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ABSTRACT
We consider the reachability indexing problem for private-
public directed graphs. In these graphs nodes come in three
flavors: public—nodes visible to all users, private—nodes
visible to a specific set of users, and protected—nodes visible
to any user who can see at least one of the node’s parents.
We are interested in computing the set of nodes visible to
a specific user online. There are two obvious algorithms:
precompute the result for every user, or run a reachability
algorithm at query time. This paper explores the trade-off
between these two strategies.

Our approach is to identify a set of additional visible seed
nodes for each user. The online reachability algorithm ex-
plores the graph starting at these nodes. We first formulate
the problem as asymmetric k-center with outliers, and then
give an efficient and practical algorithm. We prove new the-
oretical guarantees for this problem and show empirically
that it performs very well in practice.

1. INTRODUCTION
User-generated content makes up a large part of the mod-

ern Web, ranging from photos and comments to full-fledged
documents. An essential part of serving user-generated con-
tent is deciding who has access to it. Service providers imple-
ment different strategies by which the author can control ac-
cess to their content. The traditional approach either makes
the content public, publishing it to the Web for all to view,
or private, restricting access to a whitelisted set of authen-
ticated users. In recent years, an alternative form of access
control has emerged—using a shared secret to control access
to a document. This frequently involves storing content at
a hard-to-guess URL and making the content available to
anyone with a link. Lying somewhere between public and
private, we call such content protected.

This control mechanism is relatively common in modern
social applications. For example, Facebook and Google al-
low users to share photos via a link containing a hashcode.
Dropbox, a cloud storage provider, allows users to quickly
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share access to files or folders via a link. Sharing by URL
balances privacy with utility. On one hand, a total stranger
cannot guess a valid hashcode, and therefore is unlikely to
gain access to the content. On the other, friends are free to
forward the link to others, providing instant access without
the need for an account, password or special group member-
ships.

The setting is particularly powerful when collaborating on
documents in an enterprise setting: by treating the link as
a secret, the author can forget about explicit access control
lists (ACLs) and rely on the social contract to ensure the
content is restricted to the intended recipients. This form
of sharing also gives rise to a class of protected documents
that are transitively accessible to a user, even if they do not
directly know the secret URL for the protected document.
Suppose a document D is linked to by a private document
P . The private document is only shared with a handful of
people. Since the address of D is private, access to D is
implicitly accessible only to users who can access P . As the
set of those who can access P grows, so does the set of those
accessing D, without any additional work from the owner of
D.

These cascading permissions have high utility but present
a problem when deciding whether a particular user is al-
lowed to see a specific document, a key step in any enter-
prise search system. Such a system must issue the search
query against an individual user’s corpus, rather than the
entire document corpus, and return results ranked by rele-
vance. To determine whether a document belongs to a user’s
corpus, one needs to trace the document’s provenance. At
a high level, a document may be accessible to the user for
three different reasons:

1. The document is public, and thus viewable to all users.

2. The document is private, but the user is specifically
included on its ACL.

3. The document is protected, but the user has transitive
access via another document that links to it.

In the third case, although the user is not explicitly listed
as one who can access the document, she has access to the
secret link, and could plausibly discover the document on
her own.

More formally, let A be the set of documents visible to
all users (public documents), P be the private documents,
visible to a named subset of users, and D be the protected
documents. We can create a document graph with V =
A ∪ P ∪ D as the vertices, and a directed edge i → j if
document i links to document j. If Pu ⊆ P is the set of



Figure 1: Visual representation of the public-private
graph setting. There are three categories of docu-
ments: private, public and protected. The public
documents are accessible to everyone. The private
documents are accessible only if the user is explic-
itly specified in the ACL. A protected document is
accessible if there is a path to it starting from a pub-
lic or an accessible private document. In the figure,
documents marked with a red “x” are not accessible
either because they are private or not reachable.

private documents visible to a particular user u, then the
set of all documents visible to u is Ru = TrA∪Pu∪D(A∪Pu),
where for sets S ⊂ U ⊆ V , TrU (S) denotes the transitive
closure of S in U , i.e., the set of documents reachable from S
in the graph induced by U . Figure 1 illustrates our setting.

Formally, the reachability problem is as follows.

Definition 1 (Reachability). Given a set of public
documents A, private documents Pu visible by a given user
u, protected documents D, and directed edges E between doc-
uments, find all documents reachable from A ∪ Pu.

There are two ways in which our work differs from the clas-
sical work on reachability indexing. First, the ACLs in any
production system are bound to be dynamic: both the per-
missions on individual documents, as well as the link struc-
ture between them will change over time. At query time we
need to be sure to return only those documents reachable at
that point in time. Fortunately, these changes are relatively
rare, but still the system needs to certify its results.

Second, we can take advantage of parallelism in exploring
the reachability graph. We give a principled approach to
smoothly trade-off latency and storage costs. The bookends
of the trade-off are obvious: if storage is not an issue we
simply pre-compute the reachable set Ru for each user u. In
this approach, the latency at query time is small because we
just need to do one table lookup. However, this approach
does not certify results in the face of changes to the graph.
If latency is not a worry, we can simply explore the graph
at query time via breadth-first search (BFS) from the set
A ∪ Pu: the resulting set of nodes is certified by the BFS
tree itself. However, for graphs with large diameters this is
infeasible in practice. Even if we parallelize the BFS com-
putation, no layer of the BFS tree can be explored until at
least one node in the previous layer has been discovered, so
we will incur latency at least proportional to the depth of
the tree, which can be as large as the diameter of the graph.

