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ABSTRACT

The problem of finding locally dense components of a graph
is an important primitive in data analysis, with wide-ranging
applications from community mining to spam detection and
the discovery of biological network modules. In this paper
we present new algorithms for finding the densest subgraph
in the streaming model. For any ¢ > 0, our algorithms make
O(log, . n) passes over the input and find a subgraph whose
density is guaranteed to be within a factor 2(1 + €) of the
optimum. Our algorithms are also easily parallelizable and
we illustrate this by realizing them in the MapReduce model.
In addition we perform extensive experimental evaluation
on massive real-world graphs showing the performance and
scalability of our algorithms in practice.

1. INTRODUCTION

Large-scale graph processing remains a challenging prob-
lem in data analysis. In this work we focus on the densest
subgraph problem that forms a basic primitive for a diverse
number of applications ranging from those in computational
biology [36] to community mining [8, 17] and spam detec-
tion [21]. We present algorithms that work both in the data
streaming and distributed computing models for large scale
data analysis and are efficient enough to generalize to graphs
with billions of nodes and tens of billions of edges.

As input to the densest subgraph problem, we are given a
graph G = (V, E) and are asked to find a subset S of nodes
that has the highest ratio of edges between pairs of nodes
in S to the nodes in S. This basic problem can take on
several flavors. The graph may be undirected (e.g. friend-
ships in Facebook) or directed (e.g. followers in Twitter).
In the latter case, the goal is to select two subsets S and T
maximizing the number of edges from S to T" normalized by
the geometric mean of |S| and |T'|. A different line of work
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insists that the subgraphs be large: the input is augmented
with an integer k£ with the requirement that the output sub-
set has at least k nodes.

This simple problem has a variety of applications across
different areas. We illustrate some examples below.

(1) Commaunity mining. One of the most natural appli-
cations of the densest subgraph problem is finding structure
in large networks. The densest subgraph problem is useful
in identifying communities [12, 17, 32], which can then be
leveraged to obtain better graph compression [8]. Heuris-
tics, with no provable performance guarantees, have been
typically used in this line of work.

(2) Computational biology. Saha et al. [36] adapt the dens-
est subgraph problem for finding complex patterns in the
gene annotation graph, using approximation and flow-based
exact algorithms. They validate this approach by show-
ing that some of the patterns automatically discovered had
been previously studied in the literature; for more examples,
see [1, Chapter 18].

(8) Link spam detection. Gibson et al. [21] observe that
dense subgraphs on the web often correspond to link spam,
hence their detection presents a useful feature for search
engine ranking; they use a heuristic method that works well
in the data stream paradigm.

(4) Reachability and distance query indexing. Algorithms
for the densest subgraph problem form a crucial primitive in
the construction of efficient indexes for reachability and dis-
tance queries, most notably in the well-known 2-hop label-
ing, first introduced in [14], as well as the more recent 3-hop
indexing [23]. To underscore the importance of practical al-
gorithms the authors of [14] remark that the 2-approximation
algorithm of [10] is of more practical interest than the more
complex but exact algorithm.

In all these applications, a good approximation to the
densest subgraph is sufficient and is certainly more desirable
than a heuristic without any performance guarantees.

It is known that both the directed and the undirected
version of the densest subgraph problem can be solved op-
timally using parametric flow [29] or linear programming
relaxation [10]. In the same work, Charikar [10] gave simple
combinatorial approximation algorithms for this problem.
On a high level, his algorithm for the undirected case greed-
ily removes the worst node from the graph in every pass; the
analysis shows that one of the intermediate graphs is a 2-
approximation to the densest subgraph problem. The basic
version of the problem provides no control over the size of
the densest subgraph. But, if one insists on finding a large
dense subgraph containing at least k£ nodes, the problem be-



comes NP-hard [26]. Andersen and Chellapilla [3] as well as
Khuller and Saha [26] show how to obtain 2-approximations
for this version of the problem.

While the algorithms proposed in the above line of work
guarantee good approximation factors, they are not efficient
when run on very large datasets. In this work we show
how to use the principles underlying existing algorithms,
especially [10], to develop new algorithms that can be run
in the data stream and distributed computing models, for
example, MapReduce; this also resolves the open problem
posed in [1, 13].

1.1 Streaming and MapReduce

As the datasets have grown to tera- and petabyte input
sizes, two paradigms have emerged for developing algorithms
that scale to such large inputs: streaming and MapReduce.

In the streaming model [34], one assumes that the input
can be read sequentially in a number of passes over the data,
while the total amount of random access memory (RAM)
available to the computation is sublinear in the size of the
input. The goal is to reduce the number of passes needed, all
the while minimizing the amount of RAM necessary to store
intermediate results. In the case the input is a graph, the
nodes V' are known in advance, and the edges are streamed
(it is known that most non-trivial graph problems require
Q(|V]) RAM, even if multiple passes can be used [18]). The
challenge in streaming algorithms lies in wisely using the
limited amount of information that can be stored between
passes.

Complementing streaming algorithms, MapReduce, and
its open source implementation, Hadoop, has become the de-
facto model for distributed computation on a massive scale.
Unlike streaming, where a single machine eventually sees the
whole dataset, in MapReduce, the input is partitioned across
a set of machines, each of which can perform a series of
computations on its local slice of the data. The process can
then be repeated, yielding a multi-pass algorithm (See [16]
for exact framework, and [19, 25] for theoretical models).
It is well known that simple operations like sum and other
holistic measures [35] as well as some graph primitives, like
finding connected components [25], can be implemented in
MapReduce in a work-efficient manner. The challenge lies
in reducing the total number of passes with no machine ever
seeing the entire dataset.

