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ABSTRACT
Motivated by contextual advertising systems and other web
applications involving efficiency–accuracy tradeoffs, we study
similarity caching. Here, a cache hit is said to occur if
the requested item is similar but not necessarily equal to
some cached item. We study two objectives that dictate the
efficiency–accuracy tradeoff and provide our caching poli-
cies for these objectives. By conducting extensive experi-
ments on real data we show similarity caching can signifi-
cantly improve the efficiency of contextual advertising sys-
tems, with minimal impact on accuracy. Inspired by the
above, we propose a simple generative model that embod-
ies two fundamental characteristics of page requests arriving
to advertising systems, namely, long-range dependences and
similarities. We provide theoretical bounds on the gains of
similarity caching in this model and demonstrate these gains
empirically by fitting the actual data to the model.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Caching, nearest-neighbor search, content-match

1. INTRODUCTION
Consider an internet advertising system tasked with show-

ing contextual advertisements (ads) on a publisher’s page
when a user visits the page. This so-called content-match
system strives to choose and serve the best ads using a range
of cues — the profile of the user and the content on the pub-
lisher’s page — to search the pool of available ads and re-
trieve one or more ads to display on the page. The challenge
is to accomplish this task as efficiently as possible, given hun-
dreds of millions of available ads. Since the click-through
rate on contextual ads is lower than sponsored-search ads,
the revenue per serving is lower, and this applies even more
pressure on lowering the cost of serving contextual ads.

A natural way would be to cast the ad serving problem
as nearest-neighbor search: treat the user profile and the
page content as vectors in a high-dimensional space, pre-
process each ad to map it to the same space, and develop
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a notion of similarity between a user-page vector and an
ad vector in this space. At this juncture, it becomes im-
portant to draw a comparison between this scenario and
the traditional keyword-based web search. While both deal
with a large amount of data, they differ at a fundamental
level. First, content-match has a higher volume of traffic
for the simple reason that people browse more than they
search. Second, the latency requirements for content-match
are stricter than for web search — the additional time to
load the contextual ads should be barely noticeable when
a user loads a publisher’s page in her browser. Third, web
search engines manage latency by heavy use of caching, from
caching the posting lists all the way to result set caching;
this is crucial since the query distribution is heavy-tailed.
It is not clear if caching will particularly benefit a content-
match system since the each user-page vector can be almost
unique. Fourth, inverted index, which forms the core of
keyword-based web, is far more well-understood and scal-
able data structure than those that exist for the more chal-
lenging nearest-neighbor search. And fifth, the half-life of
ads is much smaller than that of web pages and this adds to
the complexity of building a scalable ad serving system.

On the other hand, the problem of selecting and serv-
ing contextual ads offers the following flexibility: similar
ads can be shown to similar users visiting similar pages. In
other words, the nearest-neighbor search need not be exact
and it is acceptable to provide an approximate answer to
the user-page vector. There are two ways of exploiting this
flexibility. The first is to develop fast approximate nearest-
neighbor search algorithms; however, it is not immediate if
these algorithms will still be scalable in the vast world of ads.
The second way, inspired by the web search setting, is to de-
velop caching policies that can judiciously take advantage of
the freedom to provide an approximate answer; this is the
focus of our work. We study policies for similarity caching
[6], where a cache hit is said to occur if the requested item
is similar but not necessarily equal to some cached item.
Conventional caching (i.e., exact caching) is not very effec-
tive in such approximate nearest-neighbor search scenarios,
as shown by our experiments on real data gathered from
a large content match application, because: (a) user-page
request vectors tend to be long and unique making exact
caching ineffective, and (b) each cache item is quite large
(as explained in Section 4) limiting the size and coverage of
the cache.

A moment of reflection distills the basic characteristic of
the above scenario: achieving an efficiency–accuracy trade-



off. Such tradeoffs are quite common in many web appli-
cations. We mention two such applications. The first is
personalized search. Here, the goal is tailor the web search
results to a user depending on her profile. While it is pro-
hibitive to compute a per-user ranking for each query, it is
yet reasonable to assume similar users can be shown similar
search results. The second application is in content-based
image search, where it may suffice to show a cached image
that is similar to a query image; independent of our work,
Falchi et al. [9] recently studied similarity caching in this
context.

Our contributions. In this paper we study similarity
caching in content-match systems. We study two objectives
that dictate the efficiency–accuracy tradeoff. In the first ob-
jective, a cache hit is said to occur if the similarity between
two items is more than a pre-specified threshold. Here, we
propose generalizations of two well-known algorithms in the
classical caching setting: least recently used (lru) and least
frequently used (lfu). Our generalizations go beyond just
redefining what a cache hit means. They make full use of
the wiggle room available by ensuring that the cached items
cover the similarity space without much overlap. In the sec-
ond objective, there is a smooth tradeoff between the IO
cost and utility of offering an item similar (but not equal)
to the requested item. Here, we propose a simple random-
ized policy that generalizes both lru and lfu. We conduct
extensive experiments on data from a real content-match
system. Our experiments show that similarity caching can
significantly improve the performance of content-match sys-
tems, without compromising much in terms of accuracy.

Inspired by the patterns observed in the data and the per-
formance of the similarity caching algorithms, we propose a
simple generative model for content-match requests. This
model captures two fundamental characteristics of content-
match requests: long-range dependences (user-page visits
have a heavy tail) and similarities (presence of many similar
users and similar pages). In this model, we give a theo-
retical upper bound on the performance of classical caching
and a lower bound on the performance of similarity caching.
We compute the parameters of this model from the content-
match data using the maximum-likelihood principle and show
that the actual performance numbers agree with our theo-
retical estimates.

