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Abstract: We consider a dynamic auction model, where bidders sequentially arrive to the market.
The values of the bidders for the item for sale are independently drawn from a distribution, but this
distribution is unknown to the seller. The seller offers a take-it-or-leave-it price for each arriving bidder
(possibly different for different bidders), and aims to maximize revenue. We study how well can such
sequential posted-price mechanisms approximate the optimal revenue that is achieved when the distri-
bution is known to the seller. On the negative side, we show that sequential posted-price mechanisms
cannot guarantee a constant fraction of this revenue when the class of candidate distributions is unre-
stricted. We show that this impossibility holds even if the set of possible distributions is very small, or
when the seller has a prior distribution over the candidate distributions. On the positive side, we devise
a posted-price mechanism that guarantees a constant fraction of the known-distribution revenue when
all candidate distributions exhibit the monotone hazard rate property.
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1 Introduction
Two main points of view are prevalent in the

literature regarding the distributional knowledge
of sellers in markets. Economists have tradition-
ally considered Bayesian models, where the play-
ers have accurate distributional beliefs about the
uncertain information. This assumption is prob-
lematic in practice, as collecting the distributional
data may be constrained by technical or opera-
tional reasons, and also by the fact that this data
is elicited from market participants that may act
strategically also during this preliminary phase of
the mechanism. Computer Scientists, on the other
hand, have adapted the worst-case approach, tra-
ditionally employed in analysis of algorithms, to
designing mechanisms that are prior-free (see e.g.
[10]). Here, the preferences of the players are as-
sumed to be arbitrary, and the analysis compares
the performance of the mechanism on a worst case
instance to a carefully crafted benchmark. In real-
ity, however, worst case instances are rarely repre-
sentative of the real-world performance of a mech-

anism. Moreover, with no clear notion of optimal
auction in a prior-free setting, benchmarks are of-
ten controversial, and yield worst-case competitive
ratios that are often disappointing even for the best
auctions.

In this paper, we consider a framework, pro-
posed in [11] and further developed in [8], that
bridges the worst case and Bayesian models,
and enables competitive analysis of auctions in
the sense traditionally employed in computer sci-
ence. In this framework, we consider environ-
ments where the preferences of the customers are
drawn from a distribution, but this distribution is
unknown to the seller, and learning any informa-
tion about this distribution is an integral part of
the mechanism. In other words, the mechanism
is detail-free, in the sense first proposed by Wilson
[19]. The goal is to design such a detail-free mech-
anism that competes with the best Bayesian mech-
anism that knows the distribution. Mechanisms
in this model preserve detail-freeness, yet com-
pete against mechanisms with access to distribu-
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tional knowledge. In this paper, we consider such
mechanisms in an online setting with the follow-
ing additional restriction: the mechanisms must
be posted price. In contrast to traditional direct-
revelation mechanisms, posted price mechanisms
interact with a player by offering him a single take-
it-or-leave it offer, and never learn a player’s value
directly.

We consider a dynamic single-item auction
model. A seller is trying to sell a single good to
a set of n bidders. The bidders arrive sequentially
to the market in an order they cannot influence, and
the seller interacts with each bidder before observ-
ing future bidders. The auction terminates once the
item is sold to one of the bidders, but in case the
bidder does not buy the item, she leaves the market
and never returns. Each bidder i (1 ≤ i ≤ n) has a
private value vi for the item. All the values are in-
dependently drawn from the same distribution F .
The distribution F is unknown to the seller, but the
seller knows that F belongs to a known family of
distributions F , each with support [1, h] for some
h ≥ 1 known to the seller. The seller aims to max-
imize revenue.

We are interested in designing truthful auctions
where revealing their true value is a dominant strat-
egy for the bidders. The truthfulness constraint im-
plies that each bidder must face a price that is inde-
pendent of his bid, and where a bidder wins if and
only if his value is at least the offered price. In-
stead of revealing his exact value, the bidder can
also reply by just accepting or rejecting the of-
fered price. For the seller, however, it does matter
whether the bidder reports his exact value or just
an ”accept”/”reject” message, as the information
about the true value can reveal information on the
unknown underlying distribution and thus be help-
ful for the seller when deciding on future prices.
Yet, asking agents to report their values might be
unrealistic in some settings. While an agent never
gains anything from revealing his valuation (com-
pared to just reporting if it above the offered price),
he has no real incentive to reveal it as well. This
especially holds for mechanisms with a sampling
phase where bidders are asked to reveal their ex-
act information although they have no chance of
winning. Moreover, bidders may prefer revealing
minimal information on their values if they plan to
participate in similar markets in the future; In ad-

dition, figuring out the exact value of a bidder may
require some efforts on her behalf, while answer-
ing a take-it-or-leave it offer is usually much eas-
ier. Consider, for instance, an online travel agency
(e.g. Expedia.com) trying to sell an airline ticket
to a sequence of bidders; asking the bidders to re-
port their willingness to pay is unnatural in such
environments, but it is customary to offer an ar-
riving customer a price and only observe if this
price is accepted or not. We therefore aim to de-
sign mechanisms that elicit information from the
bidders while giving them real incentives to partic-
ipate, and where bidders will not voluntarily dis-
close more than the necessary information about
their private types.

This paper therefore considers a popular and
natural family of mechanisms, which is the fam-
ily of posted-price mechanisms. In such mecha-
nisms, the seller offers a take-it-or-leave-it price to
each bidder in his turn, and the bidder either ac-
cepts or rejects the offer. If he accepts the offer
then he wins the item and the auction ends; other-
wise, he leaves the market for good and the seller
waits for the next bidder to come. In posted-price
mechanisms, bidders have a dominant strategy to
accept any offer which is below their values, and
reject it otherwise. Note that the bidders are not
expected to reveal their exact valuation, but only
to send a ”reject”/”accept” message. The seller has
an opportunity to learn information on the underly-
ing distribution; for example, if the first 10 bidders
rejected a set of high prices, then some distribu-
tions in F may be more likely to be the actual dis-
tribution than others. However, since the auction
is terminated with the first ”accept”, this learning
ability is clearly limited. Moreover, the algorithm
gains nothing from being adaptive as it can take
into account that if it is posting a price to a bidder
it means the item was not sold yet. Another reason
that using posted prices is appealing in this model
is that when the true distribution F is known to the
bidder, the optimal dynamic auction is a posted-
price mechanism (see, e.g., [5]) and can be com-
puted by a dynamic programming algorithm.