1.2 Our contributions

In this work we focus on obtaining efficient algorithms
for the densest subgraph problem that can work on mas-
sive graphs, where the graph cannot be stored in the main
memory.

Specifically, we show how to modify the approach of [10]
so that the resulting algorithm makes only O(% log n) passes
over the data and guarantees to return an answer within a
(2+¢€) factor of optimum. We show that our algorithm only
requires the computation of basic graph parameters (e.g.,
the degree of each node and the overall density) and thus
can be easily parallelized—we use the MapReduce model
to demonstrate one such parallel implementation. Finally,
we show that despite the (2 + €) worst-case approximation
guarantee, the algorithm’s output is often nearly optimal
on real-world graphs; moreover it can easily scale to graphs
with billions of edges.

2. RELATED WORK

The densest subgraph problem lies at the core of large
scale data mining and as such it and its variants have been
intensively studied. Goldberg [22] was one of the first to
formally introduce the problem of finding the densest sub-
graph in an undirected graph and gave an algorithm that
required O(logn) flow computations to find the optimal so-
lution; see also [29]. Charikar [10] described a simple greedy
algorithm and showed that it leads to a 2-approximation
to the optimum. When augmented with a constraint re-
quiring the solution be of size at least k, the problem be-
comes NP-hard [26]. On the positive side, Andersen and
Chellapilla [3] gave a 2-approximation to this version of the
problem, and [26] gave a faster algorithm that achieves the
same solution quality.

In the case the underlying graph is directed, Kannan and
Vinay [24] were the first to define the notion of density and
gave an O(logn) approximation algorithm. This was fur-
ther improved by Charikar [10] who showed that it can be
solved exactly in polynomial time by solving O(n?) linear
programs, and obtained a combinatorial 2-approximation al-
gorithm. The latter algorithm was simplified in the work of
Khuller and Saha [26].

In addition to the steady theoretical progress, there is a
rich line of work that tailored the problem to the specific task
at hand. Variants of densest subgraph problem have been
used in computational biology (see, for example [1, Chapter
14]), community mining [12, 17, 32], and even to decide
what subset of people would form the most effective working
group [20]. The specific problem of finding dense subgraphs
on very large datasets was addressed in Gibson et al. [21]
who eschewed approximation guarantees and used shingling
approaches to find sets of nodes with high neighborhood
overlap.

Streaming and MapReduce. Data streaming and MapRe-
duce have emerged as two leading paradigms for handling
computation on very large datasets. In the data stream
model, the input is assumed too large to fit into main mem-
ory, and is instead streamed past one object at a time. For
an introduction to streaming, see the excellent survey by
Muthukrishnan [34]. When streaming graphs, the typical
assumption is that the set of nodes is known ahead of time
and can fit into main memory, and the edges arrive one by
one; this is the semi-streaming model of computation [18].
Algorithms for a variety of graph primitives from match-
ings [31], to counting triangles [5, 6] have been proposed
and analyzed in this setting.

While data streams are an efficient model of computa-
tion for a single machine, MapReduce has become a pop-
ular method for large-scale parallel processing. Beginning
with the original work of Dean and Ghemawat [16], several
algorithms have been proposed for distributed data analy-
sis, from clustering [15] to solving set cover [13]. For graph
problems, Karloff et al. [25] give algorithms for finding con-
nected components and spanning trees; Suri and Vassilvit-
skii show how to count triangles effectively [37], while Lat-
tanzi et al. [28] and Morales et al. [33] describe algorithms
for finding matchings on massive graphs.

3. PRELIMINARIES

Let G = (V,E) be an undirected graph. For a subset
S C V, let the induced edge set be defined as E(S) = ENS?



and let the induced degree of a node i € S be defined as
degs(i) = 147 | (i) € E(S)}].

The following notion of graph density is classical (see, for
example, [29, Chapter 4]).

DEFINITION 1 (DENSITY, UNDIRECTED). Let G = (V, E)
be an undirected graph. Given S C V, its density p(S) is
defined as

|E(S)]

P8 = e

The mazimum density p*(G) of the graph is then
P (G) = max{p(5)}-

In case the graph is weighted, the density incorporates the

total weight of all of the edges in the induced subgraph,
2. we

p(s) = Zestore

We also define density above a size threshold: given k > 0
and an undirected graph G, we define

p>r(G) = Sgg?gﬁZkP(S)-

For directed graphs, the density is defined as follows [24].
Let G = (V, E) be a directed graph. For S,T C V, where the
subsets are not necessarily disjoint, let E(S,T) = EN(SxT).
We abbreviate E({i},T) as E(i,T) and E(S,{j}) as E(S, j).

DEFINITION 2  (DENSITY, DIRECTED). Let G = (V, E)
be a directed graph. Given S, T C V, their density p(S,T)
is defined as

B(S,T)|
VISIT]

The mazimum density p*(G) of the graph is then

§(G) = max {p(S,1)}.

p(S,T) =

Approximation. For a > 1, an algorithm is said to ob-
tain an a-approzimation to the undirected densest subgraph
problem if it outputs a subset S C V such that p(S) >
p*(G)/a. An analogous definition can be made for the di-
rected case.

4. ALGORITHMS

In this section we present streaming algorithms for find-
ing approximately densest subgraphs. For any € > 0, we
obtain a (2 + 2¢)-approximation algorithm for the case of
both undirected graphs (Section 4.1) and directed graphs
(Section 4.3) and a (3 + 3¢)-approximation algorithm when
the densest subgraph is prescribed to be more than a cer-
tain size (Section 4.2). All of our algorithms make O(logn)
passes over the input graph and use O(n) main memory.

