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Abstract

We introduce revenue submodularity, the property that market expansion has diminishing
returns on an auction’s expected revenue. We prove that revenue submodularity is generally pos-
sible only in matroid markets, that Bayesian-optimal auctions are always revenue-submodular
in such markets, and that the VCG mechanism is revenue-submodular in matroid markets with
i.i.d. bidders and “sufficient competition”. We also give two applications of revenue submodu-
larity: good approximation algorithms for novel market expansion problems, and approximate
revenue guarantees for the VCG mechanism with i.i.d. bidders.

1 Introduction

Auctions are often designed for a specific environment. But environments are not always predictable
and static: initial expectations might be based on wrong information; bidders might withdraw
or bring friends; and the seller can potentially influence the environment directly, for example
by attracting new bidders to the market. For these reasons, the way the revenue of an auction
changes with the underlying environment can be as important as the revenue it achieves in a fixed
environment. For example, the VCG mechanism’s lack of revenue monotonicity — the fact that
adding new bidders can decrease its revenue — has been widely cited as a “deal breaker” for its
possible use as a combinatorial auction (see e.g. Milgrom [17, §2.5.2] and Rastegari et al. [23]).
This paper introduces revenue submodularity — essentially, the property that market expansion
has diminishing returns on an auction’s expected revenue. For example, in a multi-unit auction
with bidders that have unit demand and independent and identically distributed (i.i.d.) valuations,
revenue submodularity means that the auction’s expected revenue is a concave function of the
number of bidders. In general, an auction is deemed revenue submodular in an environment with
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Figure 1: Expected revenue of a 10-unit Vickrey auction, as a function of the number of bidders
and the reserve price. When the reserve price is .2, the expected revenue is not concave.

potential bidders U if, for every subset S C U and bidder i ¢ S, the increase in the auction’s
revenue from supplementing the bidders S by ¢ is at most that of supplementing a set T C S of
bidders by the same additional bidder .

Natural auctions are not necessarily revenue submodular, even in the simple setting of a multi-
unit auction. Figure 1 shows the expected revenue of the Vickrey auction with a reserve price in
a 10-unit auction, as a function of the number n of unit-demand bidders with valuations drawn
i.i.d. from the uniform distribution on [0,1].) The three curves correspond to the reserve prices
r =.2,.5,.7. The curve for r = .5 — the revenue-maximizing reserve price for this distribution —
is noticeably concave. The curve for the high reserve is essentially linear in the range of the plot.

The curve for the low reserve r = .2, however, is evidently non-concave, with a “kink” between
10 and 15 bidders. The first goal of this work is to understand this phenomenon, by identifying
necessary and sufficient conditions — on environments, valuation distributions, and auctions —

such that revenue submodularity holds.

But why is revenue submodularity an interesting property? We provide two applications in
this paper (and anticipate more). The first application is inspired by a famous result of Bulow
and Klemperer [4], which states that in multi-unit auctions with i.i.d. bidders, market expansion
increases the Vickrey auction’s revenue at least as much as switching to an optimal selling procedure.
This idea suggests the market expansion problem, which in its simplest form asks: which set of
at most k bidders should be recruited to increase a given auction’s revenue as much as possible?
Revenue submodularity is the key to achieving a computationally efficient approximation algorithm
for this problem. As a second application, we show that revenue submodularity, in conjunction with

'In this auction, the winners are the highest 10 bidders among those that meet the reserve, and all winners pay
the larger of the reserve and the 11th highest bid.



additional conditions, leads to strong quantitative revenue guarantees for the economically efficient
VCG mechanism

1.1 Brief Summary of Results
1.1.1 Revenue Submodularity

We first identify the largest class of single-parameter domains for which general revenue submodu-
larity results are possible: matroid markets, in which the feasible subsets of simultaneously winning
bidders form a matroid (see Section 2 for definitions). Fortunately, matroid markets include several
interesting examples, including multi-unit auctions and certain matching markets.

We then prove a number of positive results (Section 3). First is a sweeping result for (Bayesian)-
optimal auctions: in every matroid market with independent (not necessarily identical) valuation
distributions, the revenue-maximizing auction is revenue-submodular. The fact that the “r = .5”
curve in Figure 1 is concave is a very special case of this result. The VCG mechanism, on the other
hand, enjoys revenue submodularity only under additional conditions, even when valuations are
i.i.d. draws from a well-behaved distribution. For example, in a k-unit auction with n unit-demand
bidders, the Vickrey auction earns zero revenue when n < k and positive revenue when n > k + 1,
a clear violation of revenue submodularity. We identify a natural sufficient condition under which
the VCG mechanism is revenue-submodular with i.i.d. bidders, which is a matroid rank condition
stating that there is “sufficient competition” in the market. For example, in multi-unit auctions,
sufficient competition requires that the number of bidders be at least the number of items. Finally,
we prove that revenue submodularity is not a monotone property of the reserve prices used: reserve
prices higher than those in an optimal mechanism preserve submodularity (cf., the “r = .7” curve
in Figure 1), but reserve prices strictly between those in the VCG mechanism (namely, zero) and
those in an optimal mechanism always have the potential to destroy revenue submodularity, even
when there is sufficient competition in the market (cf., the “r = .2” curve in Figure 1).

We obtain reasonably simple and direct proofs of these results by appropriately applying two
elegant and powerful techniques: Myerson’s characterization of expected auction revenue in terms
of the expected “virtual surplus” of the auction’s allocation; and the submodularity that arises
from optimizing a weight function over the independent sets of a matroid.

We also prove in passing that matroid markets are precisely the downward-closed single-parameter
domains for which the VCG mechanism is always revenue monotone, meaning that additional bid-
ders can only increase the mechanism’s revenue (Section 4).

1.1.2 Application: Market Expansion

Our first application of revenue submodularity is algorithmic and concerns the following problem.
Under the constraint that a certain auction mechanism, such as the VCG mechanism, will be
deployed, how should the seller recruit new bidders to maximize the auction’s revenue? This
problem is clearly faced by sellers on eBay, by companies (like search engines) that run ad actions,
and by governments that use spectrum auctions.

We focus on the following version of the market expansion problem. The input is a matroid
market with a set of potential bidders, a subset of initial bidders, an auction (defined for all induced
submarkets), and an expansion budget k. The goal is to recruit a set of at most k new bidders to
maximize the expected revenue of the auction on the submarket induced by the original bidders
together with the new recruits. The budget models constraints on the seller’s available marketing



resources for recruiting additional bidders. This problem is trivial with i.i.d. bidders in a multi-unit
auction, but we prove that it is hard in more general settings. Our main result for this application
is that “greedy market expansion” — repeatedly adding the new bidder that (myopically) increases
the expected revenue of the auction as much as possible — is a constant-factor approximation
algorithm provided the given auction is revenue-submodular over all sets containing the initial
bidders. This result also admits several extensions, for example to the variant in which the budget
on new recruits is replaced by bidder recruiting costs.

