×0.8 = 0.8. Since 0.8 is less than the current Nth score 4.08,

Figure 11: Sorted posting lists after accepting c1

wS Key & UB Posting List

0.8 (age, 3), 1.0 (1,∈, 0.1) (2,∈, 0.1) (3,∈, 0.2)

0.9 (gender, F ), 2.0 (2,∈, 0.3)
1.0 (state, NY ), 5.0 (1,∈, 4.0) EOL

we can immediately skip processing the posting lists for K=1. Sim-

ilarly, we can also skip K=0 to return the final solution c1, which

has the highest score 4.08.

Figure 12: Posting lists for S where K=1
wS Key & UB Posting List

0.8 (age, 3), 1.0 (5,∈, 0.1)

CNF Ranking Algorithm. Ranking CNF BEs can be done

with the CNF algorithm (Algorithm 2) by maintaining a top-N

queue of CNF BEs. We can use the first pruning technique of the

DNF ranking algorithm (exact same code) and use it in the CNF

algorithm. Since the score of a CNF BE is the sum of the disjunc-

tion scores while the score of a disjunction is the maximum score

of its predicates, the sum UB(A, v) × wS(A, v) for every post-

ing list PLists[L] where PLists[L].CurrentEntry.ID ≤ PLists[K-

1].CurrentEntry.ID is still an upperbound for the score of the CNF

of PLists[K-1].CurrentEntry.ID.

However, we cannot use a pruning technique that corresponds

to the second pruning technique of the DNF ranking algorithm be-

cause more than K disjunctions may contribute to the score of a

CNF with size K (i.e., disjunctions that contain both ∈ and 6∈ pred-

icates do not count in the size of the CNF, but may have scores that

add to the CNF score). Hence, the sum of the top-K UB(A, v) ×
wS(A, v) values in PLists is no longer an upperbound for the CNF

score.

Example. Given the assignment S : {A = 1, C = 2}, the match-

ing posting lists for K=2 from the inverted list of Figure 8 are

shown in Figure 13 along with the given assignment weights wS(A, 1)
= 0.1 and wS(C, 2)=0.9. As we discussed in Section 4, the only

matching CNFs in Figure 13 are c3 and c4. However, after we ac-

cept c3 and derive the score w3(A, 1) × wS(A, 1) + w3(C, 2) ×
wS(C, 2) = 0.3×0.1 + 2.7×0.9 = 2.46, we can skip processing

CNF ID 4 from Step 2 in Algorithm 2 because the upperbound of

c4 is UB(A, 1)×wS(A, 1) + UB(A, 1)×wS(A, 1) = 0.5×0.1 +

0.5×0.1 = 0.1, which is smaller than 2.46.

Figure 13: Posting lists for S where K=2
wS Key & UB Posting List

0.1 (A, 1), 0.5 (1,∈, 0, 0.1)(2,∈, 0, 0.3)(3,∈, 0, 0.3)(4,∈, 0, 0.1)

0.9 (C, 2), 3.0 (2,∈, 0, 2.5)(3,∈, 1, 2.7)

0.1 (A, 1), 0.5 (4,∈, 1, 0.1)

6. LATENCY, SCALABILITY, UPDATES
We now turn to three main systems challenges in designing an

efficient BE index — latency, scalability and updates. With re-

gards to latency, applications such as online advertising and high-

performance publish/subscribe systems have response time require-

ments of less than a few hundred milliseconds (for the matching

component). With regards to scalability, display advertising sys-

tems have to process many billions of impressions every day. Fi-

nally, with regards to updates, the index has to be capable of han-

dling a small number of updates in real-time (e.g., new subscrip-

tions or advertisements); however, the update volume is typically

many orders of magnitude less than the read volume. How do we

adapt inverted lists for use in such environments?

8



Fortunately, it turns out that inverted lists have already been adapted

for similar use in a different (familiar!) application — Web search

(e.g., see [21]). The latency problem is solved by storing a read-

optimized inverted list data structure in main-memory, without in-

curring the cost of disk reads. The scalability problem is solved by

replicating and/or partitioning the index (based on documents, or

in our case, BEs) across multiple machines. The update problem

is solved by maintaining a small “tail” data structure for updates,

in addition to the main read-only data structure; periodically, the

main index is rebuilt (offline) to absorb the changes in the tail, and

the newly built index is used to replace the old index without a per-

ceptible impact on performance. We use very similar techniques in

our implementation, and as shown in the next section, the result-

ing implementation meets our goals, without consuming excessive

main-memory resources (e.g., an index for a million BEs consumes

less than 100MB).