Our algorithms are motivated by Charikar’s greedy algo-
rithm for the densest subgraph problem [10] and the MapRe-
duce algorithm for maximum coverage [7, 13]. They work
by carefully relaxing the greedy constraint in a way that al-
most preserves the approximation factor, yet exponentially
decreases the number of passes. We also show a lower bound
on the space required by any streaming algorithm to obtain
a constant-factor approximation.

4.1 Undirected graphs

In this section we present the greedy approximation algo-
rithm for undirected graphs. Let G = (V, E) be an undi-
rected graph and let ¢ > 0. The algorithm proceeds in
passes, in every pass removing a constant fraction of the
remaining nodes. We show that one of the intermediate
subgraphs forms a (2 + 2¢)-approximation to the densest
subgraph. We note that the densest subgraph problem in
undirected graphs can be solved exactly in polynomial time
via flows or linear programming (LPs); however flow and
LP techniques scale poorly to internet-sized graphs. We will
show in Section 6 that despite worst-case examples, the al-
gorithms we give yield near-optimal solutions on real-world
graphs and are much simpler and more efficient than the
flow/LP-based algorithms.

Starting with the given graph G, the algorithm computes
the current density, p(G), and removes all of the nodes (and
their incident edges) whose degree is less than (24 2¢) - p(G).
If the resulting graph is non-empty, then the algorithm re-
curses on the remaining graph, with node set denoted by S,
again computing its density and removing all of the nodes
whose degree is lower than the specified threshold; we de-
note these nodes by A(S). Then, the node set reduces to
S\ A(S), and the recursion continues in the same way. Al-
gorithm 1 presents the complete description.

Algorithm 1 Densest subgraph for undirected graphs.
Require: G = (V,E) and € > 0

1: 5,8V

2: while S # () do
A(S) — {i € 5| degg(i) <2(1+€)p(5)}
4 S — S\ A(S)
5. if p(S) > p(S) then
6: S—S
7:  end if
8:
9:

end while
return S

Clearly, this algorithm can be implemented in a streaming
fashion using only O(n) memory since we only need to store
and update the current node degrees to compute the density
and to decide which nodes to remove. We now analyze the
approximation factor of the algorithm and its running time.

LEMMA 3. Algorithm 1 obtains a (2 + 2¢€)-approzimation
to the densest subgraph problem.

PrOOF. As the algorithm proceeds, the density of the
remaining graph is non-monotonic, a fact that we observe
experimentally in Section 6. We will show, however, that one
of the intermediate subgraphs is a (24 2¢)-approximation to
the optimal solution.

To proceed, fix some optimal solution S*, s.t. p(S*) =
p*(G). First, we note that for each ¢ € S*, degg. (1) > p(S™):
indeed, by the optimality of S*, for any i € S*, we have

|E(S) . “\ |[E(S™)| — degg- (i)
(4.1)

Since Y, g degg(i) = 2[S|p(S), at least one node must
be removed in every pass. Now, consider the first time in
the pass when a node i from the optimal solution S* is
removed, i.e. A(S) N S* # @; this moment is guaranteed to




exist, since S eventually becomes empty. Clearly, S O S*.
Let 1 € A(S) N S*. We have

p(S*) < degg- () o (41)
< degs (i) w528
< (24 26)p(S). i€ A(S)

This implies p(S) > p(S™)/(2+ 2¢) and hence the algorithm
outputs a (2 + 2¢)-approximation. []

Next, we show that the algorithm removes a constant frac-
tion of all of the nodes in every pass, and thus is guaranteed
to terminate after O(logn) passes of the while loop.

LEMMA 4. Algorithm 1 terminates in O(log, n) passes.

PROOF. At each step of the pass, we have

AB(S) = > degs()+ D degs(i)
i€ A(S) 1€S\A(S)
> 2(L+€)([S] = [A(S)])p(S)
|E(S)]

21+ (51— IA(S)I)W,

where the second inequality follows by considering only those
nodes in S\ A(S). Thus,

€
1+4+€

|A(S)| > |S]. (4.2)

Equivalently,
1
IS\ A(S)| < m|5|~

Therefore, the cardinality of the remaining set S decreases
by a factor at least 1/(1 + €) during each pass. Hence, the
algorithm terminates in O(log, . n) passes. [

Notice that for small €, log(1+€) ~ € and hence the number
of passes is O( logn).

4.1.1 Lower bounds

In this section we show that our analysis is tight. In par-
ticular, we show that there are graphs on which Algorithm
1 makes Q(logn) passes. Furthermore, we also show that
any algorithm that achieves a 2-approximation in O(logn)
passes must use €(n/logn) space. Note that Algorithm
1 comes close to this lower bound since it makes O(logn)
passes and uses O(n) memory.

Pass lower bound. We show that the analysis of the num-
ber of passes is tight up to constant factors. We begin with
a slightly weaker result.

LEMMA 5. There exists an unweighted graph on which Al-

. . 1
gorithm 1 requires Q(logoign) passes.

PRrROOF. The graph consists of k disjoint subsets G1, ..., Gy,

where G; is a 277! regular graph on |V;| = 22k+1=% podes,
hence every G; has exactly 22k=1 edges and has density of
2'72. For any ¢ > 1, let G>¢ = |J;», Gi. The density G>;
is: -
(k=4 1)2% -3
p(G=e) = PEFI(ZE T 1) (k—£+1)27"

We claim that in every pass the algorithm removes O(log k)
of these subgraphs. Suppose that we start with the subgraph

G>¢ at the beginning of the pass. Then the nodes in A(S)
are exactly those that have their degree less than p(G>¢)(2+
€) ~ (k— £+ 1)2°"2. Since a node in G; has degree 2" ',
this is equivalent to nodes in G; for i < (£ — 1) + log(k — £),
and hence the subgraph in the next pass is G>/q10g(k—0)—1-
Therefore, the algorithm will take at least Q(k/ log k) passes

to complete. Since k = O(logn), the proof follows. []

To show an example on which Algorithm 1 requires Q(log n)
passes, we appeal to weighted graphs. Note that Algorithm
1 and the analysis easily generalize to finding the maximum
density subgraph in an undirected weighted graph.