1.1.3 Application: VCG Revenue Is Approximately Optimal

The VCG mechanism maximizes welfare and does not require knowledge about bidders’ valuation
distributions. However, its payments are designed to enforce strategyproofness and generate revenue
only as a side effect. Are there general conditions under which the VCG mechanism is guaranteed
to have good revenue?

Our second application of revenue submodularity is to approximate revenue-maximization guar-
antees for the VCG mechanism. Specifically, in a matroid market with i.i.d. bidder valuations and
“modest competition” — which we formalize using matroid connectivity — the VCG mechanism
always obtains a constant fraction of the revenue of an optimal auction. Moreover, the approxi-
mation guarantee tends rapidly to 1 as the degree of competition increases. We also extend these
guarantees to a standard model of pay-per-click sponsored search auctions. These results suggest an
explanation for the persistent use of economically efficient auctions for revenue-maximization prob-
lems:? the cost (i.e., revenue loss) of running an efficient auction is typically small and outweighed
by the benefits (i.e., economic efficiency and relative simplicity), even for a revenue-maximizing
seller.

1.2 Related Work

To the best of our knowledge, we are the first to study revenue submodularity in auctions and to
consider market expansion optimization problems. A few other works study revenue guarantees
for the VCG mechanism, in simpler settings than ours. Bulow and Klemperer [4] give a sufficient
condition on the number of additional bidders required to exceed the (original) optimal revenue in
a multi-unit auction, but do not compare the Vickrey and optimal revenue in a fixed environment.
Similar results for more general settings appear in [13]. Neeman [19] studies the convergence of
revenue to welfare as the number of bidders grows in a single-item auction with i.i.d. bidders from
a bounded distribution. Lambert and Shoham [16] study which sponsored search auctions extract
the full surplus in the limit, as the number of bidders goes to infinity. Edelman and Schwarz [8]
empirically compare the revenue of the VCG and revenue-maximizing auctions in a sponsored
search context.

A few other papers study matroids in auction settings but are largely unrelated to our work.
Talwar [24] and Karlin et al. [14] study frugality and Cary et al. [5] study profit-maximization
in procurement settings. Our proof that matroid markets are precisely those in which the VCG
mechanism is always revenue monotone (Theorem 4.1) shares some ideas with arguments in [14, 24]
(see also the notes by Hartline [12]), but the techniques in [5, 14, 24] do not seem useful for studying

2For example, current keyword search auctions are modeled after efficient auctions. While these auctions do
employ reserve prices, as revenue-maximizing auctions do, these reserves are relatively close to 0 and are apparently
meant to discourage irrelevant ads rather than to (directly) maximize revenue — see [21] for more details.



revenue submodularity. Bikhchandani et al. [3] design economically efficient ascending auctions for
selling bases of a matroid, but are unconcerned with revenue. For online auctions, where bidders
arrive over time, matroid domains are studied in Babaioff et al. [2] and Constantin et al. [6].

2 Preliminaries

This section reviews some standard facts from combinatorial optimization and auction theory that
are needed to state and prove our results. Section 2.1 introduces matroids and gives several exam-
ples. Section 2.2 states the key facts about matroids that are required in our proofs. Section 2.3 re-
views optimal auction design in Bayesian single-parameter environments, as studied in Myerson [18].
We encourage the reader familiar with matroids and auctions to skip ahead to Example 2.11 at the
end of the section.

2.1 Matroids

A set system consists of a ground set U and a collection Z C 2V of subsets. We will only be
interested in the case where U is finite and both Z and U are non-empty. A matroid is a set
system (U,Z) that satisfies two properties. First, it is downward closed, meaning that if S belongs
to Z, then so do all subsets of S. The second condition is the Fxchange Property, which asserts
that whenever T, S € Z with |T'| < |S], there is some z € S\ T such that T U {z} € Z. Thus T can
be extended to a larger set in Z by some element of S\ 7. In a matroid context, the sets of Z are
called independent, and the maximal such sets are the bases of the matroid. The matroid properties
easily imply that all bases have equal cardinality. This common size is the rank of the matroid.

Matroids model a number of natural auction settings; we mention a few below. In all cases, the
ground set of the matroid represents the set of bidders in the auction, and the independent sets of
the matroid represent the subsets of bidders that can simultaneously win in the auction.

Example 2.1 (Uniform Matroids) In a uniform matroid, the independent sets are the subsets
of size at most k, where k is some nonnegative integer. Both matroid properties obviously hold.
A uniform matroid models an auction with k identical units of a good and unit-demand bidders.
The bases of a uniform matroid are the subsets of size exactly k; obviously, k is also the rank of
the matroid.

Uniform matroids model simple k-unit auctions, where the seller wants to sell at most one item
to each bidder.

Example 2.2 (Transversal Matroids) A transversal matroid is defined via an undirected bi-
partite graph (V1, Va, E); its ground set is V} and a subset S C Vj is independent if and only if the
vertices of S can be simultaneously matched to (distinct) vertices of V5. The Exchange Property
can be proved using an augmenting path argument. The rank of a transversal matroid equals the
cardinality of a maximum matching in the corresponding bipartite graph. A transversal matroid
represents a matching market, where V; is a set of bidders, V5 is a set of goods, and the edges F
specify which goods each bidder is interested in. (Here, each bidder has a common value for the
goods in which it is interested.)

Transversal matroids model auction settings where each of the winning bidders is matched to
a unique “resource” or “service” from a bidder-specific set of viable resources.



Example 2.3 (Graphic Matroids) A graphic matroid is defined by an undirected graph G =
(V, E); the ground set is E and the independent sets are the acyclic subsets of E. Such a set system
is obviously downward closed, and the Exchange Property can be proved by comparing partitions
into connected components. If G is a connected graph, then the bases of the corresponding graphic
matroid are the spanning trees of G, and the matroid rank is |V| — 1.

We require a standard matroid operation to model the addition (or removal) of new bidders in
a market. Given a matroid M = (U,Z) and a subset S C U, the restriction of M to S is the set
system (S,Zg), where Zg = {T' C S : T € T} is the subsets of Z that lie in S. Every restriction
of a matroid to a non-empty set is again a matroid. We sometimes call this a submatroid of the
original matroid or say that S induces the matroid (S, Zg).

2.2 Submodularity and Weighted Rank

Suppose we endow every element e of a matroid M with a real-valued weight w.. The weight of a
set is then the sum of the weights of its constituent elements. The weighted rank of M under w is
defined as the maximum weight of one of its independent sets. For a nonnegative weight function
the weighted rank is determined by a basis of the matroid; with general weights, non-maximal
independent sets can determine the weighted rank.