In this paper we would like to measure how
much revenue can be obtained using sequential
posted-price mechanisms when bidders’ valua-
tions are identically distributed yet the prior dis-
tribution on the preferences of the bidders is un-
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known to the mechanism (but is known to exist).1

We would like to compare this revenue to the
optimal expected revenue achievable in a dynamic
mechanism when the distribution is known to the
seller, and we denote this revenue by Ron(F ).
One may also wish to compare this revenue to the
optimal ”offline” revenue, the revenue that is ob-
tained when the distribution is known to the seller
and all the bidders are simultaneously present in
the market. For standard (Myerson-regular) dis-
tributions, this revenue is achieved by the Myer-
son auction [16] that is essentially a second-price
(Vickrey) auction with an optimally chosen re-
serve price. When the distribution is known to
the seller, it is known that sequential posted price
mechanisms achieve in large markets at least 78%
of the Myerson revenue ([4]) and at least half of
the Myerson revenue when multiple items are for
sale ([7]). When considering the above positive
results regarding the power of posted-price mech-
anisms, one might hope that posted prices can
work reasonably well even with unknown distribu-
tions. Nonetheless, the first main result in this pa-
per is negative and shows that posted-price mech-
anisms can only obtain a diminishing fraction of
the revenue that could have been achieved had the
distribution been known to the seller. We first
prove a hardness result for deterministic mecha-
nisms when the class F of candidate distributions
is unrestricted:

Theorem: When F contains all possible dis-
tributions on the support [1, h], no deterministic
sequential posted-price mechanism obtains better
than a Ω( log h

log log h )-approximation to the revenue
obtained with a known distribution (Ron(F )).

1While the assumption of identical distributions is strong,
we note that if we assumed arbitrary non-identical distribu-
tions for the bidders that would yield very negative results. In
this case the assumption that the distributions are not known
is at least as strong as assuming adversarial input (each agent
sampled from its own point distribution). Clearly, determin-
istic mechanisms cannot achieve any reasonable approximation
(better than h) for such inputs. Moreover, we show via a simple
proof in Claim 14 that randomized mechanisms cannot achieve
a factor better than Ω(log h/ log log h). As both lower bounds
are based on point distributions, which trivially have monotone
hazard rate (MHR), we observe that adding the MHR assump-
tion with unrestricted non-identical distributions does not make
a reasonable upper bound possible. Given these negative re-
sults, in this paper we add the natural assumption that all agents
distributions are identical.

We note that this impossibility result is nearly
tight, as there is a simple, deterministic posted-
price mechanism that achieves an O(log h) ap-
proximation to this revenue benchmark. We also
note that our results hold for any number of agents
n, and are only asymptotic in h.

The above theorem is proved by constructing a
hard instance of log h

log log h distributions, where every
sequence of prices will achieve poor revenue for
at least one of the distributions. We can therefore
strengthen the above theorem and claim that bet-
ter than an Ω( log h

log log h )-approximation is impossi-
ble using sequential posted prices, even when the
set of candidate distributions is very small, that is,
|F| ∼= log h

log log h .
The above negative result has a worst-case na-

ture, in the sense that we require that the mecha-
nisms will perform well for any distribution in F .
A Bayesian approach to this problem would con-
sider a case where the seller is still unaware to the
actual distribution from F but has some prior dis-
tribution g over the set F .2 One would hope that
this assumption would allow us to achieve better
revenue guarantees. Unfortunately, we show that
this case remains hard.

Theorem: Consider a class of distributions
F , where the actual distribution is drawn from
this class according to a known distribution g.
Then, there exist F and g such that all determin-
istic mechanisms achieve at most an Ω( log h

log log h )-
approximation to the revenue obtained with a
known distribution (Ron(F )).

Using Yao’s min-max principle, we conclude
from the above theorem that our first theorem
actually holds also for randomized mechanisms.
We conclude that even randomized mechanisms
cannot guarantee a better approximation than
Ω( log h

log log h ).

As the above hardness results show, one must
restrict the set of possible distributions for ob-
taining positive results in our model. In our fi-
nal main result, we construct a mechanism that

2Note that a distribution over a class of distributions of types
is not equivalent to just having a distribution over types, due to
the repeated sampling. To see this consider a distribution over
the family of 2 point distributions, one with point mass at 1 and
the other with a point at 2. After setting the price to 2 for the
first agent, the exact value of the second agent is complectly
known.
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guarantees a constant fraction of the known-
distribution revenue when all candidate distribu-
tions have monotone hazard rate (that is, f(x)

1−F (x)

is non-decreasing).3 For this approximation result,
we require that n will large enough with respect
to log h, and their ratio will affect the approxima-
tion we obtain. For instance, the theorem show
that when

√
n > log h, our mechanism achieves at

least 1
4e of the revenue achieved when the distribu-

tion is known. In general,

Theorem: Assume that nϵ > log h for some con-
stant 1 > ϵ > 0. Then, there exists a deterministic
mechanism that achieves a 1−ϵ

2e -fraction of the rev-
enue obtained with a known distribution, Ron(F ),
when F contains all distributions with monotone
hazard rate.