LEMMA 6. There exists a weighted graph on which Algo-
rithm 1 requires Q(logn) passes.

Proor SKETCH. Consider a graph whose degree sequence
follows a power law with exponent 0 < o < 1, i.e., if d; is
the ith largest degree, then d; < %, We have Y 1 i ~

[ = nl”e

o %— so if the graph has m edges, we (approx-

(1—a)i"“m
I—a

imately) have d; = . Hence, in the first pass of
the algorithm, we remove all the nodes with
4= Lz 0)itm o g™
n

nl—a

Hence, the nodes such that

> 11—« Ve
i n
2+¢ ’

go to the next pass; note that this is a constant fraction of
the nodes. As long as the power law property of the degree
sequence is preserved after removing the low degree nodes
in each pass, we obtain the desired 2(logn) lower bound.

Consider the graphs generated by the preferential attach-
ment process [2]. To avoid the stochasticity in the model,
which only makes the analysis more complicated, one can
consider the following deterministic variant of this process:
whenever a new node u arrives, it adds an edge to all of
the existing nodes v and assigns a weight w,,, to the edge
(u,v) which is proportional to the current degree of v. Then
degree of the ith node after a total of n nodes have arrived
follows a power law distribution which is exactly what we
needed to achieve. [

Space lower bound. We show that the trade off between
memory and number of passes is almost the best possible.
Namely, any constant-pass streaming algorithm for approx-
imating the densest subgraph to within a constant factor of
2 must use a linear amount of memory, and an algorithm
making O(log n) passes must use Q(n/logn) memory.

LEMMA 7. Any p-pass streaming a-approximation algo-
rithm for the densest subgraph problem, where o > 2, needs
Qn/(pa?)) space.

ProOOF. Consider the standard disjointness problem in
the g-party arbitrary round communication model. There
are ¢ > 2 players, and the jth player has the n-bit vector
Zj1,...,%in. Their goal is to decide if there is an index i
such that A7_,z;; = 1. It is known that this problem needs
Q(n/q) communication [4, 9] and the lower bound holds even
under the promise that either the bit vectors are pairwise
disjoint (NO instance) or they have a unique common ele-
ment but are otherwise disjoint (YES instance).



Given such an instance of disjointness, we construct the
following densest subgraph instance. The overall graph G =
(V, E) consists of n disjoint subgraphs Gi,...,G,. Each
graph G; = (V;, E;) has ¢ nodes, V; = {u1,...,uq,}. For
each 4, if zj; = 1, then the jth player adds the ¢ — 1 edges
{(uji,uyi) 15" € la], 5" # 5} to Ei.

It is easy to see that, given the promise of a pairwise
disjoint instance, each graph G; is a star in the case of a NO
instance. In the case of a YES instance, one of the G;’s is a
complete graph. Therefore, p(G) = (¢ — 1) if and only if it
is a YES instance and p(G) =1 — 1/q otherwise.

By setting @ = ¢ and using a standard reduction from
streaming to communication we can conclude that if a p-pass
streaming algorithm uses o(n/(a’p)) memory and obtains
an a-approximation to the densest subgraph, then it can be
used on G to decide the disjointness instance, using o(n)
communication. Given the communication lower bound for
disjointness, the space lower bound for the densest subgraph
follows. [

4.2 Large dense subgraphs

In this section we show that a small modification of the
algorithm presented in Section 4.1 gives a good approxima-
tion to the problem of finding densest subgraphs above a
prescribed size, k.

The main difference from Algorithm 1 comes from the
fact that instead of removing all of the nodes with degree
less than 2(1+¢)p(S), we only remove %|S| of them. Intu-
itively, by removing the smallest number ‘of nodes necessary
to guarantee the fast convergence of the algorithm, we make
sure that at least one of the graphs under consideration has
approximately k£ nodes. Algorithm 2 contains the complete
description.

Algorithm 2 Large densest subgraphs.
(V,E), k>0,and ¢ >0

Requir:e: G =
1: S, S~V
2: while S # () do

3 A(S) — {i €5 | degs(i) < 201+ )p(S)}
4: Let A(S) C A(S), with |A(S)| = %S|
5 S« S\ A(S)

6: if |S| > k and p(S) > p(S) then

7 S— S

8: end if

9: end while

10: return S

To prove the approximation ratio of the algorithm, we use
the following notation from [3].

DEFINITION 8. The d-core of G, denoted C4(G), is the
largest induced subgraph of G with all degrees larger or equal
to d.

THEOREM 9. Algorithm 2 is a (3 + 3¢)-approzimation al-
gorithm for the problem of finding p>r(G).

PROOF. The fact that |S| > k is obvious from the def-
inition of the algorithm. Let S* = argmaxp>x(G) and
p* = p(S*), and B = ﬁ Let S be the first set gen-

erated during the algorithm such that p(S) > 5p* = 3({’7;).