Instead, we suggest pre-computing a small set of seed
nodes for each user so that at query time, we can perform
a shallow BFS from the nodes in A ∪ Pu as well as the seed
nodes, in parallel. The seed nodes are chosen carefully to
limit the depth of the BFS that we need to explore, and are
themselves certified during the process. In this manner, we
always respect the permissions and take advantage of par-
allelism to limit online latency. This leads us to define the
seed selection for reachability problem:

Definition 2 (Seed Selection). Given an instance of
the reachability problem (A,Pu, D,E) and a bound r on the
number of BFS rounds, find a minimum-size set of seed
nodes S ⊆ D, such that:

• Every node in S is r-hop certified, meaning that it is
within r hops of either A∪Pu or another r-hop certified
node in S.

• Every node in TrA∪Pu∪D(A ∪ Pu) is within r hops of
A ∪ Pu ∪ S.

The first property allows an r-hop parallel BFS to certify
some seed nodes S0, while also detecting“certification edges”
u → v between nodes u, v ∈ S for which there is an r-hop
path from u to v. The rest of the nodes in S can then be
certified via a BFS from S0 in the (much smaller) graph of
these certification edges. We do not care about the diameter
of this certification graph because it can easily be collected
on a single machine (since we keep |S| small by design),
so it does not require extra network communication to ex-
plore this graph once it has been constructed. The second
property guarantees that the original r-hop BFS finds all
reachable nodes in D.

Notice that the recursive definition of r-hop certified gives
us much more power to craft efficient seed sets S. If we were
to consider a seed node to be certified only if it is within
r hops of A ∪ Pu, then our certified seed nodes could cover
nodes only within 2r hops of A∪Pu. By allowing ourselves to
certify seed nodes through the concatenation of an arbitrary
number of r-hop paths, we could (in the extreme case) have a
certified seed node that is as many as r|S| hops from A∪Pu,
covering nodes at a distance of up to r(|S| + 1) hops from
A ∪ Pu.

Since the set of nodes A is available to every user, one
might be tempted to precompute TrA∪D(A). However, in
order to protect against changes in the graph, we need to
perform BFS from A∪Pu in order to certify reachability at
query time.

The question we tackle in this paper is how to find a nearly
optimal set of seed nodes, S. Our main contributions are:

• We present the public-private model for access con-
trol, and define the public-private-protected indexing
problem for reachability.

• We formulate the indexing problem as an instance of
a classic clustering problem, namely asymmetric k-
center (Section 4).

• For the version without outliers, we give an improved
approximation algorithm that closes most of the gap
between the worst-case approximation guarantee and
the hardness lower bound. Specifically, our approxi-
mation ratio exceeds the hardness lower bound by just
a small additive constant, whereas the previous gap
was a multiplicative factor of 3 (Theorem 7). As a



bonus, our algorithm is vastly more memory and time-
efficient.

• For the version with outliers, we present a new memory-
efficient algorithm and prove that it has a small constant-
factor bicriteria approximation ratio (Theorem 8).

• We empirically verify the efficacy of our approach on
a number of real-world graphs (Section 6).

We must emphasize the distinction between the offline and
online components of the proposed indexing system. The
seed selection process itself is run offline and we report ex-
perimental results from our single-machine implementation.
This algorithm outputs a seed set S that could be used in a
live system for computing certified reachability online in a
massive distributed system, as described above.

To report system independent results, we focus on two
metrics: the number of hops as a proxy for the latency in
any such system, and the size |S| of the seed set S as a proxy
for the (distributed) memory usage in this system. In addi-
tion, there are the orthogonal issues of run time and mem-
ory usage by the offline seed selection computation. Here,
our main improvement over previous work is to avoid the
need to take the cube of the entire graph: this seemingly
small difference transforms the algorithm from impractical
to practical. Of much greater interest is the quality of the
seed set S produced by this offline process, as this is what
determines the performance of the online system.

2. RELATED WORK
There is a rich literature on reachability algorithms, span-

ning many decades and hundreds of papers. Here we limit
our focus to the most related theoretical and practical con-
tributions.

Theoretical Considerations. Parallel reachability has
been intensively studied in the PRAM model [13, 22]. Prob-
ably the most popular algorithm in this area has been that of
Ullman and Yannakakis [31]. Their algorithm is simple and
elegant: the main idea is to start several BFS visits in paral-
lel from multiple seed nodes selected uniformly at random.
Interestingly, Ullman and Yannakakis show good theoretical
guarantees. This algorithm forms the basis for one of our
baselines; however, as shown in Section 6, it performs poorly
on real-world instances.

Transitive closure spanners are another related concept.
A k transitive closure spanner for a graph G is a directed
graph H = (V,E) that has the same transitive-closure as
G (for each seed u ∈ V ), but diameter at most k. Several
interesting upper and lower bounds have been shown for
transitive closure spanners [3, 15]. This approach is well-
suited for offline applications, but these spanners cannot be
updated online, and a single edge change in the underlying
graph may invalidate the entire spanner.