Our proposed mechanism is simple, while its
analysis is quite evolved. We define log h price
levels, h/2, h/4, h/8, ..., h/2i, ..., 2, 1 and offer
each one of them to n

log h bidders (from highest
price level to lowest). The requirement that n is
large enough with respect to log h is necessary,
as we show that no deterministic mechanism can
achieve an approximation ratio better than h1/n

even for point distributions (which are trivially
monotone hazard rate), thus constant approxima-
tion is impossible with n small relative to log h.

Related Work: We now survey some related
papers on detail-free mechanism design, posted
prices, dynamic mechanisms and secretary prob-
lems. First, we note that the compromise be-
tween worst-case and Bayesian competitive anal-
ysis was first proposed by Hartline and Roughgar-
den [11]. Dhangwatnotai et al [8] then applied this
framework to design constant-approximate direct-
revelation mechanisms in fairly general environ-
ments.

One closely related paper is by Gershkov
and Moldovanu [9], who studied dynamic auc-
tions settings where the distribution of the buy-
ers’ preferences is unknown to the seller; They
characterized necessary and sufficient conditions
for information-theoretic optimum to be im-

3The non-decreasing hazard rate condition is standard in
mechanism design (see, for example, [14] and in recent
computer-science work of [6, 11]). It is satisfied by many natu-
ral distributions, including the exponential, uniform, and bino-
mial distributions.

plementable in equilibrium, and basically they
showed that the first-best allocation should con-
sist of threshold values (that correspond to posted
prices in our model) to be implementable. [9]
did not study the magnitude of inefficiency in this
setting, and in this sense our work complements
their work. Segal [18] and a sequence of pa-
pers in the CS literature (see survey in [12]) stud-
ied prior-free environments where empirical distri-
butions where used to obtain revenue guarantees.
Blumrosen and Holenstein [4] studied posted-price
mechanisms, both in static and dynamic environ-
ments, with commonly known distributions, com-
puted their exact revenue and compared it to the
optimal (Myerson) revenue. A recent paper by
Chawla et al. [7] studies sequential posted pricing
in more general models, of matroid-based alloca-
tion rules and in some multi-dimensional settings,
and presented several constant approximations to
the Myerson revenue. Kleinberg and Leighton [13]
presented upper and lower bounds on the additive
regret of posted-price auctions for unlimited sup-
ply of goods.

Several recent papers ([1, 2]) studied versions
of the secretary problem, where an adversary fixes
a set of n values, these values arrive in a ran-
dom order, and stopping rules should be designed
to approximate the full-information solution. We
note that with i.i.d. samples any order of val-
ues is equally likely, thus the secretary model is
weaker than our model4 in the sense that any posi-
tive result for the secretary problem can be applied
to our model, and any hardness result to the un-
known i.i.d. distribution model holds for the sec-
retary model. In the context of secretary problems,
our paper studies stopping rules that are based on
a threshold-based decisions at each stage, without
observing the exact value of each secretary. Fi-
nally, online auctions were first studied by [15],
and are surveyed in [17].

We proceed as follows. Section 2 briefly
presents some definitions and notations. Section
3 describes our main impossibility result for deter-
ministic mechanisms, and in Section 4 we extend
this result to randomized mechanisms. We con-
clude in Section 5 by presenting a positive result
when players have monotone hazard rate distribu-

4Formally, this holds for continuous distributions where ties
occur with probability zero.
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tions.

2 Preliminaries
We consider a model where a seller has one item

for sale. A set of n bidders arrive sequentially, and
we index them by the order of their arrival (Bidder
1 arrives first, then Bidder 2, etc.). Each agent i
has a private value vi for the item. There is a pub-
licly known h ≥ 1 such that for every 1 ≤ i ≤ n it
holds that vi ∈ [1, h]. The n values (v1, ..., vn) are
sampled i.i.d. from a distribution F ∈ F . Given
a distribution F we establish the following nota-
tions.
• W (F ) denotes the expected social welfare,

that is Ev∼F [maxn
i=1{vi}].

• Given a list of posted prices p = (p1, ..., pn),
let Rev(p, F ) be the expected revenue ob-
tained in a posted-price mechanism that of-
fers a price pi to the i’th arriving bidder with
value vi, sampled from F .

• For a mechanism M that offers the prices p
we denote its expected revenue by RM (F ) =
Rev(p, F ).

• Let Ron(F ) be the optimal expected revenue
in a dynamic auction when the distribution F
is known to the seller. Since it is known (e.g.,
[5]) that the optimal dynamic auction can be
implemented by a posted-price mechanism,
we have

Ron(F ) = maxp∈RnRev(p, F )

We observe that since the values are drawn from
i.i.d. distributions, the revenue in any posted-price
mechanism is dominated by another mechanism
for which p1 ≥ p2 ≥ ... ≥ pn, that is, with de-
creasing posted prices.

For a benchmark B (e.g., welfare or revenue)
we say that a posted price mechanism M is β-
approximation if for every input it gets at least 1/β
fraction of the benchmark B.

3 A Lower Bound for Deterministic
Mechanisms

In this section, we show that sequential posted-
price mechanisms cannot obtain a good revenue
approximation when the distribution on the bid-
ders’ preferences is unknown and unrestricted.
We show that every posted price mechanisms

can guarantee at most a fraction proportional to
log log h/ log h of the optimal revenue that is ob-
tained by dynamic mechanisms with a known dis-
tribution (Ron(F )). In the next section, we extend
this result to randomized mechanisms. We now
present our lower bound.

Theorem 1. When F contains all the distributions
over [1, h], every deterministic posted-price mech-
anism obtains a revenue approximation of no bet-
ter than Ω( log h

log log h ) for some F ∈ F .

In the rest of this section we first prove some
simple bounds and then prove Theorem 1.