Such a set must exist, since p%; < p"(G) and we saw in

Lemma 3 that at least one of the generated sets has density
2({’7_,_. If |S| > k, then we are done.
€)

Otherwise, consider the case when |S| < k. For any set S’
generated before S during the algorithm, we have p(S’) <
2p*. Then, for any node i ¢ S, we have d; < 2(1+¢€)5p* =
(14 €)Bp* , where d; is the degree of ¢ at the time it got
removed during the algorithm. Thus, none of those nodes
can be in the core C(146)gp (G). Therefore, C(14e)pp+ (G) C
S, and:

at least

|E(S)| = |E(Cte)sp+ (G))]  Clatespe(G) C S
2 |E(Cayepp (S7))
> (1 - (1+e¢B)E(SY). " [3, Lemma 2]

(4.3)

Now, let S be the last set generated during the algorithm
such that |S| > k. We will show that p(S) is a (3 + 3e)-

approximation to p*. Since we remove at most 15— \S | nodes,

we have k > |5 — A(9)| = 131 e, |S] < (1 + €)k. Also,

1+e€
S C S, hence |E(S)| > |E(S)].
Therefore,
BB  |E(S) 518
— > SCS,|S| < (1+¢ek
E (I1+ek |51 < )
1-(1+¢)p .
> - (4.
- 1+e€ P (4:3)
g, 1 .

2P T30+ 0’

Although the algorithm above has a worse performance
guarantee than Algorithm 1, this is only true in the case
when the densest subgraph has fewer than k nodes. In the
case that the densest subgraph on G has at least k£ nodes
then the above algorithm performs on par with Algorithm
1.

LEMMA 10. Assume |S™| > k, where S* = arg max p>x(G).
Then, Algorithm 2 achieves a (2 + 2€)-approzimation for
P*zk(G)-

PrOOF. If |S*| > k, and p* = p(S™), then one can see
that for any ¢ € S*, degg.(i) > p*. Now, consider the
first set S generated during the algorithm such that A(S) N
S* #£ (. Since the final set generated by the algorithm has
cardinality k, and |S™| > k, such a set definitely exists. For
the considered set S, if i € A(S)NS*, then by the definition
of A(S), we have

2(1+ €)p(S) > degg (i) > degg- (i) = p7,
completing the proof. []

Finally, to bound the number of passes, note that once
the remaining subgraph has fewer than k nodes, we can
safely terminate the algorithm and return the best set seen
so far. Together with Lemma 4 this immediately leads to
the following.

LEMMA 11. Algorithm 2 terminates in O(log, , . ) passes.

4.3 Directed graphs

In this section we obtain a (2 + 2¢)-approximation algo-
rithm for finding the densest subgraph in directed graphs.
Recall that in directed graphs we are looking for two not



necessarily disjoint subsets S, C V. We assume that the
ratio ¢ = |S*|/|T™| for the optimal sets S*,T™ is known
to the algorithm. In practice, one can do a search for this
value, by trying the algorithm for different values of ¢ and
retaining the best result.

The algorithm then proceeds in a similar spirit as in the
undirected case. We begin with S = T = V and remove
either those nodes A(S) whose outdegree to T' is below av-
erage, or those nodes B(T') whose indegree to .S is below av-
erage. (Formally we need the degrees to be below a threshold
slightly above the average for the algorithm to converge.) A
naive way to decide whether the set A(S) or B(T') should
be removed in the current pass is to look at the maximum
outdegree, E(i*,T), of nodes in A(S) and the maximum in-
degree, E(S, j*), of nodes in B(T). If E(S,j*)/E(#*,T) > ¢
then A(S) can be removed and otherwise B(T') can be re-
moved. However, a better way is to make this choice di-
rectly based on the current sizes of S and T'. Intuitively,
if |S|/|T| > ¢, then we should be removing the nodes from
S to get the ratio closer to ¢, otherwise we should remove
those from T'. In addition to being simpler, this way is also
faster mainly due to the fact that it needs to compute either
A(S) or B(T) in every pass, leading to a significant speedup
in practice.

Algorithm 3 contains the formal description.

Algorithm 3 Densest subgraph for directed graphs.
Require: G = (V,E),c¢>0,and ¢ >0
1. 8, 7,8, T <V
while S # (@ and T # 0 do
if |S|/|T| > c then
Awp_@esuE@Tngu+@E%Q%
S — S\ A(S)
else
B(T) — {j € T||E(S, )] < (1+¢EE0L
T — T\ B(T)
end if o
10:  if p(S,T) > p(S,T) then
11: S—S,T—T
12: end if
13: end while _
14: return S,T

First, we analyze the approximation factor of the algo-
rithm.

LEMMA 12. Algorithm 8 leads to a (2+2¢)-approzimation
to the densest subgraph problem on directed graphs.

PROOF. As in [10], we generate an assignment of the
edges to the endpoints corresponding to the algorithm. When-
ever (i,7) € E, and ¢ € A(S) is removed from S, we assign
(7,4) to i; a similar assignment is made for the nodes in
B(T). Let p = p(S,T). Let deg’,, be the maximum outde-
gree and deg!, be the maximum indegree in G.

We need to show that if A(S) is removed, then

Vi€ A(S), VelEG,T)| < (14 ¢)p(S,T).

Suppose that |S|/|T| > ¢, and so the nodes in A(S) will be
removed. For all 7 € A(S), we have

VElEG,T)| < ¢6~(1+e>%
< Ve (1+|E(S,T) ﬁ
s glEED)

VIS|IT|
= (1+e)p(S,T).

The second line follows because |S| > ¢|T'| = |S| > +/c|S||T|.
Similarly, one can show that if B(T') gets removed, then

. 1 )
¥j € B(T), J=E(S.) < (1+ p(S.7).
This proves that in the given assignment (of edges to end-
points), v/cdeg? . < (1+¢€)p and % deg?, < (1+¢€)p. Once
we have such an assignment, we can use the same logic as

in Lemmas 7 and 8 in [10] to conclude that the algorithm
gives a (2 + 2¢)-approximation:

{p(S,T)} < (2+20)p(5,T). D

max
S, TCV,|S|/|T|=c

Next, we analyze the number of passes of the algorithm.
The proof is similar to that of Lemma 4.