Indexing for Reachability. Several practical and ef-
ficient reachability algorithms have also been proposed in
the past several years. The majority of the techniques in
this area follow three main approaches: transitive closure
compression [1, 20, 25, 32, 34], online search [5, 29, 30,
33], or design of reachability oracles [4, 6, 7, 11, 19, 18,
27, 35]. The transitive closure compression techniques com-
press the reachability tree to answer queries with a single
lookup. Those techniques are CPU-efficient but incur a
large memory and precomputation cost. In contrast, online

search techniques tend to store very little information but
incur a large query cost. Finally, reachability oracles com-
pute a labeling that allows them to efficiently answer reach-
ability queries on pairs of nodes (i.e., is v reachable from
w?). There are also a few attempts at combining different
approaches [17, 24, 28, 38]. For example, Jin et al. [17] de-
sign an algorithm that tries to achieve the positive aspects of
both transitive closure compression and online search. Prac-
tical reachability algorithms have also been proposed for dy-
namic [37, 39] or uncertain [16] graphs. The main difference
between all of the previous techniques and our approach is
in the use of parallelization. The algorithms we present can
be seen as an online search technique that uses paralleliza-
tion to overcome the main limitations of the online search
framework.

Clustering for Reachability. Our work is also strongly
related to the asymmetric k-center literature. In this con-
text there are three important related papers. Panigrahy
and Vishwanathan [26] were the first to give an approxima-
tion algorithm for this problem, obtaining an approximation
ratio of 5 log∗ n + O(1). Archer [2] improves the bound to
3 log∗ k + O(1). Finally, Chuzhoy et al. [10] show that the
problem does not admit an approximation ratio better than
log∗ n−O(1) unless NP ⊆ DTIME(nlog logn).

In addition, Gørtz and Wirth [14] analyze several variants,
and prove that the asymmetric k-center with outliers and
forbidden centers problem is not approximable at all unless
P = NP . This problem is the same as asymmetric k-center
with outliers, except that there may also be some nodes that
are disallowed as centers.

Finally, our paper is inspired by new challenges proposed
in the recent work on private-public graph algorithms [8].

3. PRELIMINARIES
Given a directed graph G = (V,E), for a node v ∈ V we

denote by Γ−(v) the set of in-neighbors of v, i.e., {u ∈ V :
(u, v) ∈ E}, and by Γ+(v) the set of out-neighbors of v, i.e.,
{u ∈ V : (v, u) ∈ E}. We say that v covers nodes in Γ+(v)
and is covered by nodes in Γ−(v).

Furthermore, let Γ+
h (u) be the set of nodes that node u

covers within h hops, and Γ−h (u) be the set of nodes that
cover u within h hops. For a set S ⊆ V , define Γ+

h (S) =
∪u∈SΓ+

h (u), and similarly Γ−h (S) = ∪u∈SΓ−h (u). We denote
by TrG(S) the set of documents reachable from S in G, and
will drop the subscript when it is clear from context.

We will show that the Seed Selection problem is closely
related to asymmetric clustering, which we define below.

Given a set of points V and a distance function d : V ×
V → R, we call d an asymmetric metric if it satisfies the fol-
lowing properties ∀x, y, z ∈ V : (a) d(x, y) ≥ 0, (b) d(x, x) =
0 and (c) d(x, z) ≤ d(x, y) + d(y, z). That is, d satisfies all
properties of a metric, except for symmetry. In this case,
(V, d) is called an asymmetric metric space.

A node u ∈ V is said to cover node v ∈ V within radius r
if d(u, v) ≤ r. Let Br(u) = {v ∈ V : d(u, v) ≤ r} denote set
of all nodes covered by u within radius r; for a set S ⊆ V ,
Br(S) = ∪u∈SBr(u), i.e., the set of all nodes covered within
radius r by at least one of the nodes in S. The coverage
radius of a set S with respect to a target set T as ρ(S, T ) :=
min{r : Br(S) ⊇ T}, i.e., the smallest radius r such that S
covers all of T within radius r. We are now in a position to
define the asymmetric k-center problem.



Definition 3 (AKC). Given a positive integer k, and
an asymmetric metric space (V, d), the asymmetric k-center
problem is to find a set S ⊆ V of size |S| ≤ k that minimizes
ρ(S, V ). The set of nodes in S are called centers.

Finally, we define Gr = (V,Er), where Er = {(u, v) : u ∈
V, v ∈ V, d(u, v) ≤ r}.

4. REACHABILITY AS ASYMMETRIC
CLUSTERING

In this section we explain the connection between the
Seed Selection problem defined in the introduction and
the AKC problem. We then discuss the impact of outliers
on the results, and define outlier versions of both problems.

Given an instance of the Seed Selection problem: nodes
A,D,Pu and edges E, we proceed to define an instance of
AKC.

Let V = TrA∪Pu∪D(A ∪ Pu), be the set of documents
reachable by user u, and E = E[V ] be the set of edges visible
to the user (i.e., all edges in E except those pointing to any
private documents for which the user is not in the ACL).
The directed graph G = (V,E) defines an asymmetric metric
space (V, d) where d is the shortest path distance onG. Since
G is unweighted, d(u, v) is just the number of hops in the
shortest path from u to v, or ∞ if v is not reachable from
u. Let S be a solution with value h to the AKC problem on
(V, d). Performing a breadth-first search (BFS) for h hops
from S will discover all of the nodes in V , therefore S is a
good solution for our original Seed Selection problem∗.