Organization. The paper proceeds as follows. Section 2
overviews the related work. Sections 3 describes various sim-
ilarity caching objectives and policies. Section 4 contains
the experimental evaluation. Section 5 presents a simple re-
quest arrival model, whose parameters can be obtained from
real data by maximum likelihood, and shows the quantita-
tive gain of similarity caching over exact caching. Section 6
contains concluding remarks.

2. RELATED WORK
Caching has long been recognized as a critical component

in high performance applications. Indeed, most applications
utilize caching on many levels, and multi-level schemes have
recently been studied [16]. The closest form of caching to
this work is result caching. In this framework the set of re-
sults for popular queries is fetched from the cache, rather
than being recomputed every time the query is issued. In
web search applications result caching has been extensively

studied, see, for example, [8, 14, 15, 17, 19]; and it is safe to
say that all modern search engines use some form of result
caching. In the theoretical community, this kind of a caching
problem serves as a cornerstone of competitive analysis the-
ory. The well known caching schemes, e.g. LRU, LFU, have
been analyzed and the limits on their performance are well
understood [18].

At first glance, similarity caching may look like a vari-
ation on a clustering problem – the goal is to find a set
of points that best represent the incoming queries. What
makes this problem different is the online component – while
the clusters must remain relatively stable in order to save
on the computation costs, the clusters must also evolve as
the query distribution changes. Capturing this trade-off is
at the heart of this work. Independent of our work, Falchi
et al [9] recently introduced a notion of a metric cache, and
showed an increase in the hit rate when using a simple vari-
ant of LRU. In this work, we derive adaptive caching strate-
gies, demonstrate their efficacy on real datasets and prove
a bound on the expected increase in performance due to
similarity caching.

On the theoretical side, the problem can be formulated as
a special case of the so-called Metrical Task Systems (MTS)
problem, see [2] for a full description. However, MTS is a
much more general problem, and, as such, the known algo-
rithms achieve very weak performance guarantees. Recently
Chierichetti et al. [6] provided the first theoretical analysis
of similarity caching. They show that the competitive ratio
of any caching scheme depends crucially on the dimensional-
ity of the space and complement their analysis with several
algorithms for similarity caching when the points lie in Eu-
clidean space. While providing an interesting analysis, their
results do not extend to the Jaccard similarity model that
we consider in this work, nor do they consider the nearest-
neighbor search problem that comes up in finding the closest
point in the cache.

Solving the nearest neighbor problem efficiently is a key-
stone of an effective similarity caching strategy. The prob-
lem has a rich history, see for example the survey by Indyk
[12], and the references therein. In this work we use Local-
ity Sensitive Hashing [7, 13] to solve the nearest neighbor
problem, and demonstrate its effectiveness against exhaus-
tive search.

3. SIMILARITY CACHING
We first briefly describe the basic principles behind caching.

To avoid ambiguity, we use exact caching to refer to the clas-
sical notion. We then describe the similarity caching setup,
including the objectives, policies, and practical considera-
tions. In our discussions, a request item p is always asso-
ciated with a key-value pair 〈key(p), val(p)〉; the requested
item is specified by key(p), and val(p) is returned as the re-
sult. Typically, the size of the key is insignificant compared
to that of the value, i.e., |key(p)| � |val(p)|. In our content-
match application for instance, the size of key is roughly
1KB while the size of the value can be 10s of MBs.

3.1 Caching basics
An exact caching scheme works in the following way. On

receiving a request for an item p specified by key(p), the
cache is probed to check if it has p. If so, then this is called
a hit and the cached item is used to serve the request. If p
is not found in the cache, then this is called a miss and p is



brought into the cache from the disk. If the cache is full, then
an existing cached item is evicted to make space for p. The
main objective in exact caching is to serve as many requests
from the (fixed-size) cache as possible, i.e., maximize the
number of cache hits or minimize the number of cache misses
(disk accesses). Thus, exact caching consists of two steps,
namely, hit-or-miss determination and an eviction policy.

While the hit-or-miss determination is trivial in exact
caching, the eviction policy can be realized in one of several
ways. We briefly recount two popular ways: least recently
used (lru) and least frequently used (lfu). The lru policy
exploits the temporal locality in a request stream, i.e., recent
requests are likely to be re-requested in the near future. To
implement this, lru associates with each item in the cache
a reference time that denotes the most recent moment when
this item was used to serve a request. When needed, lru
evicts the cache item with the least reference time.

The lfu policy keeps counts of how many times each cache
item was hit in the past and evicts the least frequently used
item when needed. Several variants of lfu have been pro-
posed to deal with its different shortcomings [1, 21]. For
example, it may happen in lfu that certain items occur in
a burst to accumulate such high frequency counts that they
never get evicted from the cache. Window-lfu deals with
this by counting the frequency of each item within a recent
finite length time-window.

3.2 Caching with similarity
As discussed earlier, there are several web applications

where the concept of exact caching can be relaxed, leading
to similarity caching. The goal now is to serve items with
keys that are “similar” enough to the keys of the requested
items with as few cache misses as possible; we assume a
notion of similarity that can be defined between the keys of
the items. There is a clear tradeoff between the similarity of
offered items to the requested items and the incurred (disk
access) cost.

