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Given    points in       split them into     similar groups. 

Clustering
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Clustering Objectives

k-Center: 
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Clustering Objectives

k-Median: 

4

Let          be the closest cluster center to    . C(x) x
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Clustering Objectives

k-Median Squared: 
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Let          be the closest cluster center to    . C(x) x

min
∑

x∈X

‖x − C(x)‖2

Much more sensitive to outliers



Lloyd’s Method: K-means

Initialize with random clusters
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Lloyd’s Method: K-means

Assign each point to nearest center
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Lloyd’s Method: K-means

Recompute optimum centers (means)

8



Lloyd’s Method: K-means

Repeat: Assign points to nearest center
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Lloyd’s Method: K-means

Repeat: Recompute centers
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Lloyd’s Method: K-means

Repeat...
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Lloyd’s Method: K-means

Repeat...Until clustering does not change
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Analysis

How good is this algorithm?

Finds a local optimum
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That’s arbitrarily worse than optimal solution



Analysis

How fast is this algorithm?

In practice: VERY fast:

e.g. Digit Recognition dataset

with 

Converges after 60 iterations 

In theory: Stay Tuned. 
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n = 60, 000, d = 700



Previous Work

Lower Bounds

         on the line

          in the plane

Upper Bounds:

              on the line,    spread

Exponential bounds:
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Our Results

Lower Bound: 2
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n)
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Smoothed Upper Bounds:
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Rest of the Talk

Lower Bound Sketch

Upper Bound Sketch

Open Problems
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Lower Bound

General Idea:

Make a “Reset Widget”: 

If k-Means takes time    on    , create a new 
point set     , s.t. k-Means takes time      to 
terminate.
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Lower Bound: Sketch 

Initial Clustering:

t steps
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Lower Bound: Sketch 

With Widget

t steps reset t steps



Lower Bound Details

Three Main Ideas:

Signaling - Recognizing when to start flipping the 
switch

Resetting - Setting the cluster centers back to 
original position

Odds & Ends - Clean-up to make the process 
recursive
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Signaling

Suppose that when k-Means terminates, there is one 
cluster center that has never appeared before. We use 
this as a signal to start the reset sequence.
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Signaling

Suppose that when k-Means terminates, there is one 
cluster center that has never appeared before. We use 
this as a signal to start the reset sequence.
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Signaling

Suppose that when k-Means terminates, there is one 
cluster center that has never appeared before. We use 
this as a signal to start the reset sequence.
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p

d − ε

d
By setting      we can control 
exactly when     will switch.

ε
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Signaling

Suppose that when k-Means terminates, there is one 
cluster center that has never appeared before. We use 
this as a signal to start the reset sequence.
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Resetting

k properly placed points can reset the positions of the k 
current centers

Easy to compute locations of the reset points, so that 
new cluster centers are placed correctly:
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current center

intended center



Resetting

k properly placed points can reset the positions of the k 
current centers

Easy to compute locations of the reset points, so that 
new cluster centers are placed correctly:
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current center

intended center

add to cluster
to reset mean



Resetting

k properly placed points can reset the positions of the k 
current centers

Easy to compute locations of the reset points, so that 
new cluster centers are placed correctly:
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new center



Resetting

Easy to compute locations of the reset points, so that 
new cluster centers are placed correctly:

But must avoid accidentally grabbing other points
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Resetting

Solution: Add two new dimensions
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Resetting

Solution: Add two new dimensions
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Resetting

Solution: Add two new dimensions
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Multi-Signaling

So far have shown how to signal and reset a single 
cluster. Can use one signal to induce a signal from all 
clusters. 
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Multi-Signaling

All centers are stable before the main signaling has 
taken place.
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Multi-Signaling

All centers are stable before the main signaling has 
taken place.
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Multi-Signaling

Due to signaling the center moves away, now all 
centers absorb points above.