Outliers. The Seed Selection problem is extremely
sensitive to outliers. Consider a path graph, with documents
x1, . . . , xs and document xi pointing only to document xi+1

for 1 ≤ i < s. If xi is private to the user, but all of the
x2, . . . , xs are protected, then even doing k parallel BFS
instances will require s/k rounds. In practice such “tendrils”
are common, and may disproportionately influence the value
of the solution.

To avoid such large bottlenecks, we consider the outlier
versions of both Seed Selection and AKC. In the former,
instead of finding all of the reachable nodes, we only require
that the r-step parallel BFS covers at least a (1− ε) fraction
of them. The definition of AKC-O is similar.

Definition 4 (AKC-O). Given a positive integer k, an
asymmetric metric space (V, d) and an ε > 0, the asymmet-
ric k-center with outliers problem is to find a set S ⊆ V of
size |S| ≤ k that covers at least a (1− ε) fraction of V with
the minimum radius. That is, find a set S that minimizes
{r : |Br(S)| ≥ (1− ε)|V |}.

5. ALGORITHMS AND ANALYSIS
In this section we will show improved algorithms for the

AKC and AKC-O problems, which translate to improved
algorithms for Seed Selection, and prove our main theo-
retical results. While the general proof strategy follows that
of [2], the modifications we make to the algorithms lead
to a memory-efficient algorithm with better approximation
ratios. In what follows, let SOPT be the optimum solution
to the AKC problem.

∗Note that, as explained in Section 6, once we have the
seeds we can easily certify them at run time.

5.1 Warm Up: Dominating Set
Recall the famous dominating set problem (which is a spe-

cial case of set cover). Given a directed graph G = (V,E)
the goal is to select the smallest subset of nodes V ∗ ⊆ V
such that every node v ∈ V is either in V ∗, or is cov-
ered by some node u in V ∗. It is well known that the
greedy algorithm, which repeatedly selects a node that cov-
ers the most still uncovered nodes, achieves an approxima-
tion ratio of H(n) [21]. Here, H(·) is the harmonic function:
H(x) = 1 + 1/2 + . . .+ 1/bxc+ (x−bxc)/dxe = lnx+O(1).

One can use the greedy algorithm as a building block
to solve AKC. Suppose that in the graph Gr, we use the
greedy algorithm to find a dominating set S1 of size at most
kH(n/k), covering all n nodes of V [21]. We can now solve
the dominating set problem in the same graph again, but
ask to cover only S1, this time yielding a cover S2 of size
at most kH(|S1|/k) ≤ kH(H(n/k)). Since S2 covers all of
S1 in 1 hop, it covers all of V in 2 hops. We iterate this
process until the cover Si is sufficiently small. After only
i = H∗(n/k) iterations, we will have |Si| = O(k), and Si
covers all of V in i hops. Here, H∗ is defined analogously to
log∗.

A variant of this recursive dominating set procedure forms
the core of our approach.

5.2 Algorithm
We first describe our algorithm for AKC, then present its

analysis, and finally show how to amend it to solve AKC-O.
Our algorithm has three main phases. The first phase is

present in all of the methods for AKC [2, 26], the second
phase is similar to the recursive procedure above, and we
add a third phase to get a better approximation ratio.

Phase I. Center-Capturing Nodes. In this phase we
identify a special subset of the nodes in the graph.

Definition 5 (Center-capturing node (CCN)). We
say that u ∈ V is a center-capturing node if Γ−(u) ⊆ Γ+(u).

A center-capturing node u is named as such because we
know that every dominating set includes some center in
Γ−(u). Since the definition of CCN says that Γ+(u) ⊇
Γ−(u), then node u covers this center in 1 hop, and therefore
covers in 2 hops everything that this center covers in 1.

In phase I of the algorithm, we select CCNs to cover nodes
from SOPT. Specifically, we maintain an active set A of
nodes we need to cover. If we can find a CCN u ∈ A, then
we choose u as a center and remove Γ+

2 (u) from A. We
repeat the procedure until there are no more CCNs in A.
Let C denote the set of centers chosen in this phase.

Phase II. Recursive Cover. After phase I, we are left
with a subset of uncovered nodes A ⊆ V that contains no
CCNs. One can show that there exist p nodes from SOPT

that cover A, with p ≤ k−|C|. In phase II of our algorithm,
we use the recursive cover procedure described above to find
a set C1 of at most 4

3
p additional centers that, together with

C, cover all of V in H∗(n/p) hops.
Sadly, we are not yet done because our solution uses 4

3
p+

|C| centers, which may exceed the k we are allowed.
Phase III. Center Reduction. In this phase we reduce

the centers used from 4
3
p to p. Although simply continuing

the recursive cover phase would eventually result in only p
centers, it would take too many rounds because the rate of
progress slows at the end: once |Si| drops below 2p, our



bound on the quantity |Si|−p drops by only a factor of 2 in
each round, so going from 2p to p could take log2 p rounds.