The weighted rank of a matroid can be computed by the following algorithm which greedily
constructs an independent set via a single pass over the elements: (i) sort the elements ey, ..., e,
from highest to lowest weight (breaking ties arbitrarily) and initialize S = @; (ii) for each i =
1,2,...,n in turn, if e; has nonnegative weight and S U {e;} € Z, then add e; to S. For graphic
matroids, this algorithm is simply Kruskal’s algorithm (e.g. [15, §2.1]). The correctness of this
algorithm for general matroids can be proved using the Exchange Property. Similarly, if the clause
“if e; has nonnegative weight” is omitted, then the corresponding greedy algorithm computes a
maximum-weight basis of the matroid.

Submodularity is a set-theoretic analog of concavity, and it is central to this work. We repeat
here the formal definition.

Definition 2.4 (Submodular Function) A function f : 2V — R defined on all subsets of a finite
non-empty set U is submodular if

FSU{i}) — f(S) < f(TU{i}) — f(T)
forevery TC S CU and i ¢ S.

Our results on revenue submodularity rely on the submodularity of the weighted rank function
on the submatroids of a given matroid. For the uniform weight function, this fact is well known.

Proposition 2.5 ([28, Theorem 1.2.3]) For a matroid M = (U,Z), let f(S) denote the rank
of M restricted to S. Then f is a submodular function.

Proof: Fix sets T, S such that T C S C U, and an element i € U\S; we show that f(SU{i})—f(5) <
f(@ud{i}) — f(T). The left-hand side is either 0 or 1, and we can assume that it is 1. Let Br
be a basis in the restriction of M to T, and use the Exchange Property to extend Br to a basis
Bg D Br in the restriction of M to S. Since f(SU{i}) = f(S)+ 1, the Exchange Property implies



that BgU{i} is a basis in the restriction of M to S U {i}. Downward closure implies that By U {i}
is an independent set of M restricted to T'U {i}, so f(T'U{i}) = f(T) + 1, as needed. B

The generalization to weighted rank follows easily.

Corollary 2.6 (Weighted Rank Is Submodular) For a matroid M = (U,Z) and weight func-
tion w on U, let f(S) denote the weighted rank of M restricted to S. Then f is a submodular
function.

Proof: First, Proposition 2.5 extends trivially to 0-1 weight functions, since the corresponding
weighted rank function of M is the same as the (unweighted) rank function of the restriction
of M to the positive-weight elements of U. For a general weight function w, restrict M to the
positive-weight elements and label these elements {1,2,...,n} so that wy > wy > -++ > w, >
0. Fori = 1,2,...,n, let w® denote the weight vector in which the elements {1,2,...,i} have
weight 1 and all other elements have zero weight. Let f; denote the corresponding (submodular)
weighted rank function. Since a nonnegative linear combination of submodular functions is again
submodular, > | (w; — wi+1) - f;i is submodular. (By convention, wy1; = 0.) Since the output of
the greedy algorithm for maximizing weighted rank depends only on the ordering of the elements’
weights (and ties are irrelevant), the independent set that maximizes the weighted rank w.r.t. the
weight function w also simultaneously maximizes the weighted rank w.r.t. each of w™®, ... w(™.
Thus f =", (w; — wiy1) - fi, completing the proof. M

The following converse to Proposition 2.5 also holds.

Proposition 2.7 ([28, Theorem 1.2.3]) Let M = (U,Z) be a set system and f(S) the largest
size of a set of L that is contained in S. If f is submodular, then M is a matroid.

There are numerous other characterizations of matroids. We conclude with one useful in the
proof of Theorem 4.1.

Proposition 2.8 ([22, Corollary 2.1.5]) A downward-closed set system (U,Z) with T # 0 is a
matroid if and only if for every pair A, B of maximal sets in T and y € B, there is some x € A
such that A\ {z} U{y} € T.

2.3 Optimal Auction Design

Our auction model is standard (e.g. [18]). There is a population U of bidders, and a set of feasible
outcomes, each indicating the “winning” and “losing” bidders in the outcome. For example, in a k-
unit auction, there is a feasible outcome for each subset of at most k£ bidders; in a matching market,
feasible outcomes correspond to matchings between bidders and desired goods. The applications
we have in mind are downward closed; as noted above, this means that for every feasible set of
winners, every subset of this set is also feasible.

A bidder i has value 0 for losing, and a wvaluation v; for winning that is a priori unknown to
the auctioneer. Each bidder bids to maximize its payoff v;x; — p;, where x; is 1 if it wins and
0 otherwise, and p; is its payment to the auctioneer (assumed 0 if x; = 0). A mechanism is a
specification of an allocation rule (the z;’s) and a payment rule (the p;’s), which together select
who wins and who pays what in each bid profile.



The efficiency and revenue of a mechanism outcome for bidders with valuations v are defined
as » ; vix; and ), p;, respectively. We usually study the exzpected revenue of a mechanism, under
the assumption that the bidders’ valuations are independently distributed according to known dis-
tributions Fi, ..., F, with strictly positive density functions f1,..., f,. We focus on strategyproof
mechanisms, in which each bidder is guaranteed to maximize its payoff by revealing its true pri-
vate valuation to the mechanism, irrespective of the valuations and behavior of the other bidders.
Because of this, we use the terms bids and valuations interchangeably.

In single-parameter problems like those studied in this paper, truthful mechanisms are relatively
well understood. An allocation rule can be extended via a (essentially unique) payment rule to a
strategyproof mechanism if and only if the rule is monotone, meaning that a winner who increases
its bid always continues to win (keeping other bids fixed) [18]. For example, in a single-item auction,
the “highest bidder wins” rule is monotone; the “second-highest bidder wins” rule is not.

Example 2.9 (The VCG Mechanism) The VCG mechanism is defined by the allocation rule
that always picks the feasible set with the largest sum of valuations. It is easy to see that this
allocation rule is monotone and can therefore be extended to a strategyproof mechanism via suitable
payments. These payments are: each winner is charged a price equal to the smallest bid at which it
would continue to win (keeping other bids fixed). For a k-unit auction with unit-demand bidders,
the VCG mechanism specializes to the Vickrey auction, with all winners paying the (k4 1)th highest
bid.

Remark 2.10 (The Clarke Pivot Rule) The payments of the general VCG mechanism are de-
fined only up to a bid-independent “pivot term” (see e.g. [17]). In this paper, we study only the
Clarke pivot rule which normalizes the payment of every losing bidder to zero.

The virtual valuation corresponding to a distribution F; and a valuation v; is defined as

PN o 210)
eilvi) ' fi(vi) ' M

A distribution is regular if the corresponding virtual valuation function is increasing over the dis-
tribution’s support. We note that a virtual valuation can be negative; for example, if F(v) = v
on [0,1], then ¢(v) =2v — 1.