3.1 Few Simple Bounds
Before proving the above lower bound, we

present some simple bounds on the revenue in our
model (some bounds are given on the social wel-
fare and are hence stronger). We first observe
(in Proposition 2) that the impossibility result in
Theorem 1 is almost tight as an upper bound of
2 log h can be trivially achieved with a randomized
mechanism, and an upper bound of 4 log h can be
achieved with a deterministic mechanism (as long
as n ≥ log h). The condition that n ≥ log h
is essential in order to achieve such a determinis-
tic O(log h) upper bound, as we show in Proposi-
tion 3 that no deterministic mechanism has revenue
approximation better than h1/n.

For a vector of realized values v =
(v1, v2, ..., vn) we define the realized social
welfare to be W (v) = maxn

i=1{vi} and the
realized revenue of mechanism M by RM (v).
With these notation we present the following
proposition. Note that any revenue approximation
to the social welfare obtains at least the same
approximation factor to any revenue bench-
mark, since the revenue is bounded from above
by the social welfare (in individually-rational
mechanisms).

Proposition 2. There exists a randomized posted-
price mechanism M that achieves revenue that
is a 2 log h-approximation to the realized social
welfare, i.e., W (v)

RM (v)
≤ 2 log h for every vector

v ∈ [1, h]n.
In addition, there exists a deterministic mecha-

nism M that achieves a 4 log h-approximation to
the expected social welfare when n ≥ log h, i.e.,
W (F )
RM (F )

≤ 4 log h for every distribution F .
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Proof. A randomized mechanism:
Pick a random price p = 2i for i ∈
{0, 1, ..., log h − 1} and set pi = p for all i. If
vmax is the maximal value then with probability
1/ log h the price p ∈ [vmax/2, vmax] and the ap-
proximation follows.

A deterministic mechanism:
Set the price p = h/2i for i ∈ {0, 1, ..., log h− 1}
(in decreasing order) for ⌊n/ log h⌋ times
each price. Note that ⌊n/ log h⌋ ≥
max{1, n/(2 log h)} as n ≥ log h. Thus,
with probability at least 1/2 log h the maxi-
mal value sampled from the distribution faces
a price that is at least half the value, and the
approximation follows.5

We now show an easy lower bound on the ap-
proximation achieved by sequentially posting n
prices. The main idea is that when the number of
bidders n is small, the offered prices are sparsely
scattered on the support and therefore a bad ap-
proximation is unavoidable for some singleton dis-
tributions. This proposition will thus allow us not
to handle cases where n is small when proving our
main results later in this section.

Proposition 3. When F contains all possible point
distributions over [1, h], no deterministic posted-
price mechanism obtains better than a h1/n-
approximation to the optimal revenue achievable
with a known distribution; that is, for any ϵ > 0
there exists a distribution F ∈ F such that

Ron(F )

RM (F )
> h1/n − ϵ (1)

Proof. Let p1 ≥ p2 ≥ ... ≥ pn be the posted
prices published by the mechanism. We first ob-
serve that we must have that pn = 1, otherwise if
the whole mass of the distribution is on 1+ ϵ < pn
the approximation ratio will be unbounded. A sec-
ond observation is that the ratio between some pair
of consecutive prices must be at least h

1
n ; Other-

5We note that the above randomized mechanism has an ad-
vantage from a strategic point of view, as bidders have no rea-
son to act strategically with respect to their arrival time as the
price never changes. The deterministic mechanism, on the other
hand, does not admit this property as it offers a decreasing se-
quence of prices. Moreover, the randomized mechanism is in-
dependent of the number of players n.

wise,

h =
h

p1
· p1
p2

· p2
p3

... · pn−1

pn
< (h

1
n )n = h (2)

Let pi−1, pi be prices such that pi−1

pi
≥ h

1
n . If the

whole mass of the distribution lies on pi−1 − ϵ,
then our posted-price mechanism obtains revenue
of pi where a seller who is knowledgable about the
true distribution can gain pi−1 − ϵ. Overall, the
approximation obtained is at least pi−1−ϵ

pi
≥ h

1
n −

ϵ.

3.2 Proof of Theorem 1
To prove the theorem we define the following

”hard” family of distributions F = F1, F2, .... Let
α = log h

log log h . The j − th distribution Fj ∈ F
satisfies: Pr[x = 1] = 1− j/n and Pr[x = αi] =
1/n for i ≤ j.

It is easy to see that since α = log h
log log h , the size

of F must be around α as the following observa-
tion shows (proof appears in Appendix A.2).

Observation 4. For the above set of distributions
F , and for large enough h, we have that α − 1 ≤
|F| ≤ 2α.

Before presenting the formal proof we sketch
the outline of the proof. We first show that for
each distribution Fj ∈ F it holds that with con-
stant probability one of the n sampled values is αj

and thus the optimal online mechanism, that knows
the true distribution, obtains an expected revenue
of at least a constant times αj (Lemma 5). On the
other hand, we show that the revenue of any deter-
ministic posted-price mechanism is much smaller
(about a 1/α fraction of this revenue). This is done
in few steps.

First, in Lemma 6 we show that if a price in
[αj−1, αj ] is used rj times out of n then the rev-
enue on Fj is bounded by some function of α and
rj . As there are about α distributions in F , for
one of these distributions rj must be small, at most
n/(α− 1). For this distribution Fj , the revenue is
small, in the order of αj−1. Together with the fact
that the optimum online mechanism obtains rev-
enue of about αj , we conclude that for Fj we only
get about 1/α fraction of the optimum.

We next move to the formal proof of the the-
orem. We assume that n > 4α = 4 log h

log log h ;
Otherwise, we can invoke Proposition (3) that
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claims that no deterministic posted-price mech-
anism can achieve a better approximation than
h

1
n = Ω(log h) (when n > log h

log log h ).
For a sequence (v1, v2, ..., vn) of n independent

samples from Fj define Y to be the random vari-
able of the number of values αj in the sequence.
We first show that if Fj is known, then high ex-
pected revenue can be achieved by online mech-
anisms, that is, we show that Ron(Fj) is propor-
tional to αj .