We revisit the caching basics in this context. To begin
with, the semantics of a hit-or-miss is not clear in similarity
caching — how similar should two item keys be that we
can declare a cache hit? And operationally, how to check
if a similar item indeed exists in the cache? It is clearly
expensive to perform an exhaustive search of the cache to
look for the item most similar to the requested item.

Likewise, the rest of the caching steps can potentially ex-
ploit the flexibilities offered by similarity caching. For exam-
ple, it might be beneficial to bring a requested item into the
cache even for a cache hit (under similarity). And, it might
make sense to incrementally “re-organize” the cache to en-
sure that cached items are “well-separated” in the similarity
space. This takes full advantage of similarity and enables us
to work with a smaller cache.

Objective. More formally, we can define our similarity
caching problem as follows: let b denote the average IO cost
budget, i.e., b is the fraction of cache misses. Let c(p) denote
the (cached) item offered by the caching policy for request
p. Then for a given cache size, an IO budget B, and a list of
requests (specified by keys), say P, the goal of the caching
policy is to maximizeX

p∈P

util(sim(c(p), p)),

subject to the IO cost being at most b. Here sim(p, q) ∈ [0, 1]
denotes the similarity between keys of items p and q and
util(s) denotes the utility of offering an item of similarity s
to the requested item. Thus the objective depends on the
similarity function sim(·, ·) and the utility function util(·).

Utility function. The function util(·) offers a knob to
control the aforementioned tradeoff between the similarity
of offered and requested items and the IO cost. For instance,
if util(s) = 1 for s = 1 and 0 otherwise, then our problem
formulation reduces to exact caching. Another instantiation
of util(·), which is more relaxed than exact caching, is when
util(s) = 1 for s ≥ τ and 0 otherwise, where τ ≤ 1 is a given
threshold. The resulting objective is called the threshold ob-
jective and we study this in detail in Section 3.3. In general,
util(·) does not have to be a threshold function; it can be any
monotone function. We call this the smooth objective and
study this in Section 3.4. As we will show later, the thresh-
old and smooth objectives are sufficiently different, and thus
it makes sense to study them separately.

3.3 Caching policies: Threshold objective
Let τ > 0 be a given threshold. Recall in the threshold ob-

jective we have util(s) = 1 for s ≥ τ and 0 otherwise. From
this definition, the hit-or-miss determination is straightfor-
ward: a cache hit is said to happen if and only if there is a
cached item with similarity at least τ to the requested item.
Note that this amounts to a nearest-neighbor search within
the cache; in Section 3.5 we will discuss an efficient way to
address this problem in practice.

More than one cached item can hit a requested item p; let
Cτ (p) denote the set of such items. Thus, a cache hit happens
iff Cτ (p) 6= ∅. Of all the items in Cτ (p), the one most similar
to p is offered by the policy, i.e., c(p) = arg maxq∈Cτ (p) sim(p, q).
It is clear that a cached item q can offer hits for all the re-
quests that fall inside a ball Bτ (q) of radius τ around q.
An effective similarity caching policy should judiciously use
these balls to “cover” the space of items.

We now generalize the eviction policies in exact caching
to work in the similarity case. We begin by generalizing lru
policy as follows: on receiving a request p, first determine if
it is a hit or miss by the above definition. If it is a hit, update
the reference time of c(p). If it is a miss, bring p to the cache,
and evict the cached item with the oldest reference time (as
in the vanilla lru). We refer to this policy as sim-lru.
The lfu policy can also be generalized in the same way to
derive sim-lfu. Note that both sim-lru and sim-lfu have
the following property: no two items in the cache are within
similarity τ of each other. In other words, the cache does
not contain any redundant items.

3.3.1 Incremental re-clustering
While sim-lru and sim-lfu policies ensure there is no

redundant item in the cache, some redundancy can still creep
in under these policies. This can happen if the balls around
each cached item significantly overlap.

We give an extreme example to illustrate this. Let the
cache size be 1 and let τ be a fixed similarity threshold. Let
a, b, c be three points such that sim(a, c) = τ/2, sim(a, b) = τ
and sim(b, c) = τ . Consider the following stream of requests:
a, b, c, b, a, b, c, b, . . .. It is easy to see that under the sim-lru
policy the cache contains either item a or c, and the cache
miss rate is asymptotically 1/3. However, if the policy were



to cache b, then the miss rate is essentially zero, since b can
be used to serve both a and c. This leads to the point we
raised before: an astute policy would bring b into the cache
even though the current cache item (either a or c) would
have offered a hit under similarity. This is the underlying
intuition behind our policies described next. We explain our
ideas using lru policy as an example, but the same ideas can
be applied to lfu.

First, for each cached item p (i.e., both key(p) and val(p)
are present in the cache), we store the keys of all the items
served by p, i.e., keys of all items that fall in the ball B =
Bτ (p). Each ball has a representative, rep(B), which is ini-
tially p. Thus, the cache data structure is a set of balls
and for each ball B, the key and value of a representative
rep(B) and a set hst(B) of keys of past requests served by
B.1 (Since |key(p)| � |val(p)|, storing hst(B) is inexpensive
from a practical point of view.) Our goal is to tightly clus-
ter the items inside the balls and minimize overlaps between
the balls to avoid redundancy. We will accomplish this by
appropriately updating the representative in a ball.