LeEMMA 13. Algorithm 8 terminate in O(log, . n) passes.
Proor. We have

E(S,T) = > [EGT)+ > |EGT)
i€A(S) i€S\A(S)
|E(S,T)|

> (L+e)(|S] - IA(S)I)T,
which yields
1

IS\ A(S)| < Tre

S|.
Similarly, we can prove

1
1+e€ Tl
Therefore, during each pass of the algorithm, either the size
of the remaining set S or the size of the remaining set T goes
down by a factor of at least 1/(1+¢). Hence, in O(log, . n)
passes, one of these sets becomes empty and the algorithm
terminates. [

T\ B(T)| <

5. PRACTICAL CONSIDERATIONS

In this section we describe two practical considerations in
implementing the algorithms. The first (Section 5.1) is a
heuristic method based on Count-Sketch to cut the memory
requirements of the algorithm. The second (Section 5.2) is
a discussion on how to realize the algorithms in the MapRe-
duce computing model.

5.1 Heuristic improvements

We showed in Lemma 7 that any p-pass algorithm achiev-
ing a 2-approximation to the densest subgraph problem must
use at least Q(2) space. However, even this amount of space
can be prohibitively large for very large datasets. To fur-
ther reduce the space required by the algorithms we turn to



sketching techniques that probabilistically summarize the
degree distribution of the nodes.

Recall that in order to decide whether to remove a particu-
lar node, the algorithm only needs to be aware of its degree.
This is the same as counting the number of edges in the
stream that share this node as one of their endpoints. This
exact problem of maintaining the frequencies of items in
the stream using sublinear space was addressed by Charikar
et al. [11]. They introduce the Count-Sketch data struc-
ture, which maintains ¢ independent estimates, each as a
table on b buckets. For i = 1,...,¢t, let h; : V — [b] and
gi : V. — {£1} be hash functions and for j = 1,...,b, let
¢i,j be counters initialized to zero. When an edge (z,y) ar-
rives, for each i = 1,...,t, we update the counters as follows:
Cishi(x) = Cihi(x) + 9i(®) and ¢ n,(y) < Ciniy) + 9i(y). Fi-
nally, when queried for the final degree of a node x, we return
the median among all of the estimates {¢; n;(x) - gi(z)}iz1.
(We refer the reader to [11] for the full details of the data
structure; in our work, we merely use it as a black-box.)

Charikar et al. [11] showed that this way of probabilisti-
cally counting leads to a high precision counter for elements
with high frequencies. Intuitively, this kind of a guarantee
makes for a perfect fit with our application. We want to
have good estimates for the nodes with high degrees (other-
wise one may be removed prematurely). On the other hand,
the false positive error of accidentally keeping a low-degree
node is not as severe; a small number of low degree nodes
will not have a dramatic impact on the size of the densest
subgraph. As we show in Section 6 this intuition holds true
in practice, and we find that the Count-Sketch enabled ver-
sion of the algorithm, which uses a lot less space, sometimes
(when lucky!) performs even better than the version using
exact counting.

5.2 MapReduce implementation

All of the algorithms presented in this work depend on
three basic functions: computing the density of the current
graph, computing the degree of each individual node, and
removing nodes with degree less than a specified threshold.
The algorithm itself is very amenable to parallelism as long
as these basic functions can exploit parallelism. For illustra-
tion purposes, we focus on a specific distributed computing
model that is widely used in practice, namely, the MapRe-
duce model. We assume familiarity with the MapReduce
model of computation and refer the reader to [16] for details.
Finding the best parallel implementation of our algorithm
is an interesting future research direction.

Computing the density of the graph is a trivial opera-
tion, as one needs only to count the total number of edges
and nodes present. To compute the degree of every node in
parallel, in the map step duplicate each edge (u,v) as two
(key; value) pairs: (u;v) and (v;u). This way the input to
every reduce task will be of the form (u;v1,v2,...,vq) where
V1,02, ...,V are the neighbors of u in G. The reducer can
then count the number of associated values for each key, and
output (u;deg(u)).

Finally, the removal of the nodes with degree less than
some threshold ¢, and their incident edges can be accom-
plished in two MapReduce passes. In the first map phase,
we mark all of the nodes slated for removal by adding a (v; $)
key-value pair for all nodes v that are being removed. We
map each edge (u,v) to (u;v). The reduce task associated
with u then gets all of the edges whose first endpoint is u,

and the symbol $§ if the node was marked. In case the node
is marked, the reduce task returns nothing, otherwise it just
copies its input. In the second MapReduce pass we pivot
on the second node in the edge description. Again, we only
keep the edges incident on unmarked nodes. It is easy to see
that the only edges that survive are exactly those incident
on a pair of unmarked nodes.

6. EXPERIMENTS

In this section we detail the experiments and the results
of the experiments for our algorithms. First, we describe
the datasets used in our experiments (Section 6.1). These
datasets are large social networks, some of which are pub-
licly available for download or obtained through an API.
Next, we study the accuracy of our algorithms when com-
pared to the optimum. To this end, we obtain the optimum
density value using a linear program, and compare the out-
put of our algorithm to this optimum (Section 6.2). We
then study the performance of the streaming version of our
algorithm on both undirected and directed graphs. In par-
ticular, we analyze the effect of € on the accuracy and the
number of passes (Section 6.3 and Section 6.4). Finally, we
remark (Section 6.5) on the space savings brought about
by the sketching heuristic presented in Section 5.1 and on
a proof-of-concept MapReduce implementation to compute
the densest subgraph on an extremely large graph (Section
6.6).