Lemma 5. For any distribution Fj ∈ F it holds
that

αj ≥ Ron(Fj) ≥ (1− e−1)αj (3)

Proof. The maximal value that can be sampled
from Fj is αj , thus αj ≥ Ron(Fj). Ron(Fj) is the
optimal online mechanism when it is known that
the distribution is Fj . This mechanism has rev-
enue at least as high as the mechanism that fixes a
constant price of αj for all agents. Such a mecha-
nism will get a revenue of αj whenever at least one
value of αj was sampled by one of the n agents.
This happens with probability 1 − Pr[Y = 0].
Since Pr[Y = 0] = (1− 1/n)n ≤ e−1, this event
happens with probability at least 1− e−1.

We want to show that no posted-price mecha-
nism can approximate this revenue, thus we bound
the revenue of any mechanism from below. We
first bound the revenue obtained on Fj as a func-
tion of rj , the number of times the mechanism
posts a price in [αj−1, αj ]. In the rest of the proof
we will use the notation k0 = ⌈α⌉. Proof can be
found in the appendix.

Lemma 6. Assume that n > 4α, and consider a
deterministic posted-price mechanism that posts a
price in [αj−1, αj ] for rj times. Assume that rj ≤
n−k0

2 . For distribution Fj it holds that

RM (Fj) ≤ αj ·
(
2

α
+

4e · rj
n

)
Using the above machinery, we can now com-

plete the proof of Theorem 1.

Proof. (Of Theorem 1.)
By Observation 4 there are at least α− 1 > α/2

distributions in F . This implies that for at least one
j it holds that rj < 2n

α .

For h large enough we have that 4/α < 1/2. As
rj ≤ 2

α · n, n > 4α and k0 ≤ 2α it holds that

2rj + k0 ≤ 4

α
· n+ 2α ≤ 1

2
· n+

n

2
= n

This implies that rj ≤ n−k0

2 . We can thus use
Lemma 6 for distribution Fj to show that as rj

n ≤
2
α we have

RM (Fj) ≤ αj ·
(
2

α
+

4e · rj
n

)
≤ αj ·

(
2

α
+

4e · 2
α

)
= αj · 8e+ 2

α
< 26αj−1 (4)

By Lemma 5, Ron(Fj) ≥ (1 − e−1)αj . Taken
together with Eq. (4) we have:

RM (Fj) · α · 1− e−1

26
< Ron(Fj)

which concludes the proof of the theorem.

4 Priors Over Distributions and Ran-
domized Mechanisms

In this section, we extend the impossibility re-
sult presented in Theorem 1 to randomized mecha-
nisms. For that, we first prove the limitations of de-
terministic mechanisms in the case where there is a
prior distribution over the candidate distributions.
We then use Yao’s min-max principle to conclude
our result for randomized mechanisms.

Let F be a family of distributions, and let g be
a prior over F . Define Ron(g) to be the expected
revenue (over g) of the optimal online mechanism
that knows which distribution F ∈ F was realized.
Define RM (g) to be the expected revenue (over g)
of the mechanism M that knows F but does not
know which distribution F ∈ F was realized. We
show that the best online posted price mechanism
that does not know which distribution was realized
has much smaller expected revenue.

Theorem 7. Every deterministic posted-price
mechanism obtains expected revenue approxima-
tion (over g) of no better than Ω(log h/ log log h)
when n > 4α, i.e., there exists a constant c > 0,
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F , and a prior g over F , such that for every mech-
anism M it holds that

Ron(g)

RM (g)
> c · log h

log log h

We define g to be a distribution over the ”hard
family of distributions” (presented in the begin-
ning of Section 3.2) that picks Fj with probabil-
ity proportional to 1/αj . Formally, let wj = 1/αj

and let σ =
∑

j:Fj∈F wj . By g the distribution Fj

is picked with probability Pr[F = Fj ] = wj/σ.
The theorem directly follows from the two lem-

mas below. The first lemma shows that if the distri-
butions was known to the seller, then an expected
revenue of roughly log h

log log h could be achieved. The
second lemma shows that with an unknown distri-
bution, no posted-price mechanism can gain more
than a constant expected revenue.

Lemma 8. Let g be the prior over F defined
above. It holds that Ron(g) = 1

σ · Ω( log h
log log h )

Proof. By Lemma 5, for Fj ∈ F it holds that
Ron(Fj) ≥ (1 − e−1)αj . Thus, each Fj con-
tributed at least (1− e−1)αj ·wj/σ = (1− e−1)σ
to the expectation, and as by Observation 4 the
family F is of size Ω( log h

log log h ), we conclude that

Ron(g) = 1
σ · Ω

(
log h

log log h

)
.

The proof of the following lemma can be found
at Appendix A.3

Lemma 9. Assume that n > 4α. Let g be the
prior over F defined above. For any deterministic
posted-price mechanism it holds that RM (g) = 1

σ ·
O(1).

Using Yao’s min-max lemma we conclude that
randomized mechanisms cannot achieve good ap-
proximation on an adversarially chosen distribu-
tion. We note that this lower bound is almost tight,
as we showed (Proposition 2) a simple mechanism
that obtains an O(log h)-approximation. There-
fore, the following corollary strengthen Theorem
1 for randomized mechanisms.

Corollary 10. When F contains all the dis-
tributions over [1, h], every randomized mecha-
nism has revenue approximation of no better than
Ω(log h/ log log h) when n > 4α. I.e., there ex-
ists a constant c > 0 such that for any random-
ized mechanism M there exists F ∈ F such that
c · log h

log log h ·RM (F ) < Ron(F ).