The policy works as follows: on receiving a request p, we
compute the similarity of the request item with the rep-
resentative of each ball. Say the closest representative is
r = rep(B). If sim(r, p) < τ , then we fetch p from the
disk to serve the request. If sim(r, p) ≥ τ , then we use r
to serve the request. We perform the following operation
before serving the next request.

We first tentatively add p to hst(B). We then check if
any other item in hst(B) makes a better representative than
the current representative r. To be a new representative, an
item r′ ∈ hst(B) has to satisfy the following two properties:

(1) sim(r′, p) ≥ τ for each p ∈ hst(B), and
(2) it has the maximum sum of similarity to all the items

in the ball, i.e.,

r′ = arg max
p∈hst(B)

X
q∈hst(B)

sim(p, q).

The first property ensures that r′ can be used to serve every
item in the ball and the intuition behind the second property
is that r′ should “cover” the items in its ball as efficiently as
possible (i.e., it lies close to the center of the ball).

To update the representative of B, we first compute the
total similarity score, as shown above, for every item in B.
Note that this computation can be performed incrementally
to make its complexity linear in hst(B). Let r′ be the item
satisfying (2). Then, one of following two scenarios can arise.
If r′ also satisfies (1), then we update rep(B) = r′ and fetch
val(r′) from the disk (this costs an IO operation). If r′ does
not satisfy (1), then we delete p from hst(B), form a new
ball around p, with p as its representative; ball B is left
unchanged. This also costs an IO operation. We refer to
this policy by cls-lru.

In our earlier example, it is easy to check that b will be
cached by cls-lru. In Section 4 we demonstrate its perfor-
mance improvement over sim-lru on a real dataset.

3.4 Smooth objective
So far we have studied similarity caching policies under

the threshold objective. In particular, we showed how sim-
lru policy can allow redundancy in the cache and then pro-

1In practice, hst(B) contains keys of only a subset of past
requests served by B for efficiency purposes.

posed cls-lru to address this. Next we focus on the smooth
objective setting, i.e., util(·) is any monotone function.

First we discuss how the threshold-based policies of Sec-
tion 3.3 can fall short for the smooth objective. Observe
that under the threshold objective, for a small ε > 0, two
cache hits with similarities τ and τ + ε have the same util-
ity, while under the smooth objective they do not. Hence,
when a threshold-based policy, say, sim-lru, is used for the
smooth objective, if a request item p appears and has sim-
ilarity τ to a cached item, the policy will use this cached
item to offer a hit. In doing so the policy incurs a utility
loss of 1 − util(τ). If p appears too many times, this loss
can accumulate to become significant enough. On the other
hand, an alternative would be to bring p in the cache (incur-
ring an IO cost), if we believe this can avoid the recurring
utility loss. Clearly, doing this is profitable only if item p is
requested often enough.

Based on the above intuition, we propose our next ran-
domized policy called rnd-lru. (Again, we describe our
ideas in terms of lru, but they apply to lfu as well.) On
receiving a request p, the rnd-lru policy finds the cached
item, say q, with the highest similarity to p. Then with
probability α(1− util(sim(p, q))) the policy declares a cache
miss and reads item p from the disk. With the remaining
probability it uses q to serve the request. Here α ∈ [0, 1] is
a parameter that controls the utility vs. IO tradeoff.

Observe that if sim(p, q) is small, then p is likely to be
declared a cache miss (as desired). And if sim(p, q) is very
high, then it is likely to be declared a hit. But if p occurs
often enough, even if sim(p, q) is very high, our randomized
policy will declare it a cache miss at some point and hence p
will make it to the cache. Thus, this simple policy is effective
in trading off recurring utility losses vs IO costs. Note that
there is little or no bookkeeping in this policy.

Our proposed caching policies (in Sections 3.3 and 3.4)
assume each cache item to be of uniform cost and utility.
Extending it for non-uniform functions, as done for conven-
tional caching in [5], is a part of our future work.

3.5 LSH realization
As discussed in Section 3.3, a hit-or-miss determination

in similarity caching requires to solve a nearest-neighbor
problem in high-dimensional space. In other words, given
an item p, we need to obtain the cached item q such that
sim(p, q) is maximized, where the similarity function is de-
fined on the space of the keys of the items. To do this
efficiently, we use locality sensitive hashing (LSH) [13]: we
hash the keys of items using an LSH function with the prop-
erty that keys are hashed to the same value if and only if
they are similar according to sim(·, ·). In our content-match
application, we use weighted Jaccard measure for the simi-
larity between two vector-valued keys x = (x1, . . .) and y =
(y1, . . .): sim(x, y) =

P
i:¬(xi=yi=0) min(xi, yi)/ max(xi, yi).

It is well-known that min-wise independent hash functions
can be used in this case [4].

In Section 4.4.3 we show how LSH significantly reduces
the computation cost of hit-or-miss determination while de-
grading the performance negligibly.

4. EXPERIMENTS
In this section we perform an empirical evaluation of our

similarity caching policies. Then in Section 5 we analyze
them theoretically.



4.1 Data description and experimental setup
We obtained a page request log from a content-match sys-

tem. The log contains a time-ordered sequence of more than
eight million page requests. For each page request, the sys-
tem prepares a weighted feature vector taking the page con-
tent, site, and user information into account; this feature
vector is used to determine the relevant ads for the page.
The set of relevant ads are the candidates for the system’s
final ad selection process, which takes various business and
advertisers’ constraints into account (of which some can be
time-sensitive) in selecting ten or fewer ads that are even-
tually displayed on the page. To select the relevant ads
quickly at page request time, the system extracts features
for ads and builds an inverted index to store them. For each
feature the index has a posting list containing the identi-
fiers of ads that have the feature. To determine relevant ads
for a page request, the system probes the index using the
WAND algorithm [3], which has been designed to minimize
the number of index operations required for answering long
queries, as is typically the case for content-match systems.