36

p

d + ε

>
d +

ε



Multi-Signaling

Due to signaling the center q moves away, now all 
centers absorb points above. All clusters have 
previously unseen centers.
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Put All Pieces Together

Start with a signaling configuration

Transform it, so that all clusters signal

Use the new signal to reset cluster centers (and 
therefore double the runtime of k-Means)

Ensure the new configuration is signaling

Repeat...
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Construction in Pictures

Construction:

39
Reflected Points



Construction in Pictures

After    steps - signal by all clusters
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Construction in Pictures

Main Clusters absorb “catalyst” points. Yellow centers 
move away
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Construction in Pictures

The new points added are “reset” points - resetting the 
original cluster centers.
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Construction in Pictures

Can ensure “catalyst” points leave the main clusters
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Construction in Pictures

k-Means runs for another    steps. The original centers 
will be signaling. 
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Construction Results

If we repeat the reseting widget construction     times:

         points in           dimensions

       clusters

Total running time: 
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r

O(r)

O(r2) O(r)
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Construction Remarks

Currently construction has very large spread

Can use more trickery to decrease the spread to be 
constant, albeit with a blow up in the dimension.

As presented requires specific placement of initial 
cluster centers, in practice centers chosen randomly 
from points.

Can make construction work even in this case 

Open question:

Can we decrease the dimensionality to constant d?
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Outline

k-Means Intuition

Lower Bound Sketch

Upper Bound Sketch

Open Problems
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Smoothed Analysis

Assume each point came from a Gaussian distribution 
with variance     .

Data collection is inherently noisy

Or add some Gaussian noise (effect on final 
clustering is minimal)
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Key Fact: Probability mass inside any ball of radius    is at 
most           . 
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Potential Function

Use a potential function:

Original Potential at most 

Potential decreases every step.

Reassignment reduces 

Center recomputation finds optimal     for the 
given partition 

49

Φ(C) =
∑

x∈X

‖x − C(x)‖2

nD
2

x − C(X)

Φ



Potential Decrease

Lemma  Let     be a pointset with optimal center    and   
be any other point then:
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Main Lemma

In a smoothed pointset, fix an            . Then with probability at 

least                          for any two clusters     and       with 

optimal centers            and          we have that:
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Proof Sketch

Suppose                and                           . Fix all points 
except for    .
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|S| < |T | x, x ∈ S, x "∈ T

x

To ensure                                   ,     must lie in a ball of 
diameter         .                      

x‖c(S) − c(T )‖ ≤ ε

|S|ε

Since    came from a Gaussian of variance      this 
probability is at most                   . 

x

(|S|εσ−1)d

σ
2

Finally, union bound the total error probability over all 
possible pairs of sets -                   .22n(ε/σ)d



Potential Drop

At each iteration, examine a cluster     whose center 
changed from     to    :

                                                 

Therefore, the potential drops by

After                       iterations, the algorithm must 
terminate.
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To Finish Up:

Chose                            . Then the total probability of 

failure is:                               .

The total running time is

Remark: polynomial for  
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Upper bound (2)

We used the union bound over all possible sets. However, 

due to the geometry, not all sets arise. The total number 

of distinct clusters that can appear is               .

Carrying the same calculations through we can bound 
the total number of iterations as:
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Remarks

The noise need not be Gaussian, need to avoid large 
probabilistic point masses. 

e.g. Lipschitz conditions are enough.  
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Outline

k-Means Intuition

Lower Bound Sketch

Upper Bound Sketch

Open Problems
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Conclusion - Lower Bounds

Showed super-polynomial lower bound on the execution 
time of k-Means:

However - construction requires many dimensions, 
does not preclude an             upper bound

58

O(nd)



Conclusion - Upper Bounds

Can use smoothed analysis to reduce the best known 
upper bounds for k-Means.

But, is not polynomial for small values of d, or large 
values of k.

Even with smoothness there is an           lower bound, 
which is never observed in practice.
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Thank you

Any Questions?