Since we focus just on finding (or approximating) the
densest subgraph, we do not try to enumerate all of the
dense subgraphs in the given graph. It is easy to adapt our
algorithm to iteratively enumerate node-disjoint (approxi-
mately) densest subgraphs in the graph, with the guarantee
that at each step of the enumeration, the algorithm will pro-
duce an approximate solution on the residual graph. The
quality of the resulting solution reflects more the properties
of the underlying graph than our algorithm itself and hence
we do not further explore this direction.

6.1 Data description

Almost all of our experiments are based on four large so-
cial networks, namely, FLICKR, IM, LIVEJOURNAL, and TWIT-
TER. FLICKR is the social network corresponding to the
Flickr (flickr.com) photosharing website, IM is the graph
induced by the contacts in Yahoo! messenger service, LIVE-
JOURNAL is the graph induced by the friends in the Live-
Journal (livejournal.com) social network, and TWITTER is
the graph induced by the followers in the social media site
Twitter (twitter.com).

FLICKR is available publicly and can be obtained by using
an API (www.flickr.com/services/api/). A smaller ver-
sion of the IM graph can be obtained via the Webscope pro-
gram from webscope . sandbox.yahoo.com/catalog.php?dat
atype=g. The version of LIVEJOURNAL used in our experi-
ments can be downloaded from snap.stanford.edu/data/
soc-LiveJournall.txt.gz and the version of TWITTER used
in our experiments can be obtained from an.kaist.ac.kr/
~haewoon/release/twitter_social_graph/. The details of
the datasets are provided in Table 1.

Note that when trying to measure the quality of our al-
gorithms, the following two baselines do not make sense in
the context of the above graphs: (i) computing the actual
densest subgraph, which is infeasible for such large graphs
and (ii) running the algorithm of [10], which would take



G type \4 £
FLICKR | undirected 976K 7.6M
IM | undirected 645M 6.1B
LIVEJOURNAL directed 4.84M  68.9M
TWITTER directed 50.7M  2.7B

Table 1: Parameters of the graphs used in the ex-
periments.

quadratic time (linear time for each pass and a linear num-
ber of passes), which is still infeasible for these graphs. In or-
der to circumvent this, we work with slightly smaller graphs
just to compare the quality of the solution to that of the
optimum (Section 6.2).

6.2 Quality of approximation

We study how good of an approximation is obtained by
our algorithm for the undirected case. To enable this, we
need to compute the value of the optimum. Recall that,
as mentioned in section 1, both the directed and undirected
densest subgraph problems can be solved exactly using para-
metric flow. In this section we want to obtain p*, i.e., the
value of the optimal solution, to argue that the approxima-
tion factor in practice is much better than 2(1 + ¢€), guaran-
teed by Lemma 3. (To do such a test for directed graphs is
very expensive because one has to try all n? values of c.)

In order to solve the densest subgraph problem exactly,
we use the following linear programming (LP) formulation.

max E Tij
ij

V(i,j) € B,xij <y
V(i,j) € E,xij <y

<1
Zij,Yi > 0

Charikar [10] showed that the value of this LP is precisely
equal to p*(G). We use this observation to measure the qual-
ity of approximation obtained by Algorithm 1. To solve the
LP, we use the COIN-OR CLP solver (projects.coin-or.
org/Clp). We use seven moderately-sized undirected graphs
publicly available at SNAP (snap.stanford.edu). Table 2
shows the parameters of these graphs and the approxima-
tion factor of our algorithms for different settings of e. It is
clear that the approximation factors obtained by our algo-
rithm are much better than what Lemma 3 promises. Fur-
thermore, even high values of € seem to hardly hurt the
approximation guarantees.

6.3 Undirected graphs

In this section we study the performance of our algorithms
on two undirected graphs, namely, FLICKR and IM. First, we
study the effect of € on the approximation factor and the
number of passes. Figure 6.1 shows the results. For ease
of comparison, we show the values relative to the density
obtained by our algorithm for e = 0. (Note that the setting
€ = 0 is similar to Charikar’s algorithm [10] in terms of the
approximation factor but can run in much fewer number of
passes; however, termination is not guaranteed for e = 0.)
As we saw in Table 2, the approximation does not deterio-
rate for higher values of € (note that the performance is not

€ vs approximation
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Figure 6.1: Effect of ¢ on the approximation and the
number of passes.

monotone in €). Choosing a value of € € [0.5, 1] seems to cut
down the number of passes by half while losing only 10% of
the optimum.

We then move on to analyze the graph structure as the
passes progress. Figure 6.2 shows the relative density as a
function of the number of passes. (Curiously, we observe
a unimodal behavior for FLICKR, but this does not seem to
hold in general.)

Figure 6.3 shows the number of nodes and edges in the
graph after each pass. The shape of the plots suggests that
the graph gets dramatically smaller even in the early passes.
This is a very useful feature in practice, since if the graph
gets very small early on, then the rest of the computation
can be done in the main memory. This will avoid the over-
head of additional passes.

Note also that the worst-case bound of O(log, . n) for
the number of passes as given by Lemma 4 is never achieved
by these graphs. This is possibly because of the heavy-
tail nature of the degree distribution of graphs derived from
social networks and their core connectivity properties; see
[27, 30]. These properties may also contribute to achieving
the good approximation ratio, i.e., the worst-case bound of
Lemma 3 is not met by these graphs. Exploring these in
further detail is outside the scope of this work and is an
interesting area of future research.