The importance of virtual valuations is illustrated by the following lemma of Myerson [18,
Lemma 3.1]: for every mechanism, its expected revenue (over draws from the F;’s) equals the
expected virtual value of its allocation:

E[revenue] = /(Z wi(v;) zi(v1, ... ,vn)) fi(vr) -« fu(vp)dvoy - - - doy,. (2)

Thus the revenue-maximizing strategyproof mechanism maximizes the expected total virtual value (2)
subject to monotonicity of the allocation rule [18].

With regular distributions, the optimal auction simply maximizes the virtual value pointwise
(i.e., separately for each valuation profile). Since the virtual valuation functions corresponding to
regular distributions are increasing, this defines a monotone allocation rule and yields a strate-
gyproof mechanism once suitable payments are defined.

Finally, we discuss non-regular distributions; this requires some technical concepts, but we
require them only for the proof of Theorem 3.1. With such distributions, the allocation rule above



is not monotone and hence cannot be extended to a strategyproof mechanism by any payment
rule. To overcome this obstacle, Myerson [18] defined a nondecreasing function called an ironed
virtual valuation. This function is meant to be a monotone proxy for the virtual valuation function.
Maximizing the ironed virtual value of the allocation and breaking ties in a valuation-independent
way turns out to be equivalent to maximizing the virtual value of the allocation (2) subject to
monotonicity, and therefore results in an optimal auction [18].

Formally, the (nondecreasing) ironed virtual valuation @ corresponding to a virtual valuation ¢
is defined by the following procedure.

1. For ¢ € [0, 1], define h(q) = ¢(F~1(q)).
2. Define H(q) = [J h(r)dr.

3. Define G as the convex hull of H — the largest convex function bounded above by H for all
q € [0,1].

4. Define g(q) as the derivative of G(q), where defined, and extend to all of [0,1] by right-
continuity.

5. Finally, $(z) = g(F(2)).

To summarize, in a single-parameter environment with independent valuation distributions,
maximizing the expected auction revenue reduces to always selecting the feasible set with maximum
total ironed virtual value.

Example 2.11 (Matroid Markets with i.i.d. Bidders) Consider a set U of bidders and sup-
pose that the feasible sets of winners form a matroid. Suppose further that bidders’ valuations are
i.i.d. draws from a regular distribution F’ with (increasing) virtual valuation function ¢. In this
case, the VCG and revenue-maximizing mechanisms are close cousins. The VCG mechanism maxi-
mizes the total value of the winners (Example 2.9). In a matroid market, this allocation rule can be
implemented by ordering bidders by valuation and running the greedy algorithm from Section 2.2.
As discussed above, the optimal mechanism maximizes the total virtual value of the winners. In
a matroid market, this corresponds to ordering bidders by virtual valuation, running the greedy
algorithm, and halting once the negative virtual valuations are reached. Since bidders’ valuations
are i.i.d. draws from a regular distribution, the orderings by valuation and by virtual valuation
coincide. Thus, the optimal mechanism is nothing more than the VCG mechanism supplemented
with the optimal reserve price r* = ¢~1(0).

3 Revenue Submodularity

3.1 Optimal Auctions

We first observe that revenue submodularity can be crisply characterized for revenue-maximizing
auctions. This characterization also establishes matroid domains as the largest set of domains for
which general revenue-submodularity results are possible.

We study the following property of a given domain or market (i.e., a set of bidders and feasible
subsets of winners):



(*) for every set of independent valuation distributions for the bidders, the corresponding optimal
auction is revenue-submodular.

Theorem 3.1 (Submodularity of Optimal Auctions) A market has property (*) if and only
if it is a matroid market.

Proof: For the “if” direction, fix a matroid market with bidders U and independent distribu-
tions F1,..., F, for the bidders’ valuations. Condition on the valuations of all bidders in U. For
S C U, let §(S) denote the maximum sum of ironed virtual valuations (Section 2.3) possessed
by an independent set contained in S; by Myerson’s Theorem [18], the optimal auction for the
market induced by S chooses such a set for this valuation profile. Since the market on U is a
matroid market, Corollary 2.6 implies that $(S) is submodular on U. Taking expectations, the
expected sum of the winners’ ironed virtual valuations is submodular on U. (A convex combination
of submodular functions is again submodular.) Applying (2) now shows that the optimal auction
is revenue-submodular.

For the converse, consider a domain for which the optimal auction is always revenue-submodular,
and in particular has this property when every bidder’s valuation is deterministically 1. In this
case, the revenue of the optimal auction in a submarket S C U is the largest size of a feasible set
contained in S. In other words, the auction revenue corresponds to the rank function of the set
system. This rank function is submodular only when the set system comprises the independent
sets of a matroid (Proposition 2.7). W

3.2 VCG Without a Reserve Price

The plot is thicker for other mechanisms, even in the very special case of multi-unit auctions.
(Recall Figure 1.) For example, consider a k-unit auction with n unit-demand bidders. For all
n < k, the Vickrey auction earns zero revenue. There is a sudden jump to positive revenue when
n =k + 1, a clear violation of revenue submodularity. With non-i.i.d. bidders (e.g., many “small”
bidders and few “large” bidders), the same problem can arise even when the total number of bidders
is much larger than the number of goods. The best we can hope for with the VCG mechanism is
that revenue submodularity kicks in once there is “sufficient competition”. Precisely, we consider
i.i.d. bidders and prove submodularity over the full-rank sets — sets that contain a basis of the full
matroid market M. In a k-unit auction, this corresponds to bidder sets of cardinality at least k.

Theorem 3.2 (Submodularity of VCG) Fiz a matroid market M with bidders U and valua-
tions drawn i.i.d. from a regqular distribution F. The expected revenue of the VCG mechanism for
induced matroid markets Mg is submodular on the set of full-rank sets S C U.

Theorem 3.2 is false, even in a single-item auction, if the full-rank assumption is dropped (as
we have seen), if the i.i.d. assumption is dropped (Example 3.3), or if the regularity condition is
dropped (Example 3.4).

Proof: Condition on the bidders’ valuations. Let C be large enough that the “shifted virtual
valuation” y(v;) := ¢(v;) 4+ C is nonnegative for every bidder i. Since the valuations are i.i.d. draws
from a regular distribution, the (common) virtual valuation function ¢ is increasing, and thus = is
a nonnegative weight vector that orders the bidders by valuation.

In a matroid market, all nonnegative weight functions that order the bidders in the same way are
maximized by a common (maximal) independent set; this follows from the optimality of the greedy
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algorithm, as in the proof of Corollary 2.6. Thus while the VCG mechanism explicitly maximizes
the sum of the valuations of the winners, it inadvertently maximizes the sum of their shifted virtual
valuations as well. Letting v(S) denote the latter maximum in the submarket induced by S, this
observation and Corollary 2.6 establish the submodularity of « over all subsets of U.