To reduce the number of additional centers, phase III per-
forms one more round of dominating set, but does it in the
graph G3

r instead of in Gr. Here we use the standard nota-
tion that G3

r is the cube of Gr, meaning it has the same set
of nodes, and each node u has an edge in G3

r to each node
it can reach in 3 hops in Gr.

Because all active CCNs were already chosen in phase I,
we can prove there exists a dominating set for C1 in G3

r of
size at most 2

3
p, so the greedy algorithm finds a cover of size

at most

2

3
pH

(
|C1|
2
3
p

)
≤ 2

3
pH

( 4
3
p

2
3
p

)
=

2

3
pH(2) = p.

Thus, we reduce the number of extra centers to p, paying
only one extra hop in G3

r, which is at most 3 hops in Gr.
For clarity we now give the pseudocode of our algorithm

in Algorithm 1.

Algorithm 1 Asymmetric k-center, given a guess at the
optimal covering radius r.

Input: Asymmetric metric space (V, d), integer k ∈ N, a
guess r at the optimal covering radius.
Construct Gr = (V,Er), where Er = {(u, v) : u ∈ V, v ∈
V, d(u, v) ≤ r}. All in- and out-neighborhoods Γ−· (·) and
Γ+
· (·) are with respect to Gr.
A← V , C ← ∅
while A contains a center-capturing node u do
C ← C ∪ {u}, A = A \ Γ+

2 (u)
p = k − |C|, S0 = A, i = 0
while |Si| > 4

3
p do

Si ← Si \ Γ+
2 (C)

Use the greedy algorithm to find a dominating set Si+1

for the nodes Si in graph Gr.
i← i+ 1

C1 ← Si [For analysis: î← i]
Construct the graph G3

r, restricted to nodes C1 ∪Γ−3 (C1).
Use the greedy algorithm to find a dominating set C2 for
the nodes C1 \ Γ+

4 (C) in graph G3
r.

Return the set of centers C ∪ C2.

In the remaining subsections, we formally analyze each
phase of the algorithm and prove its theoretical guarantees.

5.3 Using CCNs to cover the optimal centers
Recall that SOPT denotes the optimal set of centers. In

the first phase of our algorithm we focus on covering centers
in SOPT. We claim that every time we select a new CCN u
and add it to C, at least one new center from SOPT appears
in Γ+(C). Since SOPT is a dominating set for V , there ex-
ists some v ∈ SOPT (possibly u itself) that covers u, which
implies v ∈ Γ−(u). Since u /∈ Γ+

2 (C), we know v /∈ Γ+(C).
Since u is a CCN, Γ+(u) ⊇ Γ−(u) 3 v, so after adding u to
C, Γ+(C) will contain v.

Therefore, at the end of phase I, there exists a subset of
SOPT of size at most p = k − |C| that dominates A.

5.4 Recursive dominating set
As noted before, the greedy algorithm yields a dominating

set S1 satisfying |S1| ≤ pH(|S0|/p) ≤ pH(n/p). Inductively,

|Si| ≤ pH(i)(n/p), where the notation H(i) means to apply

the H(·) function iteratively, i times. For 1 < y < x, let

H∗y (x) denote the smallest iterate j such that H(j)(x) ≤ y.
By iteration i = H∗4/3(n/p), we would have |Si| ≤ 4

3
p, and

phase II would have already ended. Therefore, î ≤ H∗4/3(n/p),

where î is defined in the pseudocode from Algorithm 1.
We can prove by induction that at the end of the ith iter-

ation in phase II, each node in A is covered either in i hops
by one of the centers in Si, or in at most i+ 1 hops by one
of the centers in C. Therefore, at the end of phase II, we
have the following guarantees: |C1| ≤ 4

3
p, î ≤ H∗4/3(n/p), and

V ⊆ Γ+

î
(C1) ∪ Γ+

î+1
(C).

5.5 Reducing to k centers
To conclude our analysis we need to reduce the numbers

of centers outside C from 4
3
p to p. Fortunately, we can do

it by running the greedy algorithm to find a near-optimal
dominating set C2 for the nodes C1 \Γ+

4 (C) in graph G3
r. In

fact, we can use the following useful lemma from [2].

Lemma 6. [Restated from [2]] Suppose A = V \ Γ+
2 (C),

A contains no CCNs, and S covers A. Then there exists a
set T ⊆ S, |T | ≤ 2

3
|S| that covers A \ Γ+

4 (C) in 3 hops.

At the end of phase I, SOPT \ Γ+
2 (C) contains at most p

centers and covers A. By construction, A contains no CCNs.
Therefore, Lemma 6 implies there exists some set of at most
2
3
p centers from SOPT that covers C1\Γ+

4 (C) within 3 hops in

Gr. Applying the greedy guarantee, |C2| ≤ 2
3
pH( 4

3
p/ 2

3
p) =

2
3
pH(2) = p.
At the end of phase II, recall that some of the nodes V1 ⊆

V are covered by C1 in î hops, and the rest are covered by
C in î + 1 hops. Some of C1 is covered by C2 in 1 hop in
G3
r (3 hops in Gr), and the rest is covered by C in 4 hops

(in Gr). Therefore, our final solution C ∪C2 covers V1 in at

most 4 + î hops and V \V1 in at most î+ 1 hops. Therefore,
we arrive at the following theorem.