5 An Upper Bound for Monotone
Hazard Rate Distributions

5.1 The Environment
We consider player valuations drawn from a dis-

tribution F with support [1, h]. We use F (x) to
denote the c.d.f, f(x) = dF (x)/dx to denote the
p.d.f, µ to denote the expectation, S(x) = 1−F (x)
to denote the survival probability, and H(x) =
f(x)/S(x) to denote the hazard rate of F . In this
section, we will show an mechanism that attains
a constant approximation ratio for distributions F
with H(x) monotone non-decreasing. This Mono-
tone Hazard Rate (M.H.R) assumption is common
in auction theory, and M.H.R distributions include
most natural distributions in this setting. We em-
phasize that the mechanism has no knowledge of
distribution F , yet achieves the claimed approxi-
mation ratio uniformly over all F with a monotone
nondecreasing hazard rate.

5.2 The Mechanism
We define the Equal-Sample-of-Every-Scale

mechanism: The mechanism offers the price h/2i

to ⌊n/(log h)⌋ agents, for every i ∈ {1, ..., log h}
in that order. Next, we will show that this mech-
anism attains a constant factor approximation to
the optimum possible revenue under mild assump-
tions.

5.3 Bounding the Performance of the Mech-
anism

Our main positive result is that the Equal-
Sample-of-Every-Scale Mechanism achieves a
constant approximation for every monotone haz-
ard rate distribution.

Theorem 11. Let log h ≤ nϵ for ϵ ∈ (0, 1),
and consider player valuations drawn i.i.d from
a monotone hazard rate distribution F . Let Xn

denote the first order statistic of n samples from
F . The expected revenue of the Equal-Sample-of-
Every-Scale Mechanism is at least

1− ϵ

2e
E[Xn]

In other words, the expected revenue of the
mechanism is a constant factor of the expected so-
cial welfare.

We recall that the mechanism is deterministic.
It is not surprising that we need n to be relatively
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large (nϵ > log h), as the lower bound of Proposi-
tion 3 shows that without n being at least log h a
constant approximation is unachievable by a deter-
ministic mechanism6.

First, we show that expectation of the first or-
der statistic Xn of an M.H.R distribution F , as a
function of the number of samples n, exhibits di-
minishing marginal returns in a strong sense.

Lemma 12.

E[Xn+1]− E[Xn]

E[Xn]− E[Xn−1]
≤ n

n+ 1

Proof. First, we can write E[Xn] as follows

E[Xn] =

∫ ∞

x=0

1− Fn(x)dx

=

∫ 1

F (x)=0

1− Fn(x)

f(x)
dF (x)

=

∫ 1

F (x)=0

1− F (x)

f(x)

(
n−1∑
i=0

F i(x)

)
dF (x)

=

∫ 1

F (x)=0

1

H(x)

(
n−1∑
i=0

F i(x)

)
dF (x)

Let ∆n = E[Xn+1]−E[Xn]. By the above ex-
pression for E[Xn], ∆n can be written as follows.

∆n =

∫ 1

F (x)=0

1

H(x)
Fn(x)dF (x)

F is an M.H.R distribution, therefore 1/H(x) is a
non-increasing function of x, and therefore also of
F (x). Applying Lemma 21 in the appendix with
z = F (x) and g(z) = 1

H(F−1(z)) gives us that
∆n/∆n−1 ≤ n

n+1 , as needed.

This allows us to bound the growth of the first
order statistic in terms of the number of samples.
Here, Hn =

∑n
i=1 1/i denotes the nth harmonic

number

Lemma 13. For m ≤ n it holds that

E[Xm]

E[Xn]
≥ Hm

Hn
≥ logm

log n

6We note that the lowerbound of Proposition 3 used point-
distributions, which obey the monotone hazard rate assumption.

Proof. We show the second inequality in Lemma
22 in the appendix. To show the first in-
equality, by induction it suffices to show that
E[Xn+1]/E[Xn] ≤ Hn+1/Hn for all integers
n ≥ 1. Letting ∆0 = E[X1] and ∆i = E[Xi+1]−
E[Xi] for i > 0, this is equivalent to showing that∑n

i=0 ∆i∑n−1
i=0 ∆i

≤ Hn+1

Hn

This, in turn, is equivalent to showing

∆n∑n−1
i=0 ∆i

≤ Hn+1

Hn
− 1 =

1

(n+ 1)Hn

We rewrite the above condition as follows

n−1∑
i=0

∆i

∆n
≥

n∑
i=1

(n+ 1)/i

Therefore, it suffices to show that ∆i/∆n ≥ (n+
1)/(i + 1). This can be established by inductive
application of Lemma 12, completing the proof.

The above lemma implies that Pr[Xm ≥
logm
logn E[Xn]] ≥ Pr[Xm ≥ E[Xm]]. Lemma 20
in the appendix implies that Xm is distributed as
a monotone hazard rate distribution. Moreover, a
result of Barlow and Marshall [3] implies – as a
special case – that every monotone hazard rate dis-
tribution exceeds its expectation with probability
at least 1/e. This gives the following inequality.

Pr

[
Xm ≥ logm

log n
E[Xn]

]
≥ 1/e (5)

Proof of Theorem 11. The mechanism samples at
least m = n1−ϵ bidders for each price 2i ∈ [1, h].
Let p = 2i ∈ [E[Xn](1−ϵ)/2, E[Xn](1−ϵ)]. The
revenue of the algorithm is at least that attained had
we simply tried to sell to m players using price p,
which is at least:

pPr[Xm ≥ p] ≥ pPr[Xm ≥ E[Xn](1− ϵ)]

= pPr[Xm ≥ logm

log n
E[Xn]]

≥ p/e ≥ E[Xn](1− ϵ)/2e
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A Missing Claims and Proofs
A.1 Section 1
Claim 14. Let α = log h/ log log h. Assume
player values are drawn from unknown, non-
identical point distributions with support in [1, h].
No randomized posted price mechanism achieves
better than a 2

α fraction of the optimal revenue.