Define ¢(S) as the total virtual value of the VCG mechanism’s allocation in the submarket S.
The submodularity of v translates to submodularity of ¢ on full-rank sets. To see this, take two
full-rank sets A and B with A C B, and a bidder ¢ ¢ B. By submodularity of ~,

V(AU {i}) —v(A) > v(BU{i}) —~(B).

Now, on full-rank sets S, ¢(S) = v(S) — r(M) - C, where r(M) denotes the rank of the full
matroid M. Thus

(AU {i}) —p(A) = p(BU{i}) — o(B),

as claimed.
Finally, taking expectations over the bidders’ valuations and applying (2) proves the theorem.
|

Example 3.3 (Necessity of i.i.d. Distributions) Consider a single-item auction where the bid-
ding population consists of two types of bidders, one with value drawn uniformly from [0, €] (small
bidders) for small ¢ and another with value drawn uniformly from [0, 1] (big bidders). Suppose
that the market consists initially of small bidders. Consider the revenue of the Vickrey auction.
Adding the first big bidder causes an increase in expected revenue of at most e. Adding a second
big bidder increases the expected revenue by at least 1/3 — e. Thus non-submodularity occurs even
on full-rank sets.

Example 3.4 (Necessity of Regular Distributions) Consider a single-item auction where the
valuation of each bidder is 1 with probability p, and 0 with probability 1 — p. (A continuous
perturbed version of this distribution also works.) The revenue of the Vickrey auction is 0 with one
bidder. Adding the second bidder increases the revenue to p?>. Adding the third bidder increases
the revenue to p* + 3p%(1 — p). For small p, p? + 3p*(1 — p) — p? > p? — 0 and non-submodularity
results.

3.3 VCG with an Arbitrary Reserve Price

Consider the VCG mechanism with some reserve price r. Thus far, we have identified conditions
for revenue submodularity with zero reserve and with the Myerson reserve r*, which in matroid
markets correspond to the VCG and optimal mechanisms, respectively (Example 2.11). What
if a different reserve price is used, either by choice or because of inaccurate statistics? Perhaps
surprisingly, there is a big difference between overestimating the optimal reserve price (which never
affects submodularity) and underestimating it (which can destroy submodularity, even on full-rank
sets).

Theorem 3.5 (VCG with Incorrect Reserve Prices)

(a) For every regular distribution F with optimal reserve price r* = ¢=1(0), every matroid market
with bidders U with valuations drawn i.i.d. from F, and every r > r*, the expected revenue
of the VCG mechanism with reserve price r is submodular on U.
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(b) For every € € (0,1), there is a regular distribution F with optimal reserve price r* and a
matroid market for which the expected revenue of the VCG mechanism with reserve price
(1 —€)r* is not submodular on full-rank sets.

Proof: For part (a), condition on the bidders’ valuations. Restrict the independent sets of the
matroid to the bidders that meet the reserve price. Since r > r* and F' is regular, all such bidders
have nonnegative virtual valuations. As in the proof of Theorem 3.2, regularity implies that the
VCG mechanism with reserve price r inadvertently maximizes the total virtual value over the
independent sets of the restricted matroid. Thus the virtual value of the mechanism’s allocation is
the weighted rank of a matroid. As in previous proofs, applying Corollary 2.6, taking expectations
over valuations, and invoking (2) establishes revenue-submodularity.

Part (b) can be established using the distribution F' that is an equal (50/50) mixture of the
uniform distribution on [0, 1] and the “equal revenue distribution” with distribution function 1—1/z
on [1,00). This distribution is continuous and regular, and its optimal reserve price is 1. Fix an
arbitrarily small constant € > 0 and consider a graphic matroid comprising a cycle of length n (for
n large) plus one parallel copy €’ of one of the edges e. Let ¢ = (1+¢)/2 denote the probability that
a sample from I exceeds the reserve price r = 1 —e. When both e and €’ are absent, the expected
revenue of the VCG mechanism with this reserve is g(n — 1)(1 — ¢€), with every winner paying the
reserve price. For n large, when one of {e, ¢’} is added, the expected revenue increases by = ¢(1—¢).
When both parallel edges are added, there are two relevant cases (for n large). The valuations of
e, e’ are both above 1 with probability 1/4, and the additional revenue in this case is the expected
minimum of two samples from the equal revenue distribution, which is 2. In the other relevant case,
at least one of the valuations of e, e’ exceeds the reserve price and at most one of them exceeds
1. This occurs with probability (1 — (1 — ¢)?) — 1/4 = 1/2 + € — €2/4, and the additional revenue
in this case is at least 1 — e. A quick calculation shows that the combined extra revenue from the
two cases strictly exceeds 2¢(1 — €). Since the revenue increase from adding e and €’ is more than
double that of adding either one individually, we have a violation of revenue-submodularity that
involves only full-rank subsets of the matroid. B

4 Revenue Monotonicity of the VCG Mechanism in Matroids

We note in passing an interesting analog of Theorem 3.1 for the revenue monotonicity of the VCG
mechanism (with the Clarke pivot rule). Precisely, a mechanism is revenue monotone in a single-
parameter downward-closed domain (U,Z) if, for every set of bidder valuations v and set S C U,
the mechanism’s revenue in the full market is at least that in the market induced by S and v.

Theorem 4.1 (Monotonicity of VCG) The VCG mechanism is revenue monotone in a downward-
closed market if and only if the market is a matroid market.

Proof: For the “if” direction, fix a matroid market M = (U,Z) and valuations v for the bidders.
By induction, we can consider only sets S that exclude a single bidder e of U. Breaking ties using
bidders’ names, we can treat the valuations as distinct.

Recall that in a matroid market the VCG mechanism’s allocation can be computed by the
greedy algorithm (Section 2.2). By the Exchange Property, the greedy algorithm maintains the
invariant that, after processing a subset T of the bidders, it has selected the maximum-possible
number 7(7T) of winners. Thus, a bidder ¢ wins if and only if »(T'U {i}) = »(T) + 1, where T
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is the set of bidders considered before 7 by the greedy algorithm. Let T} denote the j bidders of
U \ {i} with the highest valuations. Since r is submodular, there is some ¢ € 1,2,...,|U| so that
r(T; U{i}) = r(Tj) + 1 for all j < ¢ and r(T; U {i}) = r(T}) for all j > £. Set p; equal to the
smallest valuation of Ty, or to 0 if £ = |U|. Then, bidder 7 wins if and only if v; > p;, in which case
it pays p; (recall Example 2.9).