We simulate a cache on this request log in our experi-
ments. Each item in the cache corresponds to a page request
and contains the feature vector of the page request (this vec-
tor constitutes the key and is usually around one 1KB) and
the 1000 most relevant ad candidates for the page (this set
of ads constitutes the value and is usually in tens of MBs).2

In our caching policies, to compare the similarity between
a new page request and a cached item, we apply the same
weighted Jaccard similarity function that is used to match
ads by the content-match system.

When a page is requested, we perform a look-up operation
in the cache to search for it. If the page is not found (i.e.,
a miss occurs), we probe the index to find the 1000 most
relevant ad candidates for the page. (In case of a hit, we get
these candidates from the cache.) Then, the final ad selec-
tion process is run on these candidates. Hence, a cache hit
saves us from probing the index, which is an expensive op-
eration, in terms of time, because it requires accessing data
from disk and seeking and examining hundreds of posting
lists on average.

4.2 Tolerance to similarity
In this experiment we demonstrate why similarity caching

is well suited for such content-match systems. In particular,
we show that the relevant ads for similar page requests have
significant overlap. Hence, on receiving a new page request,
if we find a page request in the cache that is similar to it,
the top 1000 relevant ads for this cached request can be used
to serve the new request as well. By doing so the content-
match system can avoid probing the ad index and save a lot
of computation/IO cost.

For this experiment we sampled 500K pairs of page re-
quests from the request log. Then for each pair, say 〈p, q〉,
we computed the similarity in page requests (sim(p, q)) and
the Jaccard overlap in the top 1000 ads for them (ads(p, q)).
Pairs with similar values of sim(p, q) are put together in a
bucket. In Figure 1 we show the result. Each point in the
figure denotes a bucket where the x-coordinate is the average
similarity score sim(p, q) and the y-coordinate is the average
Jaccard overlap ads(p, q) of the pairs in the bucket. As it

2Note that two different cache items can have overlapping
ads. This causes redundancy and can be avoided by buiding
an in-cache index; we leave this as part of our future work.
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Figure 1: Relationship between similarity in page
requests and Jaccard overlap of the sets of ads cho-
sen for those requests.

is clear from the figure, as the similarity score between two
page requests increases, the overlap in the sets of relevant
ads for them also increases.

4.3 Feasibility
In this experiment we show the advantage of similarity

caching over exact caching in general (and not under any
specific caching policy). We take the first 100K items from
the request log and ask the following question: given a simi-
larity threshold what is the minimum size of the cache such
that all 100K page requests are covered by the items in the
cache. (The cache can contain items from this 100K log
only.) This is the well-known k-center problem that is NP-
hard [10]. Hence, we use the farthest point heuristic, an ap-
proximation algorithm known for the k-center problem [11].
Under this heuristic, the cache is constructed one by one.
We start with a random item in the cache. Then at each
step, we select that item from the 100K items that has the
minimum maximum similarity to the existing items in the
cache and put it in the cache. The algorithm stops when
the minimum maximum similarity drops below the given
threshold.

As shown in Figure 2, the required cache size increases
as the similarity threshold τ increases (τ = 1 implies exact
caching). For instance, the required cache size is 80K when
τ = 1, but it drops by almost 50% to 40K when τ = 0.8.
This shows that similarity caching allows a cache to offer
a significant more number of hits in comparison to exact
caching, independent of the caching policy. Next we perform
this comparison under specific caching policies.

4.4 Threshold objective
First we study threshold objective from Section 3.3.

4.4.1 Performance Comparison
Figure 3 shows the performance of sim-lru and sim-lfu

policies for a 1K cache. The x-axis denotes the similarity
threshold τ while the y-axis denotes the hit ratio. Note that
the hit ratio for sim-lru is roughly 7% for τ = 1 (when sim-
lru reduces to exact LRU policy), but it gets more than
doubled when τ is set to 0.88. This shows how a little sacri-
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Figure 3: Performance of sim-lru and sim-lfu policies
on a cache of 1K size.

fice in similarity can dramatically increase the performance
of the caching policies.

Both sim-lru and sim-lfu perform similarly in this exper-
iment, so for brevity we explain the rest of the experiments
in the context of LRU only. Note that the focus of this pa-
per is on studying similarity caching and not on finding the
best exact caching policy.

4.4.2 Effect of incremental re-clustering
In Figure 4 we plot the sim-lru and cls-lru policies.

The size of the cache is kept to 1K. Recall that cls-lru
policy keeps the cached items tightly clustered together and
avoids redundancy in the cache. Hence, it is not surprising
to see that it performs better than sim-lru. As threshold τ
gets closer to 1, both policies start performing similar and
approach the exact LRU policy.

4.4.3 Effect of using LSH
Next we measure how LSH affects the performance and

computation cost of our caching policies when it is used for
hit-or-miss determination (as described in 3.5). Figure 5
shows the performance of the sim-lru policy under LSH for
a cache of 1K size. Here, s denotes the number of hashes
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Figure 4: Performance of sim-lru policy with and
without re-clustering on a cache of 1K size.
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Figure 5: Performance of sim-lru policy while us-
ing LSH for probing the cache, where s denotes the
number of hash functions used in LSH. (The size of
the cache is kept to 1K.)

used in LSH (s = 0 implies no LSH). It is clear that the
performance degradation due to LSH is negligible.