Proof. A randomized posted-price mechanism
chooses a (possibly random) price pi to offer to
player i, who then arrives with value vi. Observe
that the distribution of pi is independent of vi,
though may depend on {vj}j<i. We observe that
this is an adversarial setting, where an adversary
may set vi depending on the distribution of pi.

We consider an adversary who tries to minimize
the mechanism’s revenue, in the following manner.
For each player i, choose an integer ki such that
1 ≤ αki−1 ≤ αki ≤ h, and Pr[pi ∈ [αki−1, αki ]]
is minimized. By observation 15, this probability
is upper-bounded by 1/2α. Let vi = αki . The
revenue collected by the mechanism from player i
is upper-bounded by

1

2α
vi +

vi
α

<
2

α
vi

Where the first term of the sum upper-bounds
the revenue attained when pi ∈ [αki−1, αki ],
and the second term upper-bounds the revenue
otherwise. Summing over all players, the total
revenue of the mechanism is at most 2

α

∑
i vi.

Since the player valuations are drawn from point-
distributions, the optimal revenue is

∑
i vi, com-

pleting the proof.
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A.2 Section 3
Observation 15. Let α = log h

log log h . It holds that
αα < h. Additionally, if h is large enough then
h < α2α.

Proof. We first show that αα < h, that is,
( log h
log log h )

log h
log log h < h.

The claim is true if and only if

log h

log log h
· log

(
log h

log log h

)
< log h

which holds if and only if

log h

log log h
· (log log h− log log log h) < log h

which clearly holds.
Next we show that if h is large enough then h <

α2α, or equivalently, h < ( log h
log log h )

2 log h
log log h . This

claim is true if and only if

log h <
2 log h

log log h
· log

(
log h

log log h

)
which holds if and only if

log h <
2 log h

log log h
· (log log h− log log log h)

which holds if and only if

2 log log log h ≤ log log h

which clearly holds if h is large enough.

Corollary 16. If h is large enough then the family
F has at most 2α and at least ⌊α⌋ distributions.
Note that ⌊α⌋ ≥ α− 1.

A.2.1 Proof of Lemma 6
In this section we prove Lemma 6.

Lemma 17. Assume that n > 4α, and consider a
deterministic posted-price mechanism that posts a
price in [αj−1, αj ] for rj times. Assume that rj ≤
n−k0

2 . For distribution Fj it holds that

RM (Fj) ≤ αj ·
(
2

α
+

4e · rj
n

)

Proof. We need to bound RM (Fj). If the price is
not in [αj−1, αj ] the revenue of the mechanism is
smaller than αj−1. Let R(v) be the revenue of the
mechanism that posts the price αj for rj times and
always posts the price of 0 afterwards, when the
vector of values is v.
RM (Fj) ≤ αj−1 +E[R(v)], where E[R(v)] is

the expectation of R(v). Recall that Y counts the
number of αj in v.

E[R(v)] =
n∑

k=1

E[R(v)|Y = k] · Pr[Y = k]

We next split the sum into two terms.

E[R(v)] =

k0∑
k=1

E[R(v)|Y = k] · Pr[Y = k]

+
n∑

k=k0+1

E[R(v)|Y = k] · Pr[Y = k]

(6)

We observe the following easy bound on
Pr[Y = k].

Pr[Y = k] =

(
n

k

)
n−k(1− 1

n
)n−k

≤ nk

k!
· n−k · 1

≤ 1

k!
(7)

We can now bound the latter term of Eq. (6).
Clearly, E[R(v)|Y = k] ≤ αj , thus

n∑
k=k0+1

E[R(v)|Y = k] · Pr[Y = k]

≤ αj
n∑

k=k0+1

1

k!

≤ αj
n∑

k=k0+1

1

2k

≤ αj · 2−k0 ≤ αj

k0
(8)

We next move to bound the first term of Eq. (6).
The following claim would be useful.
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Claim 18. For distribution Fj it holds that

E[R(v)|Y = k] ≤ αj ·

(
1−

(
1− rj

n− k

)k
)
(9)

Proof. Let Z be the the event that in none of the
rj times that the mechanism posts the price αj , the
realized value is αj .

Pr[Z] =

(
n−rj

k

)(
n
k

)
=

k−1∏
i=0

(
n− rj − i

n− i

)

=

k−1∏
i=0

(
1− rj

n− i

)

≥
(
1− rj

n− k

)k

(10)

Therefore,

E[R(v)|Y = k]

= αj · (1− Pr[Z])

≤ αj ·

(
1−

(
1− rj

n− k

)k
)

(11)

Recall that rj ≤ n−k0

2 . For k ≤ k0 this implies
that 1

2 ≥ rj
n−k0

≥ rj
n−k . We use the fact that for

x ∈ [0, 1/2] it holds that e−2x ≤ 1 − x ≤ e−x to
conclude that

1−
(
1− rj

n− k

)k

≤ 1− e−
2·rj ·k
n−k ≤ 2 · rj · k

n− k
(12)

As we assume that n > 4α and as k ≤ k0 ≤ 2α
it holds that n/2 > 2α ≥ k, thus n − k ≥ n/2.
As n − k > n/2 it holds that 2·rj ·k

n−k ≤ 4·rj ·k
n .

Combining this with Claim 18 and Eq. (12) we
derive that for k ≤ k0 it holds that

E[R(v)|Y = k] ≤ 4 · rj · k
n

αj

We use this and Eq. (7) to bound the first term

of Eq. (6).

k0∑
k=1

E[R(v)|Y = k] · Pr[Y = k]

≤
k0∑
k=1

αj · 4 · rj · k
n

· 1

k!