7. EXPERIMENTS
In this section, we evaluate our DNF and CNF algorithms on syn-

thetic datasets from an online advertising application and compare

their performance to other efficient algorithms for BE matching.

We address the questions of how our algorithms compare against

others and how our algorithms perform in different scenarios such

as different DNF sizes. All algorithms were implemented in C++,

and our experiments were run on a 2.5GHz Intel(R) Xeon(R) pro-

cessor with 16GB of RAM.

Data Set. We used a 1,000 random subset of 1 million real dis-

play advertising adlogs for our assignments. An adlog is the infor-

mation of a user visiting a web page and consists of attribute name

and value pairs. For example, a man living in California who is

interested in sports may produce the adlog Gender = M ∧State =

CA∧InterestSports = true. In addition for each assignment, we

added a month attribute (randomly selected) indicating the month

of a certain year (say 2009).

We used synthetic BE workloads generated from statistics of real

display advertising contracts (the maximum workload size we gen-

erated was 1 million BEs). A contract is a conjunction of ∈ predi-

cates and specifies the demographic of users an advertiser is inter-

ested in. In order to scale the contracts and to vary the structure

of the Boolean expressions, we generated BEs based on the statis-

tics of the contracts. We first extracted the attribute names and the

possible sets of values for each name (each set containing all the

values in a single ∈ predicate) along with their frequencies within

the contracts. We then generated DNF and CNF BEs by choosing

attribute names and possible sets of values based on the frequencies

(e.g., the more frequent an attribute name appears in contracts, the

more likely it was used in the generated BEs).

We explain in detail how we generated DNF BEs. (The CNF

BEs were generated in a similar fashion.) First, we generated the

number of conjunctions within a DNF based on a Zipfian number

generator. Given an exponent number e, we chose an integer from

a range 1∼20 that had a Zipfian distribution with exponent e. For

each conjunction in the DNF, we generated the number of predi-

cates based on the real distribution of the contract sizes. For each

predicate in a conjunction, we selected an attribute name and a set

of values based on the frequencies above. We also made sure the

same attribute name did not appear multiple times within the same

conjunction. The predicate was either an ∈ or 6∈ predicate based on

a given probability n. Starting from the second conjunction gen-

erated for a DNF, we simulated correlations between conjunctions

by copying a portion p of predicates from the previously generated

conjunction with a probability of q. Finally, we added in each con-

junction a predicate containing a random month of 2009 (For CNF

BEs, we added a separate disjunction of the month instead of in-

serting month predicates in each disjunction). Conjunctions of the

same DNF were given the same month. The month predicate was

used to adjust the “selectivity” of the BEs (i.e., the inverse probabil-

ity of a BE satisfying an assignment). Table 1 shows the parameters

and average values of our BE workloads.

Table 1: Parameters and average values

Parameter Description Value(s)

e Zipfian exponent number 2.0∼3.0

p Portion of preds to copy 0.5

q Probability of copying 0.5

n Portion of 6∈ predicates 0.1

Avg val Description Value(s)

|S|avg Avg # keys in assignment 91

|DNF|avg Avg DNF size 1.6∼3.5

|Conj|avg Avg # preds in conjunction 3.65

|CNF|avg Avg CNF size 2.6∼4.5

|Disj|avg Avg # preds in disjunction 2.65

Weight Generation. We also generated the upperbounds and

weights for all the keys in order to run the DNF and CNF rank-

ing algorithms. We first set the upperbound of a key (A, v) as the

inverse of the frequency of (A, v) appearing in the 1,000 assign-

ments. For example, if (age, 1) appeared in 100 assignments, then

UB(age, 1)=0.1. The upperbound thus reflects the “rarity” of a

key. (Notice that our model does not restrict the way of generating

upperbounds and any other generation scheme can be used.) We

then generated for each wc(A, v) a random gaussian with an av-

erage of 0.8 × UB(A, v) and a variance of 0.05 × UB(A, v) (If

the weight exceeded UB(A, v), we set the weight to UB(A, v)).