In Figure 6 we show the computation cost of hit-or-miss
determination. In particular, we plot the average number
of similarity score computations performed per request in
hit-or-miss determination under sim-lru policy. When LSH
is not the used (s = 0), the policy does an exhaustive search
of the cache and thus, incurs a 1K computation cost per
request. Observe how the computation cost goes down by
a order of magnitude when LSH is used, for a negligible
degradation in performance.

4.4.4 Effect of cache size
Now that we have confirmed that LSH does not signifi-

cantly affect the performance, we use LSH to test our poli-
cies on larger cache sizes. In Figure 7 we show the perfor-
mance of sim-lru and cls-lru policies for different cache
sizes. The number of hashes used in LSH, s, is set to 4
and similarity threshold τ is set to 0.9. Similar to Figure 4
cls-lru continues to perform better than sim-lru.

It is tempting to think that for large cache sizes, the
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Figure 6: Number of similarity score computations
performed per page request, on average, in hit-
or-miss determination in sim-lru policy (for a 1K
cache). s denotes the number of hash functions used
in LSH. When LSH is not used (s=0), due to an ex-
haustive search of the cache the number of score
computations per request is 1000.
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the computation cost (s = 4).

cache can allow some redundancy and thus re-clustering
may not be needed. However, from Figure 7 we note that
re-clustering is considerably beneficial even for large cache
sizes.

To illustrate how exact caching is not effective in our sce-
nario, we performed experiments to figure out that exact
caching requires a cache size of more than 100K items to
achieve the hit ratio of 30% (achieved by our cls-lru policy
using a 20K cache). Assuming a cache item to occupy 10MB
of storage, a 100K-item cache requires 1TB of memory and
is beyond the budget of most content-match systems.

4.4.5 Performance comparison with an upper bound
In this experiment we compare the performance of our

policies with an upper bound. This allows us to see how
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Figure 8: Performance comparison of our policies
with the upper bound.

good our policies are on the absolute scale. We obtain the
upper bound in the following way: for a request we check if
the request has more than τ similarity to any earlier request
in the log. If it has, then we call this request a hit, otherwise
it is called a miss. Clearly, no caching policy can do better
than this (without using any extraneous information).

Figure 8 shows the upper-bound and the performance of
sim-lru policy on a 1K and 10K size cache. As it is clear
from the figure that our policies come quite close to this
upper bound for a fairly modest cache size.

4.5 Smooth objective
Next we study the smooth objective (of Section 3.4). Re-

call from Section 3.2 that smooth objective involves a func-
tion util(·) that gives the utility of a hit for a similarity
value. For our content-match application, we can use Fig-
ure 1 to derive this function. In the figure we showed the
relationship between the similarity of two page requests and
the overlap in their sets of relevant ads. If we count utility
in terms of this overlap, then a linear or a quadratic form of
util(·) function appears meaningful.

Figure 9 shows the performance of sim-lru and rnd-
lru policies for linear (i.e., util(s) = s) and quadratic (i.e.,
util(s) = s2) utility functions. The x-axis denotes cost in
terms of the fraction of page requests which were not an-
swered from the cache (and required probing the ad index).
The y-axis is the average utility per request. sim-lru has the
threshold τ parameter while rnd-lru has the α parameter
to control the tradeoff between cost and utility.

Observe that both policies perform fairly similar under
high cost budgets, but when the cost is set low, rnd-lru
performs significantly better than sim-lru. The reason be-
hind it is that when cost is small, sim-lru policy operates
under a loose similarity threshold τ and offers hit using the
cached items that are quite far from the requested items.
In rnd-lru some of these requests get declared as cache
misses when they appear often enough, and hence they are
brought from disk to the cache. This leads to a better cov-
ering of the high-dimensional space of items, which results
in a higher utility in turn.

4.6 Static caching
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linear and quadratic utility functions.

In this experiment we compare the performance of our
caching policies with static caching wherein the cache is not
updated over time. Typically, a static cache is constructed
by mining previous request logs and keeping the most fre-
quent items in the cache to hit as many future requests as
possible. Previous studies have shown that for certain Web
applications static caching works well [2, 20], thereby moti-
vating us to compare it with dynamic caching. The compar-
ison is done for different similarity thresholds.

For this experiment we took the first 2 million requests
from the log. We put the first 250K of these requests in
the training set, while the rest were put into the test set.
For constructing a static cache given a similarity threshold,
we employ the k-center algorithm on the training set and
put the most populated k-centers in the cache. This cache
is then used to serve the test set (and not updated at any
time). Figure 10 compares the performance of static caching
with dynamic caching (sim-lru to be specific) on the test
set. We perform the comparison for similarity threshold τ
equal to 1 (which refers to exact caching) and τ = 0.9.

As expected, both static and dynamic caching perform
better when the similarity threshold τ is lowered. More
importantly, we see that dynamic caching performs much
better than static caching. This shows that page requests
for our content-match application have strong temporal pat-
terns and dynamic caching is able to exploit that, unlike its
counterpart which remains static, by definition.

5. A GENERATIVE MODEL
To explain the performance boost added by similarity

caching, we propose a simple generative model for the data
and then prove a lower bound on the performance of sim-
ilarity caching vis-a-vis exact caching. For simplicity, we
deal with distances instead of similarities, where d(p, q) =
1− sim(p, q); we assume d(·, ·) is a metric.