≤ αj · 4 · rj
n

·
k0∑
k=1

1

(k − 1)!
≤ αj · 4e · rj

n

(13)

Combining Equations (6), (8) and (13) we con-
clude that

E[R(v)] ≤ αj ·
(

1

k0
+

4e · rj
n

)
As RM (Fj) ≤ αj−1 + E[R(v)] and k0 ≥ α, it

follows that

RM (Fj) ≤ αj−1 + E[R(v)]

≤ αj ·
(
1

α
+

1

k0
+

4e · rj
n

)
≤ αj ·

(
2

α
+

4e · rj
n

)
(14)

A.3 Section 4
Lemma 19. Assume that n > 4α. Let g be the
prior over F as defined in Section 4. For any de-
terministic posted-price mechanism it holds that
RM (g) = 1

σ ·O(1).

Proof. Let J be the set of indices j such that rj >
n−k0

2 . Observe that as n > 4α and k0 ≤ 2α for
large enough h, thus k0 < n/2, therefore rj >
n/4 for every j ∈ J . Since

∑
j∈J rj ≤ n, it holds

that |J | ≤ 4. For every j ∈ J we have RM (Fj) ≤
αj · wj/σ = 1/σ, and thus,

∑
j:Fj∈J

RM (Fj) · Pr[F = Fj ] ≤
4

σ

For j /∈ J we invoke Lemma 6. Recall that∑
j rj = n and that by Observation 4 the family

F is of size at most 2α.
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∑
j:Fj∈F\J

RM (Fj) · Pr[F = Fj ]

≤
∑

j:Fj∈F\J

αj ·
(
2

α
+

4e · rj
n

)
· wj

σ

≤ 1

σ
·
∑

j:Fj∈F\J

·
(
2

α
+

4e · rj
n

)

≤ 1

σ
·

4 +
4e

n

∑
j:Fj∈F\J

rj


=

4(e+ 1)

σ
(15)

For the case that n > 4α, by combining the
bound for j such that Fj ∈ J and for the compli-
mentary set we complete the proof of this lemma.

RM (g) =
∑

j:Fj∈F

RM (Fj) · Pr[F = Fj ]

=
∑

j:Fj∈J

RM (Fj) · Pr[F = Fj ]

+
∑

j:Fj∈F\J

RM (Fj) · Pr[F = Fj ]

≤ 4(e+ 2)

σ
(16)

A.4 Section 5
First, we will show that the first order statistic of

n i.i.d samples from F is also an M.H.R distribu-
tion.

Lemma 20. Let Fn be the distribution of the first
order statistic of n i.i.d samples from F . Fn has a
monotone non-decreasing hazard rate.

Proof. Our notation is no accident: it is easy to
see that Fn(x) is indeed the c.d.f of the first order
statistic of n i.i.d samples from F . Let fn denote
the p.d.f, and Hn denote the hazard rate function
of Fn. We can differentiate Fn(x) to get

fn(x) = nFn−1(x)f(x)

We can now write and manipulate the hazard rate

as follows.

Hn(x) =
nFn−1(x)f(x)

1− Fn(x)

= n

(
f(x)

1− F (x)

)(
Fn−1(x)∑n−1
i=0 F i(x)

)

= nH(x)

(
Fn−1(x)∑n−1
i=0 F i(x)

)
Note that H(x) and F (x) are nondecreasing.

Therefore, by the above expression, in order to
show that Hn(x) is non-decreasing it suffices
to show that g(y) = yn−1/

∑n−1
i=0 yi is non-

decreasing in y . To show this, we take α ≥ 1 and
observe that g(αy) = αn−1yn−1/

∑n−1
i=0 αiyi ≥

αn−1yn−1/
∑n−1

i=0 αn−1yi = g(y).

Now, we show a bound on the integral of the
product of a monomial and a non-increasing func-
tion that will prove useful.

Lemma 21. Let g : [0, 1] → R+ be a non-
increasing function. For all integers n ≥ 1 we
have ∫ 1

z=0
g(z)zndz∫ 1

z=0
g(z)zn−1dz

≤ n

n+ 1

Proof. Let αn =
∫ 1

z=0
g(z)zndz. We can integrate

by parts using the rule
∫
udv = uv −

∫
vdu, and

setting dv = zndz and u = g(z) to get

αn =

[
g(z)

zn+1

n+ 1

]1
z=0

−
∫ 1

z=0

zn+1

n+ 1
g′(z)dz

=
g(1)

n+ 1
−
∫ 1

z=0

zn+1

n+ 1
g′(z)dz

To complete the proof, it suffices to show that
(n+ 1)αn ≤ nαn−1

nαn−1 − (n+ 1)αn

=

∫ 1

z=0

(zn+1 − zn)g′(z)dz ≥ 0

Where the inequality follows from the fact that
g′(z) ≤ 0 and zn+1 − zn ≤ 0. This completes
the proof.

Finally, we bound the ratio of two harmonic
numbers in terms of the natural logarithm. Here,
we use Hn to denote the nth harmonic number.
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Lemma 22. For m ≤ n, Hm

Hn
≥ logm

log n .

Proof. Let δn = Hn− logn. It is known that δn is
nonnegative – for completeness we prove it here.

δn =

n∑
i=1

1

i
−
∫ n

x=1

1

x
dx

≥
n−1∑
i=1

(
1

i
−
∫ i+1

x=i

1

x
dx

)

≥
n−1∑
i=1

(
1

i
−
∫ i+1

x=i

1

i
dx

)
= 0

Next, we prove that δn is a decreasing sequence.

δn − δn+1 = (Hn − log n)− (Hn+1 − log(n+ 1))

= (log(n+ 1)− log n)− 1

n+ 1

=

∫ n+1

x=n

1

x
dx− 1

n+ 1

>

∫ n+1

x=n

1

n+ 1
dx− 1

n+ 1
= 0

Now we are ready to complete the proof.

Hm

Hn
=

logm+ δm
log n+ δn

=
(1 + δm

logm ) logm

(1 + δn
logn ) log n

≥
(1 + δn

logn ) logm

(1 + δn
log n ) log n

=
logm

log n

The last inequality follows from δm ≥ δn ≥ 0 and
logn ≥ logm ≥ 0.
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