6.4 Directed graphs

In this section we study the performance of the directed
graph version of our algorithm. We use the LIVEJOURNAL
and TWITTER graphs for this purpose. Recall that for di-
rected graphs, we have to try for various values of ¢ (Section
4.3). Of course, trying all n? possible values of ¢ is pro-
hibitive. A simple alternative is to choose a resolution (¢ >



G=(V.E)[ V] E[ [ 7 (@) P (G)/AG)
e=0.001 €=01 e=1
As20000102 | 6,474 13,233 9.29 1.229 1.268 1.194
CA-ASTROPH | 18,772 396,160 | 32.12 1.147 1.156  1.273
CA-CONDMAT | 23,133 186,936 | 13.47 1.072 1.072  1.429
CA-GRQC | 5,242 28,980 | 22.39 1.000 1.000  1.395
cAa-HepPH | 12,008 237,010 | 119.00 1.000 1.017  1.151
cA-HepTH | 9,877 51,971 15.50 1.000 1.000  1.356
EMAIL-ENRON | 36,692 367,662 | 37.34 1.058 1.072  1.063

Table 2: Empirical approximation bounds for various values of e.
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Figure 6.3: Number of nodes and edges in the graph after each step of the pass for FLICKR and IM.

1) and try c at different powers of § (One can prove that this
worsens the approximation guarantee by at most a factor ¢
[10]). Clearly, the running time is given by 2logn/logd.
First, we study the effect of the choice of 6 compared to the
choice of e. Table 3 shows the results. From the values, it is
easy to see that as long as § remains reasonable, the effect
of € is as in the undirected case. To make the rest of the
study less cumbersome, we fix 6 = 2 for the remainder of
this section. First, we present the results for LIVEJOURNAL.

€ )

2 10 100
0| 325.27 312.13 307.96
1| 334.38 308.70 306.91
2 | 294.50 284.47 179.59

Table 3: LIVEJOURNAL: p for different ¢ and e.

We study the performance of the algorithm for various
choices of ¢, given § = 2. In particular, we measure the
density and the number of passes. Figure 6.4 shows the
values. The behavior of density is quite complex, and for

LIVEJOURNAL, the optimum occurs when the relative sizes
of S and T are not skewed.

Finally, Figure 6.5 shows the behavior of LIVEJOURNAL
for the best setting of ¢ (which is 0.436) for § = 2,¢ =
1. It clearly shows the “alternate” nature of the simplified
algorithm (Algorithm 3) that we developed in Section 4.3.
As always, the number of nodes and edges fall dramatically
as the passes progress.

For TWITTER, we used ¢ = 1,9 = 2 and studied the per-
formance of the algorithm for various values of c¢. Figure
6.6 shows the density and the number of passes for vari-
ous values of c. Unlike LIVEJOURNAL, the best value of c is
not concentrated around 1. This may be due to the highly
skewed nature of the TWITTER graph: for example, there
are about 600 popular users who are followed by more than
30 million other users. The results from LIVEJOURNAL and
TWITTER suggest that, in practice, one can safely skip many
values of c.

6.5 Performance of sketching

In this section we discuss the performance of the sketching
heuristic presented in Section 5.1. We tested the algorithm
on FLICKR, which has 976K nodes. Recall that the number
of words in a Count-Sketch scheme using b buckets and ¢
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Figure 6.2: Density as a function of the number of
passes for various values of ¢, for FLICKR and IM.

independent hash tables is ¢ x b. In Table 4, we show the
ratio of the densest subgraph with and without sketching, for
various values of b and €. The bottom row shows the main
memory used by the algorithm with sketching compared to
the algorithm without sketching. Clearly, for small values
of e, the performance difference is not very significant even
for b = 30000, which means only 5 x 30000/976K=16% of
main memory is used. This suggests that, despite the space
lower bounds (Lemma 7), in practice, a sketching scheme
can obtain significant savings in main memory.

€ | b=30000 b =40000 b= 50000
0 1.047 1.027 1.014
0.5 0.960 0.896 0.921
1 0.958 0.936 0.918
1.5 0.890 0.911 0.929
2 0.760 0.845 0.869
2.5 0.787 0.708 0.740
Memory 0.16 0.20 0.25

Table 4: Ratio of p with and without sketching for
FLICKR (t = 5).

6.6 MapReduce implementation

In this section we study the performance of the MapRe-
duce implementation of our algorithms for both directed and
undirected graphs. For this purpose, we use the 1M and
TWITTER graphs since they are too big to be studied under
the semi-streaming model. We implemented our algorithms
in Hadoop (hadoop.apache.org) and ran it with 2000 map-
pers and 2000 reducers. Figure 6.7 shows the wall-clock
running times for each pass for 1M, which is an undirected
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Figure 6.4: Density and the number of passes at
0 = 2 for LIVEJOURNAL.

graph. It only takes under 260 minutes for our algorithm
to run on IM (a massive graph with more than half-billion
nodes). For TWITTER, which is a directed graph, our algo-
rithm takes around 35 minutes for a given value of ¢ and for
each iteration; Figure 6.6 shows that the number of itera-
tions is between four and seven, and the number of values of
c to be tried is very small. These clearly show the scalability
of our algorithms.

7. CONCLUSIONS

In this paper we studied the problem of finding dense sub-
graphs, a fundamental primitive in several data management
applications, in streaming and MapReduce, two computa-
tional models that are increasingly being adopted by large-
scale data processing applications. We showed a simple al-
gorithm that make a small number of passes over the graph
and obtains a (24 ¢)-approximation to the densest subgraph.
We then obtained several extensions of this algorithm: for
the case when the the subgraph is prescribed to be more
than a certain size and when the graph is directed. To the
best of our knowledge, these are the first algorithms for the
densest subgraph problem that truly scale yet offer provable
guarantees. Our experiments showed that the algorithms are
indeed scalable and achieve quality and performance that is
often much better than the theoretical guarantees. Our al-
gorithm’s scalability is the main reason it was possible to
run it on a graph with more than a half a billion nodes and
six billion edges.
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