Intuitively, the model can be described as noisy copying :
with some probability each new arriving item is a fuzzy
copy of one of the previous items. Formally, the model is
parametrized by four values: p, α, β, and k. When a new
item q arrives, we look at the past k items. With proba-
bility p, the item q represents a perturbed copy of one of
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Figure 10: Static vs. dynamic policies for exact and
similarity caching.

the previous k cached items. More specifically, with proba-
bility pβ, there is no perturbation, and q is an exact copy.
And with probability p(1 − β), q is selected so that it is at
distance d from a previous item, where d is distributed as
N(0, α2) ∩ (0, 1];3 this is the perturbed copy. Finally, with
probability 1 − p, q is generated uniformly at random in
space, i.e., the distance between q and any of the past k
items is uniform in [0, 1].

The added advantage of similarity caching can be traced
exactly to the fuzzy copy step. For exact caching to perform
well, we need β to be relatively high, otherwise the chance
for a new item to be a cache hit would be prohibitively low.
Similarity caching, on the other hand, takes advantage of
the perturbed copies — if the value of α is positive, then
some of the incoming items would fall within the threshold
afforded by similarity caching. In fact, we can show formally
the improvement on the hit rate due to similarity caching.

To validate the model, and test the degree of perturbed
copies in our data, we ran a maximum likelihood test to
obtain the best values for p, α, and β in the dataset. For
k = 1000, the best fit occurred at: p = 0.18, α = 0.2,
and β = 0.4. The exact copying parameter, β is relatively
high, so it is not surprising that exact caching does yield a
noticeable improvement in performance over no caching at
all. However, observe that the α parameter shows that there
is room for similarity caching. That is, of the items that are
perturbed copies, more than 65% (one standard deviation)
lie within a distance of 0.2 (similarity ≥ 0.8). And it is these
items that provide the extra performance boost over exact
caching.

5.1 Analysis
Given the model above, we proceed to provide a bound on

the extra performance afforded by similarity caching. While
the algorithms we analyze are not exactly those we experi-
mented with, in some sense they represent the best possible

3That is, a gaussian of mean 0, variance α2, limited to the

interval (0, 1]; the pdf f(x) of this variable is f(x) =
q

2
π
·

exp
`
− x2

2α2

´
/

“
α · erf

`
1

α
√

2

´”
, for x ∈ (0, 1] and f(x) = 0

otherwise.



scenario for exact caching and one of the worst scenarios for
similarity caching. The added benefit provided by real, as
opposed to stylized (yet analyzable) algorithms only serves
to increase the gap between exact and similarity caching.

An equivalent model. It is easier to consider the follow-
ing equivalent model, represented by a weighted tree, with
items positioned at its nodes. The (transitive closure of the)
weighted tree will be our metric. The model is as follows.
At time t = 1, we have a tree with a single node and an
item on the node. At time t > 1, an item x is chosen ar-
bitrarily among those generated in the last k steps. Let N
be the node where x was placed. Then, with probability
pβ, the new item y is placed on N ; otherwise a new node
N ′ is added to tree as a child of N and the new item y is
placed on N ′. The weight d of the edge (N, N ′) is chosen
uniformly at random in [0, 1] with probability 1−p and from
N(0, α) ∩ (0, 1], with probability p(1− β).

We first obtain a simple upper bound on the performance
of exact caching.

Theorem 1. The probability that exact caching incurs a
cache hit is ≤ pβ.

Proof. Suppose that the new item y is about to be gen-
erated, using item x. Each of the items in the cache c1, . . . , ct

will be at some distance to x, say d(x, ci) = di with d1 ≤
d2 ≤ · · · ≤ dt. Let j be the number of di’s equal to 0,
j = |{i | di = 0}|. The probability that ci can be used to
answer y, if d(ci, x) > 0, is 0 under exact caching. On the
other hand, note that the ci’s having di = 0 are all equal
to each other. The probability that those can be used to
answer x is pβ.

Let us now consider the following threshold objective sim-
ilarity caching policy, parametrized by distance threshold
δ ∈ (0, 1] (i.e., δ = 1−τ where τ is the similarity threshold).
For analysis purposes, we will assume the eviction policy to
be a slight modification of fifo (instead of lru or lfu).

(1) The cache will store keys of the last k items, together
with the items used to return the answer. That is, for i =
1, . . . , k, the i-th entry of the cache will contain the pair
(xi, x

′
i) where xi is the key of the requested item and x′i is

the answer we returned for this request; (we will always have
d(xi, x

′
i) ≤ δ). We apply a fifo eviction policy: when a new

item y comes in, we evict the oldest pair and add a new pair
(y, y′) to the cache, where y′ is either x′i for some i (when
we have a cache hit) or a newly computed answer y′ (when
we have a miss).

(2) To determine hit-or-miss when a new item y arrives,
we search the cache for the closest cache item to y : xi∗ =
arg minxi d(xi, y). Then,

a. if (d(y, xi∗) > 0 and d(xi∗, x
′
i∗) > δ

2
) or (d(y, xi∗) >

δ
2
) or (d(y, x′i∗) > δ), we fault (computing the exact

answer for y) and add (y, y) to the cache,

b. else we add (y, x′i∗) to the cache,

(3) Finally, if we faulted and computed the exact answer
for y, we try to“improve”each cache pair using y; that is, we
update a pair (xi, x

′
i) to (xi, y

′) when d(xi, x
′
i) ≥ d(xi, y

′).
Note that in this algorithm we may choose to fault even

when we did not have to, for example when the cached item
and its answer are at a distance of more than δ/2 away.