Theorem 7. When run with the true optimal covering
radius r, Algorithm 1 is a (H∗4/3(n/p) + 4)-approximation al-
gorithm for AKC.

By comparison, the AKC algorithms in [2] achieve an ap-
proximation ratio of 3H∗4/3(n/p) + O(1), and the hardness
lower bound of [10] is H∗4/3(n/p) +O(1).

5.6 Guessing r and theoretical guarantees
So far we have assumed that we know the correct value for

r = r∗, even though r∗ is NP-hard to compute. Fortunately,
we do not actually need to know r∗. Since r∗ is the distance
between some pair of nodes in V , there are only O(n2) pos-
sible values, so we can try all possibilities and return the
best solution. Better yet, we can binary search among these
O(n2) values for the smallest value of r for which our algo-
rithm returns a set of at most k centers. Whenever we guess
r ≥ r∗, the algorithm will run as described in the analy-
sis above. Whenever we guess r < r∗, the algorithm may
fail, either because phase II does not terminate within the
expected number of iterations, or because phase III returns
too many centers. But if the algorithm luckily succeeds, the
covering radius of the solution returned will be even better
than the guarantee.

Running time. In all of our experiments, the seed set
computations finished within minutes, despite not being op-
timized for speed. Below, we bound the construction time



theoretically for a single guess of r. Detecting whether a
node u is a CCN can be done in time O(deg(u)), so detecting
all CCNs takes time O(|Er|). For each CCN actually added
to C, we need to mark all of its two-hop out-neighbors. Since
no edge of Gr ever need be examined more than once during
the marking operations in this phase, it takes time O(|Er|)
overall.

Similarly, each dominating set computation in phase II
can be implemented in time O(|Er|), and the dominating
set computation in phase III can be implemented in time
O(|E(G3

r)|) (i.e., linear in the number of edges in G3
r)
†.

Since we must try at most O(logn) values in the binary
search for r, the overall running time is at most

O((H∗4/3(n/p)|Er|+ |E(G3
r)|) logn).

This is an improvement over the running time in [2], since
for each guess at r, we perform only one dominant set com-
putation on G3

r and the rest on Gr whereas [2] performs all
of them on G3

r.
Practical Dominating Set. We describe how to run

the greedy dominating set algorithm on a directed graph
G = (V,E) in O(|E|) time. Then we explain how to run it
on G3 without blowing up the memory footprint.

In the greedy algorithm, we maintain a priority queue of
nodes to select as centers. Denote the priority of node v
by Pri(v). Initially, Pri(v) = |Γ+(v)|. In each iteration, we
select a node u with maximum priority. We then iterate
over all nodes in Γ+(u) and mark them as “covered.” For
each v that is newly covered, iterate over all w ∈ Γ−(v)
and decrement Pri(w), since w now covers one fewer active
node. Each node is marked as newly covered exactly once, so
there are exactly |E| decrement operations. Instead of using
a standard heap-based priority queue, which would lead to
a time of O(|E| log |V |), we implement it as a sequence of
arrays indexed by i = 1 . . .maxu∈V |Γ+(u)|. Array i holds
all of the node ids whose priority is currently i. We maintain
the priority queue in a lazy fashion, as follows. When a node
u is popped off the top of the priority queue at level i, we
check that Pri(u) is really still i. If so, we use it. If not, we
reinsert it into the queue at the end of array number Pri(u).
This yields a running time of O(|E|).

To run this greedy algorithm on G3, we need to compute
the sets Γ−3 (v) only for the nodes v ∈ C1 since those are
the ones we need to cover. From our theoretical guarantees
there are at most 4

3
p = O(k) such nodes. So the relevant

portion of G3
r contains only O(kn) edges. For this reason

our algorithm is more efficient from both the memory and
time perspective when compared with previous algorithms‡.

5.7 AKC with outliers
To address the AKC-O problem, we make a small change

to phase II of Algorithm 1. In the first iteration of that
phase, we terminate the greedy algorithm as soon as we
cover (1 − ε)|V | nodes. By the standard analysis, S1 will
contain at most pH(1/ε) centers. In iterations i ≥ 2 of phase
II, we must cover all of the centers in Si, so the outliers
benefit us only once. The rest of the analysis goes through
exactly the same way, leading to the following theorem.

†In fact, our algorithm need not cube the entire graph
explicitly. As we discuss in the next subsection, we can
limit our attention to the region near C1.
‡Previous algorithms [2, 26] are impractical as they com-

pute all of G3
r explicitly.

Graph |V | |E|
AS-Skitter 1,696,415 11,095,298
Gowalla 196,591 950,327
YouTube 1,134,890 2,987,624
DocSample 2,406,082 4,939,033

Table 1: Statistics on Graphs used in the experi-
mental evaluation.

Theorem 8. With the modification above, Algorithm 1 is
a 4 +H∗4/3(1/ε)-approximation algorithm for AKC-O.

6. EXPERIMENTS
In previous sections we formulated the public-private graph

indexing problem, and gave algorithms with provable ap-
proximation guarantees. In this section we explore the per-
formance of our approach on real world datasets, and discuss
its advantages over simpler heuristic baselines.