Now suppose we delete bidder e from M. Let W and W’ denote the winners under the VCG
mechanism in M and M\ {e}, respectively. For every ¢ # e, since r is submodular, 7(T};\{e}U{i}) =
r(T; \ {e}) only when r(Tj U {i}) = r(Tj). Thus, the “threshold index” ¢ for bidder i # e is only
larger after e’s deletion, so its “threshold price”p; is only smaller. Thus, all bidders of W\ {e} belong
to W’ and pay lower prices. If W’ contains no bidders not in W, then we are done. Otherwise, since
r(M\ {e}) < r(M) and the VCG mechanism chooses a basis, we can write W/ = W\ {e} U{f} for
some bidder f ¢ W. Bidder f contributes revenue at most vy to the VCG mechanism in M \ {e}.
We conclude by noting that the revenue p. contributed by e to the VCG mechanism in M is at
least vy: if bidder e bids less than vy, then the VCG mechanism in M will choose the allocation W’
instead of W.

For the “only if” direction, consider a non-matroid downward-closed market M = (U,Z). By
Proposition 2.8, there are maximal sets A, B of Z and an element y € B such that A\ {z}U{y} ¢ T
for every z € A. Suppose that the bidders of AU {y} have valuation 1 and all other bidders have
valuation 0. The set A maximizes welfare over the sets of Z (with welfare |A|) and, by our choice
of A and y, every other set of Z has welfare at most |A| — 1. The VCG mechanism thus generates
zero revenue in this market. We complete the proof by identifying a submarket in which the VCG
mechanism earns strictly positive revenue.

Since Z is downward closed, we have AU {y} ¢ Z and (AN B)U {y} € Z. We can therefore
choose a set A’ O AN B and an element 2 € A\ B such that A’ U{z} U{y} ¢ Z and A’ U{y} € T.
In the matroid market induced by A’ U {x,y}, there are at least two welfare-maximizing solutions,
A"U{z} and A’ U {y}. The VCG mechanism chooses an allocation that includes either x or y (or
both), and will collect a payment of 1 from this bidder. B

Unlike the other results in this paper, Theorem 4.1 is not stated for distributions over bidders’
valuations. Pointwise revenue monotonicity (as in Theorem 4.1) obviously implies expected revenue
monotonicity with respect to every distribution over bidders’ valuations.

5 Near-Optimal Market Expansion

Given a market and a mechanism for it, and also an initial submarket, which k£ additional bidders
should be recruited to generate the largest increase in the auction’s revenue? This question is trivial
when bidders are indistinguishable, as in a multi-unit auction with i.i.d. bidder valuations: any k
additional bidders will do. As the next example shows, this basic optimization problem becomes
quite subtle with bidder asymmetries.

Example 5.1 (Expanding a Graphic Matroid) Consider a graphic matroid market G = (V,U),
and suppose that the initial submarket S is a spanning tree of GG, that £ = 1, and that the mecha-
nism used is the VCG mechanism. Suppose bidders’ valuations are i.i.d. draws from an exponential
distribution with rate 1. Adding a new bidder creates a cycle, say of length £. Once valuations have
been sampled, the VCG mechanism will select all bidders but the lowest one ¢ on the cycle, and
the other ¢ — 1 bidders of the cycle will each be charged v;. (Bidders off the cycle are charged 0.)
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The expected revenue of the VCG mechanism (over the random valuations) is (¢ — 1)/¢, since 1/¢
is the expected value of the minimum of ¢ independent exponential random variables. Thus, in this
instance, the optimal solution to the market expansion problem is to add the edge of U \ S that
creates the longest cycle.

The market expansion problem is inapproximable without revenue submodularity, for example
in matroid markets with the VCG mechanism and without a full-rank initial submarket.

Theorem 5.2 The market expansion problem for general matroids and the VCG mechanism admits
no polynomial-time algorithm with non-zero approrimation ratio, unless P = NP.

Proof: Vardy [25] proved that finding a cycle of a given length in a binary matroid — i.e., linearly
independent subsets of vectors over the two-element field — is N P-hard. Given such a matroid
and the empty initial market, there are k bidders whose recruitment generates positive revenue for
the VCG mechanism if and only if the matroid has a cycle of length at most k. B

Even with revenue submodularity, as in graphic matroids with the revenue-maximizing auction
(Theorem 3.1), the market expansion problem is N P-hard.

Theorem 5.3 Optimal market expansion is N P-hard, even for graphic matroids, i.i.d. valuations,
and the revenue-mazrimizing auction.

Proof: We provide a reduction from the Hamiltonian cycle problem [10, Problem GT37]. Given a
connected graph with n vertices, consider the corresponding graphic matroid, the empty submarket,
and a budget of n new bidders to recruit. Bidders’ valuations are (say) i.i.d. draws from the
exponential distribution with rate 1. By (2), the expected revenue in a given submarket is the
expected maximum virtual value of an acyclic subgraph. For a given subgraph with n edges and
valuation profile, the maximum virtual value of an acyclic subgraph is simply the sum of the
positive virtual valuations, unless these bidders include a cycle, in which case some positive virtual
valuations must be thrown out. Hamiltonian cycles (if any) are the submarkets that minimize the
expected amount of positive virtual value so wasted, and thus are the submarkets that maximize
expected revenue. B

Revenue submodularity leads directly to a positive result for near-optimal market expansion.
By greedy market expansion, we mean the heuristic of repeatedly (k times) recruiting the new
bidder that increases the expected revenue of an auction the most. Our next result follows from a
classic analysis of Nemhauser, Wolsey, and Fisher [20]. They showed that for every nonnegative,
monotone, and submodular set function f on a universe U, this greedy heuristic outputs a set S’
that is a (1 — 1/e)-approximation to the maximum-value subset of U of size at most k: f(S’) >

(1—1/e) - maxg <, f(5)-

Theorem 5.4 Greedy market expansion is a (1 — 1/e)-approximation algorithm for the market
expansion problem whenever the given auction is revenue monotone and revenue submodular on all
submarkets containing the initial market.

For example, since the revenue-maximizing auction with arbitrary (not necessarily regular or i.i.d.)
independent distributions is obviously expected revenue monotone, Theorems 3.1 and 5.4 imply
that greedy market expansion is a (1 — 1/e)-approximation algorithm in every matroid market.
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For the VCG mechanism and bidder valuations that are i.i.d. draws from a regular distribution,
Theorems 3.2, 4.1, and 5.4 imply that greedy market expansion is a (1 — 1/e)-approximation
algorithm in matroid markets with a full-rank initial market.

Extensions Extensions of Theorem 5.4 are easy to come by. If only an a-approximation algorithm
is available for the subroutine that chooses the optimal next bidder to add — for example, due
to sampling error in estimating the expected revenue of a mechanism in a given submarket — the
approximation bound degrades only to 1 — 1/e® (see e.g. [11]).