Again, the weights can be generated in any other way. For assign-

ments, each key was given a random weight from 0 to 1.

Algorithms. In Section 7.1, we compare the DNF algorithm with

the algorithms below. Since the Le Subscribe and SIFT algorithms

only run on conjunctions, we simply split all the DNF BEs into con-

junctions and ran the two algorithms on the conjunctions. We also

extended Le Subscribe and SIFT to support 6∈ predicates and multi-

valued predicates in a straightforward manner. For example, while

the original Le Subscribe stores for each BE an array of pointers to

boolean values for its predicates, we added a bit on each pointer to

distinguish ∈ or 6∈ predicates.

• Le Subscribe: A clustering-based algorithm [11] that groups

BEs by common subexpressions. Only the clusters whose subex-

pressions are satisfied by the assignment are fully evaluated.

While there were several versions of Le Subscribe, we imple-

mented the Propagation algorithm, which clusters each con-

junction on its most selective predicate and is considered the

fastest algorithm for high-dimensional data among the differ-

ent versions.

• SIFT: A counting algorithm [25] that uses an inverted list for

searching BEs. For all matching posting lists, SIFT scans each

entry and increases/decreases the count of satisfied predicates

for each conjunction. Only the conjunctions that have a count

of at least the number of ∈ predicates are accepted.

• SCAN: An exhaustive algorithm that scans and evalutes all BEs

one by one for each assignment. While there are optimized

techniques for evaluating one BE against assignments [19], since

we have to evaluate multiple BEs, we use a straightforward im-

plementation that iterates through (pre-parsed) operator trees

corresponding to BEs, and evaluates each tree according to the

semantics of Boolean operators.
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We evaluate our CNF algorithm in Section 7.2. Since there were

no related works to compare the CNF algorithm with, we imple-

mented an improved version of SCAN (called PSCAN) where only

the BEs in the posting lists of the assignment are fully evaluated.

The PSCAN algorithm is thus similar to the SIFT algorithm except

that there are no counters involved.

Finally, we compare the DNF and CNF algorithms with their

ranking algorithms in Section 7.3.

Inverted List Construction. Constructing the inverted list of-

fline includes parsing the BEs from the input file, deduplicating

identical BEs, and loading the BEs into the inverted list. An in-

verted list of 1M DNF BEs without weights takes 7 minutes to load

and has a size of 35MB (derived by summing the sizes of the key

lookup hash table and the posting list entries). An inverted list of

1M CNF BEs without weights takes 1.5 hours to load and has a size

of 91MB. In our experiments, we only measure the online runtimes

of our algorithms after the inverted list is constructed offline.

7.1 DNF Algorithm

Selectivity Impact. We define the selectivity of a BE workload

as the inverse of the probability that a BE matches an assignment.

We can create various scenarios with different selectivity values by

adjusting the range of random months assigned to BEs. If the range

is large and the months are spread out (say January to December),

then few BEs match with an assignment. On the other hand, if

we only use one month (say January) for all BEs, we get the most

matches (assuming the assignment also has the month January) and

thus the lowest selectivity.

Figure 14 compares the average matching times (i.e., the aver-

age times to search all matching BEs given an assignment) for the

DNF, Le Subscribe, and SIFT algorithms on 1 million DNF BEs

while varying the probability of a BE matching an assignment. For

small probabilities, the DNF algorithm is slightly slower than Le

Subscribe. The reason is that there is a larger initial overhead for

the DNF algorithm to run compared to Le Subscribe (e.g., scanning

all the possible K-indexes and sorting posting lists). Le Subscribe

on the other hand does little work when few BEs match. However,

as the match probability increases, the DNF algorithm shows a sub-

linear increase in runtime while Le Subscribe has a more linear in-

crease in runtime. A significant factor of the good performance

of the DNF algorithm is the internal optimization of deduplicating

conjunctions before loading them into the inverted list. Compared

to the SIFT algorithm, the DNF algorithm is 11.2 to 20.9 times

faster.
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Figure 14: Selectivity impact, 1M DNF BEs

High Dimension Impact. We define the dimension of a BE

workload as the number of different attribute names that can appear

in the BEs. Our default DNF BE workload has a dimension of

1461, reflecting the high dimension of the contract data. In order

to generate workloads of lower dimensions, we removed attribute

names that had low frequencies and re-generated the BE workload.