6.1 Experimental Setup
We begin by describing the data, the metrics, and the

baselines we compare against.

6.1.1 Data
We evaluate our algorithms on a number of real world

graphs. We give the salient statistics about each of these in
Table 1. The AS-Skitter, Gowalla, and YouTube graphs
are taken from the SNAP library [9, 23, 36]; we complement
these with DocSample, a graph derived from a subset of an
anonymized corporate document corpus.

To construct the DocSample graph we consider a subset of
Google’s internal corporate document corpus. We create a
node for each document in the subset, and create a directed
edge u → v between two documents if document u links to
document v. We do not consider the content of the doc-
uments, and we label the documents sequentially, thereby
further obfuscating the document id. This real DocSample
data set is the most interesting graph to us, as it is precisely
the one that motivated this work.

To imitate the motivating scenario of public, protected,
and private documents for each graph we select a set of roots
R, uniformly at random from among all of the nodes, and
compute the transitive closure Tr(R): that is, the set of all
nodes reachable from R.

6.1.2 Metrics
Given a root set R and the nodes Tr(R) we wish to cover,

our goal is to find the fewest number of seeds k, that cover
as many nodes (1 − ε)|Tr(R)| as possible, in as few hops r
as possible. Therefore, the output of the algorithm can be
parametrized by a triple (k, r, ε). Fixing any two of these di-
mensions leads to a well-defined optimization problem. For
example, fixing the number of seeds k and the maximum
number of hops r, the goal is to cover as many of the nodes
in the transitive closure Tr(R) as possible. For consistency,
we always augment the solution S of the algorithm with the
initial roots R and report the overall results (k, r, ε). For
any given augmented solution S ∪ R, we report k = |S|,
and ε is a function of r: the more hops we allow, the more
nodes we cover, corresponding to smaller ε. Including R in
the solution guarantees that we can always achieve ε = 0 for
sufficiently high r.



6.1.3 Baselines
We consider two baselines for the problem. The first is to

select k seeds uniformly at random from the graph. This ap-
proach is motivated by the parallel algorithm for this prob-
lem due to Ullman and Yannakakis [31]. As we will see
below, this approach is more of a sanity check, and tends to
perform very poorly in practice.

The second approach, which we denote by Degree does a
natural greedy approximation: we first sort all of the nodes
by out-degree, and then select the top k nodes in this se-
quence. As shown below, this approach tends to perform
well only when the problem is “easy;” that is, either the al-
lowed number of outliers is large, the radius is large, or the
number of seeds is large.

6.1.4 Practical considerations
We describe two considerations for making our asymmet-

ric k-center algorithm practical. First, we specify how to
construct the asymmetric k-center instance starting from
our reachability instance. Then we discuss the impact of
center-capturing nodes (CCNs) in the outlier setting.

Constructing an instance. In the formal algorithm for
AKC, we guess the optimal number of hops r in an outer
loop, and pass that as a parameter to Algorithm 1, which
then performs computations on Gr. This is the same as Gr

in our case, where the metric is given by shortest paths in
graph G. For real graphs, even modest values of r make
explicit construction of Gr impractical as the graph quickly
becomes very dense. In our experiments, we run the algo-
rithm on the original graph G, thereby losing some of our
theoretical guarantees, but gaining a practical algorithm.

Specifically, we fix r and ε and employ our algorithm to
find the smallest set of seeds possible, such that they (along
with R) cover at least (1 − ε)|Tr(R)| nodes. The seeds we
find will be augmented by the root nodes R so we initialize
A to be only nodes in V that are not already covered by R
within r hops.

We then follow Algorithm 1, identifying CCNs, and run-
ning r−3 rounds of recursive cover to produce C1. The last
step is to compute a dominating set for C1 in G3. Critically,
this does not require constructing all of G3, but rather only
the 3-hop in-neighbors of C1, a much smaller set of nodes.

Center-Capturing Nodes. In the first stage of our
AKC-O algorithm, we selected CCNs in the graph. As
shown in Section 5, this step of the algorithm is fundamental
in our theoretical analysis. Nevertheless, removing CCNs is
not always a good idea in practice. The reason for this dis-
crepancy between practice and theory is that our theoretical
analysis compares the algorithm’s output to the optimum
asymmetric k-center solution without outliers. In practice,
we are interested in analyzing the problem in the presence
of outliers.

As an example where outliers make a difference, consider
a large graph with an additional isolated node v. Note that v
is a CCN, since its only r-hop in- or out-neighbor is itself, so
our algorithm will select it. Every optimal solution for AKC
has to include v, since no other node covers v. However, in
AKC-O, we should clearly let v be one of our outliers so we
can spend our center elsewhere.

In our experiments, we stayed true to the algorithm and
included the CCN phase, but we observed cases where skip-
ping the CCN phase would have improved the solution.

(a) Skitter Coverage (b) DocSample Coverage

(c) Gowalla Coverage (d) Youtube Coverage

Figure 2: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 1%.