Theorem 5.5 When using a subroutine that is an a-approximation algorithm for the problem of
choosing the optimal next bidder, greedy market expansion is a (1 —1/e%)-approzimation algorithm
for the market expansion problem whenever the given auction is revenue monotone and revenue
submodular on all submarkets containing the initial market.

The budget of k can be replaced by an arbitrary matroid constraint on the bidders of U \ S
without changing the approximation guarantee [27]. For example, the feasible recruitable sets
might correspond to assignments of a fixed number of recruiters to different locations subject to
geographic constraints (a transversal matroid).

Theorem 5.6 Greedy market expansion is a (1 — 1/e)-approxzimation algorithm for the market
expansion problem subject to a matroid constraint whenever the given auction is revenue monotone
and revenue submodular on all submarkets containing the initial market.

As a third extension, we can attach a fixed recruiting cost to each bidder e. The objective is
then to maximize revenue minus recruiting costs. Adding costs can ruin revenue monotonicity but
does not affect submodularity. As long as the revenue submodularity condition in Theorem 5.4
holds and the profit earned when recruiting the entire market is nonnegative, the market expansion
problem can be approximated to within a factor of 2/5 using randomized local search [9].

Theorem 5.7 There is a randomized local search algorithm that is a 2/5-approzimation algorithm
for the market expansion problem with recruiting costs whenever the given auction is revenue mono-
tone and revenue submodular on all submarkets containing the initial market, and recruiting the
entire market guarantees nonnegative profit.

6 Revenue Guarantees for the VCG Mechanism

6.1 Matroid Markets

Are there interesting conditions under which the VCG mechanism inadvertently yields near-optimal
revenue? In matroid markets, even “modest competition” suffices for such a guarantee. We quantify
competition via the packing number of the matroid, defined as the maximum number of disjoint
bases that the matroid contains.

Theorem 6.1 (A Guarantee for the VCG Mechanism’s Revenue) In every matroid mar-
ket M = (U,ZI) with packing number r and bidders’ valuations drawn i.i.d. from a reqular distri-
bution, the expected revenue of the VCG mechanism is at least a (1 — 1/k) fraction of that of the
revenue-maxrimizing mechanism.
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For example, in multi-unit auctions, the packing number is simply the factor by which the
number of bidders exceeds the number of goods (rounded down to an integer). The VCG mechanism
generates zero revenue when k < n, so no approximation is possible when the packing number is 1.
A packing number of 2 suffices for a constant-factor approximation, and the expected revenue of
the VCG mechanism converges rapidly to that of the optimal mechanism as the packing number
increases. Similarly to Theorem 3.2, all of the hypotheses in Theorem 6.1 are generally necessary.

A key step in the proof of Theorem 6.1 is a generalization of a result of Bulow and Klemperer [4]
that is interesting in its own right. The result resolves the following thought experiment. Suppose a
seller initially employs the VCG mechanism in a given market with i.i.d. bidder valuations. Which
of the following two options is better for revenue: switching to an optimal auction tailored to the
given valuation distribution, or performing a little market expansion? The next lemma shows that
expanding a matroid market by a new basis (under the VCG mechanism) is more profitable than
switching to an optimal mechanism. For example, for a k-unit auction with n bidders, adding k
additional bidders is guaranteed to boost expected revenue beyond that of an optimal auction in
the original market. For a matching market with k goods (a transversal matroid), adding & bidders
who are collectively willing to accept all k goods achieves the same guarantee.

Lemma 6.2 (Bulow-Klemperer in Matroid Markets) Let M be a matroid market with bid-
ders U with valuations drawn i.i.d. from a regular distribution. The expected revenue of the VCG
mechanism for M is at least that of every optimal mechanism for a matroid market Mg that is
induced by a set S C U that excludes a basis of M.

To prove Lemma 6.2, we first show that the VCG mechanism is revenue-optimal for a different
problem.

Lemma 6.3 Let M be a matroid market with bidders U with valuations drawn i.i.d. from a regular
distribution. The VCG mechanism optimizes the expected revenue over truthful mechanisms that
always allocate to a basis of M.

Proof: Fix a valuation profile. Recall from Example 2.11 that the VCG mechanism can be im-
plemented via the greedy algorithm of Section 2.2 that considers bidders in nonincreasing order
of valuation. Recall also that the output of the greedy algorithm depends only on the ordering of
the bidders, and that, for i.i.d. valuations drawn from a regular distribution, the bidder orderings
by valuation and by virtual valuation coincide. Thus, as in the proof of Theorem 3.2, the VCG
mechanism inadvertently maximizes the total virtual value over the bases of the matroid. Taking
expectations over the valuation profile and applying (2) completes the proof. B

Proof of Lemma 6.2: Fix matroids M and Mg that satisfy the conditions of the lemma. The plan
is to define an allocation rule that always picks a basis of M and that has expected virtual value
equal to that of the optimal auction for Mg. Lemma 6.3 and identity (2) then complete the proof.

To define the allocation rule for M, condition only on the valuations of bidders in S. Let
W C S denote the set of winners in the optimal mechanism for Mg. Since U \ S contains a basis,
the Exchange Property of matroids implies that W can be extended to a basis of M using bidders
of U\ S. Choose such an extension Xy C U\ S arbitrarily and allocate to the basis WU Xy of M.

The expected virtual value earned by this “hybrid mechanism” equals that of the optimal
mechanism for Mg plus the conditional expectation E[} .y ¢(vi)[{vili € S}]. We complete
the proof by arguing that this second term is zero. First, for every i € Xy, Elp(v;)|{vili €
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S} = E[p(v;)] because valuations are independent. Second, for every i € Xy, the unconditional
expectation E[p(v;)] is zero — this can be proved by simple calculation or by applying identity (2)
to the single-good, single-bidder auction that always gives the good to the bidder (for free). B

We now complete the proof of Theorem 6.1 using the revenue submodularity of the optimal
mechanism.

Proof of Theorem 6.1: For a matroid market X, let OPT(X) denote the expected revenue of the
optimal mechanism. Let By, ..., B, denote x disjoint bases of the given matroid M = (U,Z). Obvi-
ously, deleting all of these bases from M decreases the expected revenue of the optimal mechanism
by at most OPT(M). Since the expected revenue of the optimal mechanism is submodular on
subsets of U (Theorem 3.1), we have Y i | [OPT(M) — OPT (M g,)] < OPT(M). So, there is a
basis B; with

OPT(M) — OPT(My\p,) < OPT(M)/k

and hence
OPT(MU\BZ.) >(1—-1/k)-OPT(M).

Lemma 6.2 implies that the expected revenue of the VCG mechanism in M is at least OPT (MU\ Bi )
which completes the proof. B

For a k-unit n-bidder auction, we can take advantage of the additional symmetry to strengthen
Theorem 6.1 using a “fractional packing number”: the expected revenue of the Vickrey auction is
at least a (1 — k/n) fraction of that of the optimal auction. We omit the straightforward proof.