Figure 15 compares the matching times of the DNF, Le Sub-

scribe, and SIFT algorithms on 1 million DNF BEs while vary-

ing the dimension of the workload. (The match probability was

11.91%.) A noticeable trend is that the DNF algorithm improves in

runtime for low-dimension BEs. The main reason is that there were

fewer unique conjunctions to load into the inverted list because of

the fewer attribute names and values to choose from when generat-

ing the BEs. On the other hand, Le Subscribe runs slightly slower

for low-dimension BEs. Although the DNF algorithm seems to be

much faster than Le Subscribe for low-dimension BEs, it is im-

portant to understand that we have implemented the Propagation

algorithm [11], which only clusters BEs on their single most se-

lective predicates, and not the other versions of Le Subscribe that

cluster on multiple predicates. While the Propagation algorithm

has a relatively bad performance on low-dimension BEs, it is the

best algorithm for high-dimension BEs, and we are more focused

on comparing the DNF algorithm with the Propagation algorithm

on high-dimension BEs. We suspect that the multiple predicate

clustering algorithms of Le Subscribe will perform much better for

low-dimension BEs. In summary, the DNF algorithm performs the

best for high-dimension BEs.
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Figure 15: Dimension impact, 1M DNF BEs

BE Size Impact. Figure 16 compares the matching times of the

DNF, Le Subscribe, and SIFT algorithms on 1 million DNF BEs

while varying the DNF size (i.e., the average number of conjunc-

tions per DNF) with the Zipfian exponent e. (The match probability

was 11.91%.) For a high exponent, the distribution of DNF sizes

becomes more skewed, lowering the average DNF size. For a low

exponent, the size distribution becomes flat, and a DNF BE has a

higher chance of having many conjunctions. In our experiments,

we used three exponents for e – 3, 2.5, and 2 – to generate the

average DNF sizes of 1.6, 2.3, and 3.5, respectively. As the aver-

age DNF size grows by 2.19 times, the runtimes for the DNF, Le

Subscribe, and SIFT algorithms grow by 1.9, 4.3, and 2.1 times,

respectively. Hence, the DNF algorithm shows the best scalability

for larger BE sizes.

Scalability. Figure 17 compares the scalability of the DNF, Le

Subscribe, SIFT, and SCAN algorithms for a range of 0.2 to 1 mil-

lion DNF BEs where the match probability was 11.91%. The DNF

algorithm is up to two orders of magnitude faster than SCAN. Also,

the DNF algorithm is 1.58∼2.97 times faster than Le Subscribe and

11.2∼20.5 times faster than SIFT.
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Figure 16: DNF size impact, 1M DNF BEs
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Figure 17: DNF scalability

7.2 CNF Algorithm
We now show the performance of the CNF algorithm. Figure 18

compares the matching time performance of the CNF algorithm

against the PSCAN and SCAN algorithms for 0.2 to 1 million CNF

BEs where the match probability was 5.16%. As a result, the

CNF algorithm is 1.9∼2.6 times faster than PSCAN and 10.5∼12.7

times faster than SCAN.
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Figure 18: CNF scalability

7.3 Ranking Algorithms
We show the runtime performances of the ranking algorithms.

Figure 19 compares the matching times of the DNF and CNF algo-

rithms with their ranking algorithms for 1 million DNF BEs and 0.4

million CNF BEs. While the DNF and CNF algorithms return all

the matching BEs given an assignment, the DNF and CNF ranking

algorithms only return the top-N matching BEs with their scores.

The match probabilities of the CNF results were relatively lower

than those of the DNF results because the CNF expressions, being

conjunctions of disjunctions, were in general harder to satisfy. Both

ranking algorithms returns the top 5 matching BEs. The DNF rank-

ing algorithm is 19% slower than the DNF algorithm for the lowest

match probability, but 11% faster for the highest match probabil-

ity. The slower speed for a low match probability illustrates the

overhead of the computation needed for the additional skipping.

However, as more BEs match an assignment (i.e., the match proba-

bility increases), we are more likely to get high scores of matching

BEs that can prune further BEs. Thus, the DNF ranking algorithm

is most effective when there are many matching BEs. The CNF

ranking algorithm significantly outperforms the CNF algorithm by

35∼45% where the runtime gap increases as the match probability

increases. Compared to the DNF ranking algorithm, the CNF rank-

ing algorithm has more opportunities for pruning because the CNF

BEs tend to have more varying scores. In summary, the additional

pruning for the ranking algorithms can improve the performances

of the non-ranking algorithms for high match probabilities.
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Figure 19: Ranking algorithm performance

8. RELATED WORK
Various publish/subscribe systems (see the surveys [10] for an

overview) propose indexing techniques for complex expressions.