6.2 Overall Coverage
To investigate the performance of our algorithm against

the baseline, we look at the overall coverage as a function of
k and r. For each graph, we fix a single, randomly-chosen
seed set R. In order to get an apples-to-apples comparison,
we fix r and ε, run our algorithm and obtain some number of
seeds k (which depends on r and ε). For the Degree baseline,
we then generate k seeds. For both solutions, we augment
the set of seeds with the roots R, and measure the number
of nodes that are not covered within r hops.

(a) Skitter Coverage (b) DocSample Coverage

(c) Gowalla Coverage (d) Youtube Coverage

Figure 3: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 3%.

Figures 2,3, and 4 plot the results of both Degree and our
algorithm with ε = 1%, 3%, 5%, respectively. Note that our
algorithm, by construction, is guaranteed to leave at most
an ε fraction of the nodes uncovered, but may perform even
better. Also note that the number of seeds used decreases



(a) Skitter Coverage (b) DocSample Coverage

(c) Gowalla Coverage (d) Youtube Coverage

Figure 4: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 5%.

with r, which is why ε can either decrease or increase. For
the ε = 1% and ε = 3% cases, our algorithm significantly
outperforms the greedy heuristic at the same (k, r) pair;
the latter is often significantly higher than the desired ε.
Overall, as ε increases, the problem gets easier, and we see
the advantage of our algorithm slowly ebb.

We do not plot the performance of the random heuristic as
it performs significantly worse across the board. It gives an
ε in the double digits for the same (k, r) values, and needs a
radius of 15 or higher to be comparable in terms of coverage.

6.3 Certified Coverage
As mentioned in the introduction, the real graphs mo-

tivating our approach are dynamic in nature, and nodes
that may be reachable and accessible during the offline pre-
computation may no longer be reachable at query time. This
problem creates new challenges for any indexing system, but
it also highlights a strength of the one we propose. At query
time, we must certify that a seed selected by the algorithm
can still be reached from one of the nodes to which the user
has explicit access.

At query time we restrict ourselves to explore only r hops
away from each of the seeds and explicit nodes. Therefore,
we can certify a seed if and only if there exists a path of
at most r hops to the seed, either from an explicit node
or from another seed we have already certified. We then
consider as covered only those nodes that are within r hops
from a certified seed.

Our asymmetric k-center algorithm and the two heuris-
tics do not consider this constraint directly, but we show
that our approach remains effective even with this additional
constraint. To demonstrate this, we present the results of
the certified coverage on the same, unmodified graphs using
the same sets of chosen seeds.

We show the results on all of the graphs, for ε ∈ {1%, 3%, 5%}
in Figures 5, 6, and 7. As expected, to achieve the same er-
ror ε, the certified radius is higher than the original. Never-
theless, our algorithm still achieves good performance, and
is significantly better than the greedy baseline at most ε

(a) Skitter Cert. Cov. (b) DocSample Cert. Cov.

(c) Gowalla Cert. Cov. (d) Youtube Cert. Cov.

Figure 5: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 1%.

(a) Skitter Cert. Cov. (b) DocSample Cert. Cov.

(c) Gowalla Cert. Cov. (d) Youtube Cert. Cov.

Figure 6: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 3%.

and radii. Here too, the randomized method performed too
poorly to include it in the plots.

6.4 Unreasonable effectiveness of greedy
Although one can construct instances where the greedy

dominating set algorithm (without outliers) selects OPT ·
log |V | seeds, conventional wisdom holds that it typically
performs much better. For our test graphs, we ran some ex-
periments to show that this is indeed the case. Specifically,
we constructed an integer program (IP) model of the dom-
inating set problem, and solved it using the SCIP software
package [12]. In Table 6.4, the column labeled OPTLP is
the optimal number of fractional centers in the linear pro-
gramming relaxation, OPTIP is the optimal number of ac-
tual centers in the integer program, greedy is the number
of centers chosen by the greedy algorithm, and gap is the



(a) Skitter Cert. Cov. (b) DocSample Cert. Cov.

(c) Gowalla Cert. Cov. (d) Youtube Cert. Cov.

Figure 7: Percentage of nodes unreachable from the
seeds and roots for a specific radius. The number of
baseline seeds selected matched the number of seeds
output by our algorithm run with ε = 5%.

Graph OPTLP OPTIP greedy gap %
AS-Skitter 191,027 191,969 196,447 2.33
Gowalla 41,601 41,613 42,502 2.14
YouTube 219,166 219,189 220,253 0.49
DocSample 1,124,571 1,124,571 1,129,564 0.44

Table 2: Comparing optimal fractional, integer, and
greedy solutions for dominating set.

percentage gap between OPTIP and greedy. The main take-
home point is that greedy is very close to optimal in all four
instances, with the largest gap being 2.33%.

7. CONCLUSION
In this work we formulated the indexing problem in mod-

ern sharing scenarios, where content can be public, private,
or protected. We showed that the indexing problem is an
instance of the classic AKC problem, and gave improved
approximation algorithms for both AKC and AKC-O. We
compared our approach against greedy baselines across a
number of different corpora and parameter settings and showed
that it performs well in practice.

As has been previously noted by Chierichetti et al. [8],
performing computations in scenarios that mix public and
private content is a rich avenue for future research. Here
we show one such direction. Further improving the indexing
schemes to take real-time updates into account remains an
interesting open problem. In addition to indexing, there are
many open questions in the areas of ranking, learning, and
personalization in this domain.
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