Even with these extra faults, we show that the hit ratio of
this algorithm is much better than that of exact caching.

Theorem 2. Suppose the cache has the same size k as
the model. Then, the hit ratio of sim-fifo with distance
threshold δ ∈ (0, 1], is

≥ (1− o(1))

0@pβ + (1− p)
δ

4
+ p(1− β)

erf
“

δ

α23/2

”
2 · erf

“
1

α21/2

”
1A .

Proof. Recall that for each cache item (xi, x
′
i) we have

d(x, x′i) ≤ δ. We call an item good if d(xi, x
′
i) ≤ δ

2
and bad

otherwise.
Let ξe (exact) be the event that the distance generated by

our generative model is 0, ξc (close) be the event that the
distance generated by our model is in

`
0, δ

2

˜
, and ξf (far) be

the event that the distance is in
`

δ
2
, 1

˜
. Let qe, qc and qf be

the probability with which these events occur.
Then, qe = pβ, qf = 1− qc − qe, and

qc =

Z δ/2

0

((1− p) + p(1− β)f(x)) dx

= (1− p)
δ

2
+ p(1− β)

erf
“

δ

α23/2

”
erf

“
1

α21/2

” .

Suppose the adversary chose an item xi (from the last
k items) to generate the new item y, as dictated by our
generative model. Note that due to the FIFO eviction policy,
(xi, x

′
i) must be present in the cache. Since d is a tree metric,

the closest item to y will be xi. If xi is a good element (i.e.,
d(xi, x

′
i) ≤ δ

2
), then:

• with probability qe item y is an exact copy of xi. We
can answer y = x′i without faulting, and add a good
item, (y, x′i), to the cache.

• with probability qc we have a cache hit because d(y, x′i) ≤
d(y, xi) + d(xi, x

′
i) ≤ δ. The new pair (y, x′i) may be

either good or bad.

• with probability qf we will fault, and the new pair
(y, y) must be good.

On the other hand, suppose that the adversary chose an
item xi, that is a bad element to generate the new item y.
Then,

• with probability qe, we have a cache hit. And we add
a bad item (y, x′i) to the cache.

• with probability qc we fault, bringing the good element
(y, y) into the cache. In the update phase since the dis-
tance (xi, x

′
i) ≥ δ

2
and d(xi, y) ≤ δ

2
we update (xi, x

′
i)

to (xi, y), thereby decreasing the number of bad ele-
ments. (Pair (xi, y) may get evicted afterwards by the
FIFO policy if xi is the least recently used element).

• with probability qf we fault and add a new good ele-
ment (y, y) to the cache.

Note that if the adversary chooses a good element we have
a cache hit with probability at least qe + qc. On the other
hand, if the adversary chooses a bad element, we can lower
bound the probability of a cache hit with qe. Fix a cache
at time t = 0, and a sequence of length `. Consider the
queries in the `-sequence generated by ξc event: let B be



the fraction of these queries generated from a bad item. It
is easy to see that the overall hit rate will be qe +qc (1−B).
We will show that E[B] ≤ (1 + o(1)) 1

2
, thereby completing

the proof.
Let Xt the number of distinct elements that are bad that

are still in the cache at time t, or have been evicted at some
time t′ : t0 ≤ t′ ≤ t. Note that as the sequence progresses,
Xt increases (Xt = Xt−1+1) iff the adversary chooses a good
item and event ξc happens, and Xt decreases (Xt = Xt−1 −
1) iff the adversary chooses a bad item and ξc happens.4

In case ξe happens, the new item is an exact copy and the
number of distinct bad items stays the same; in case of ξf

the new item is good.
Note that the expected number of changes to Xt after a

sequence of length ` is exactly ` · qc. Furthermore, since Xt

can never become negative, the total number of decreases is
at most the total number of increases plus k (that is, the k
original cache items, that could all have been bad). Since k is
an additive factor, as ` →∞, the total number of decreases
(and thus the total number of bad adversarial choices that
triggered a ξc event) makes up at most a B = (1 + o(1)) 1

2
fraction of all Xt’s changes, which implies that on almost
half of the ξc events the algorithm will not fault.

Discussion. Recall, that the best fit for the model with
k = 1000 was p = 0.18, α = 0.2 and β = 0.4. Our analysis
tells us that the exact hit rate should be less than 7% and
the similarity caching hit rate with τ = 0.8, must be at
least 14%. Experimentally, the hit rate was 6.4% for exact
caching and 24% for similarity caching. This is a very close
match to the model results, especially taking the fact that
the similarity caching algorithm is much more advanced than
the fifo algorithm analyzed.

6. CONCLUSIONS
We formally defined the problem of similarity caching in

this paper and studied it under two different objectives, i.e.,
threshold and smooth. Our proposed caching policies in-
crementally re-organize the cache to ensure that the cached
items cover the similarity space efficiently. By conducting
extensive experiments on real data we demonstrated how
similarity caching can significantly improve the performance
of content-match systems, without compromising much in
terms of accuracy.

Supplementing our empirical evaluation, we proposed a
simple generative model of content-match page requests. We
validated this model by fitting it to the real data and pro-
vided a theoretical analysis of similarity caching under this
model.
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4Note that if the chosen bad item is also the least recently
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