Both SIFT [25] and Le Subscribe [11] are efficient publish/subscribe

algorithms that index conjunctions. Carzaniga et al. [8] extends

SIFT to index DNF expressions. In comparison, our proposed ap-

proach is more efficient for DNF expressions (Section 7), and ad-

ditionally supports multi-valued attributes with NOTs, CNF BEs,

and ranking. Cayuga [4] and SASE [22] are examples of “state-

ful” publish/subscribe systems, which index complex subscription

expressions that can monitor a sequence of events (e.g., notify the

subscriber when the stock price of IBM drops by more than 10%

within a 5 day window). This work is complementary to our work

in the sense it considers complex expressions of a different kind -

i.e., expressions over multiple events - while our focus is on eval-

uating complex Boolean operations over a single event. A recent

line of work focuses on ranked publish/subscribe [16] where only

the “best” BEs are chosen instead of all the satisfied BEs. Our al-

gorithms also support ranking, but differ from the above work in

several ways. First, we support general BEs instead of intervals in

a multi-dimensional space. Also, our algorithms perform very well

for high-dimensional data while the above work only performs well

on very small dimensions [16].

IR systems [21, 26], which efficiently search documents given a

query, have been heavily studied. Our application is different in that

we are searching for queries (BEs) given the data (instead of the

other way around), and that we exploit the syntax of the complex

queries in order to exactly find the satisfied BEs. A related piece of

work is the WAND algorithm [6], which efficiently searches doc-

uments whose weighted scores against a given keyword query are

11



larger than a certain threshold. Our method of skipping over in-

verted lists is inspired by the WAND algorithm, but extends it to

deal with DNF and CNF BEs (including 6∈) instead of documents

of keywords, and also extends it to enable top-N ranking while en-

forcing strict Boolean semantics.

Scalable trigger systems [15] can also be used to support BE

matching where each trigger supports one BE. While triggers pro-

vide the expressiveness of SQL, they are generally not as scalable

as specialized BE matching systems. The Oracle RDBMS supports

the EVALUATE operator and can store entire BEs under a column

of a special data type [24]. Indexes called Expression Filters are

used to efficiently process the EVALUATE operator on a large set

of BEs. While users can take advantage of the expressive power of

SQL to support complex BEs, Expression Filters are only designed

for a small number of dimensions (each indexed dimension results

in a SQL sub-query, and most sparse dimensions are not indexed),

and only for DNF expressions with single-valued predicates. Fur-

ther, RDBMSs do not support ranking for triggers or BEs.

Expert systems [13] use efficient matching algorithms [18, 12]

to match patterns against objects. In comparison, our algorithms

solve the more general problem of matching DNF/CNF BEs against

objects (notice that a pattern can be expressed as a conjunction).

Policy compliance checking [2, 3] involves matching credentials

against policies that are possibly BEs. However, there is more em-

phasis on the expressiveness of the policies than on the matching

performance. At best, the number of policies scale to the order of

thousands while our indexes can store millions of BEs.

Finally, complementary to our work is a technique for indexing

regular expressions [9], which have a different structure than BEs.

9. CONCLUSION
We have proposed a general solution for efficiently matching

complex boolean expressions (BEs) using the inverted list data struc-

ture. While there are many inverted list query processing algo-

rithms that support complex query expressions, our methods solve

the inverse problem of complex indexed expressions. Our model

supports DNF and CNF BEs with ∈ and 6∈ primitives. Our tech-

niques can be used in online advertising and in general any content-

based publish/subscribe system. We have experimentally shown

that our algorithms are scalable especially for high-dimensional

data, and are several times faster than prior approaches.

An important feature of our algorithms is their ability to rank

BEs based on their relevance score to the given assignment. We

have experimentally shown that the DNF ranking algorithm im-

proves the non-ranking version by up to 11% while the CNF rank-

ing algorithm improves by up to 45%. The ranking algorithms can

be used in emerging settings that require ranked publish/subscribe.
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