7 Revenue Properties of Efficient Keyword Auctions

Search engines use pay-per-click keyword auctions to sell advertising bundled with search results.
Our revenue guarantees for the VCG mechanism extend to a standard model of these practically
relevant auctions. The main technical observation (Lemma 7.1) that enables this extension is
that both the VCG mechanism and the revenue-maximizing auction are revenue-equivalent to
randomizations over multi-unit auctions.

7.1 The Model

We study a standard, single-shot model of pay-per-click keyword auctions (see for instance Var-
ian [26] and Edelman et al. [7]). In this model, an auction is run by a search engine on the event
of a search query and n bidders (advertisers) compete to have their advertisement displayed in one
of k slots. A slot-specific, publicly known parameter called the click-through rate ©; specifies the
probability of a click on an advertisement placed in slot j. Higher slots are assumed to attract
more clicks, meaning ©; > 0,1 for every j.

Each advertiser ¢ has a private valuation v; for each click on its advertisement — wv; could
represent the profit that the advertiser expects to make on a subsequent sale, with the probability
of a sale appropriately factored in. The total value realized by allocating advertiser ¢ to slot j is
v; - ©;. If a bidder ¢ is allocated z; clicks, its utility is x; - v; — p;, where p; is the total amount it
pays. (The amount paid per click is p;/x;.) We assume that the bidders’ valuations are i.i.d. draws
from a regular distribution F'.
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7.2 The Reduction to Multi-Unit Auctions and the Revenue Guarantee

We now show that efficient and revenue-maximizing keyword auctions are both revenue-equivalent
to a randomization over k£ multi-unit auctions, where the jth auction sells j identical units and is
chosen with relative probability ©; — ©;,1. This is shown for efficient auctions in [1, 7, 26]. We
prove the lemma more generally for any truthful sort-by-bid keyword auction with reserve r, meaning
a truthful auction that sets a reserve price r and allocates the slots in order of non-increasing bid.

Lemma 7.1 The expected revenue from a truthful sort-by-bid keyword auction with reserve price r,
k slots, and n bidders with valuations drawn i.i.d. from F, is equal to the weighted sum of expected
revenues from k multi-unit auctions, each with reserve price r and n bidders with valuations drawn
i.i.d. from F. The i*" multi-unit auction sells i objects and has weight ©; — Q1.

Proof: We prove the result for every possible realization of the valuations. Fix the valuations of
the n bidders and index bidders in non-increasing order of bids. Since we have fixed the allocation
rule and we assume that the auction is truthful, the payments are uniquely defined (see e.g. [18,
Lemma 3]). Specifically, the payment of the i*" winning bidder is

k
pi= (0; — ;1) - max(r,v41). (3)

j=i

Let [ be the last bidder i with v; > r; if there is no such bidder, let [ = 0. Let ¥ = min(k,1).
By (3), the total revenue of the auction is

k
dopio= Y D (6, 6;u) max(ru)
1<i<k’ 1<i<k’ j=i

= (6 - 0;11) - min(l,j) - max(r, vj41). (4)
1<5<k

Note that the j* summand in (4) is precisely (O — ©;41) times the revenue of a truthful j-unit
auction with reserve price . B

We now use Lemma 7.1 to establish a version of Theorem 6.1, and its extension to fractional
packing numbers, for keyword auctions.

Theorem 7.2 In an n-bidder k-slot pay-per-click keyword auction with bidders’ valuations drawn
1.4.d. from a reqular distribution F', the expected revenue of the VCG mechanism is at least a
(1 —k/n) fraction of that of the revenue-mazimizing auction.

Proof: First, recall that the VCG mechanism is a truthful sort-by-bid auction with reserve price 0
(see for instance Varian [26]). Similarly, the optimal keyword auction is a truthful sort-by-bid
auction with reserve price 7 = ¢~ 1(0) (see Edelman and Schwarz [8]), where ¢ is the virtual
valuation function for the valuation distribution F.

For j <k, Let RJE I and Rjopt denote the expected revenue of an efficient and revenue-optimal,
respectively, n-bidder j-unit auction with valuations drawn i.i.d. from F. Recall that these two
auctions are simply the Vickrey auction and the Vickrey auction with a reserve price r = ¢—1(0),
respectively [18].
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By Lemma 7.1, the expected revenue of the VCG mechanism and the revenue-optimal auction
for the keyword auction setting are

> (05— O©41) Ry

1<j<k
and ‘
Y (8 = 0j41) Ry,
1<j<k
respectively.

By Theorem 6.1, we have
. k .
J J
Rppp = <1 — E) “Rop

for every j < k. Thus the expected revenue of the efficient auction is

| k '
Y (0= ©j41) Ry > <1 N E) 2 (0= 0j51) - oy,

1<j<k 1<j<k
which proves the desired approximation guarantee.

Theorem 7.2 states that even under moderate competition, when the number of bidders is a small
multiple of the number of slots, efficient keyword auctions yield near-optimal revenue. Practically,
this is good news for three reasons. First, an optimal auction is not trivial to implement, as it
requires knowledge of the valuation distribution F' to choose an optimal reserve price. Second,
optimal auctions are tailored for monopoly settings. Third, economic efficiency, which is a socially
desirable objective, is not necessarily at odds with revenue, which is the natural objective for search
engines to optimize.

Remark 7.3 Most real-world keyword auctions are not truthful (see [1, 7, 26]) and can have
multiple Nash equilibria. On the other hand, in these non-truthful auctions, there is always a
natural equilibrium that is revenue-equivalent to the truthful outcome of the VCG mechanism [1,
7, 26].

Remark 7.4 In some keyword auctions, the number & of slots is in principle infinite. But intu-
itively, only the slots that receive non-negligible clicks should matter. To make this idea precise,
assume that click-through rates fall geometrically with ratio 4. Then, we can show that for every
j € {1,...,k}, the efficient auction «(j,n,vy)-approximates the revenue of the optimal auction,
where a(j,n,v) = (1 —7/n)(1 — (j +1)(1? —~7T1) —49+1). For instance, when v =1/2 and j = 5
(and k is arbitrarily large), the expected revenue of the VCG mechanism is at least a (1—5/n)(0.89)
fraction of that of the revenue-maximizing auction.

8 Open Questions

Our work suggests a number of open directions. First, are there additional assumptions (e.g.,
on bidders’ valuations) under which revenue submodularity or an approximate variant holds in
non-matroid domains? The same question can be asked about approximation guarantees for the
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expected revenue of the VCG mechanism. Finally, we believe that market expansion optimization
problems should be studied more broadly. For example, is there a better approximation algorithm
than greedy market expansion in matroids? Are there non-trivial approximation algorithms for
non-matroid domains, where revenue submodularity — and, for the VCG mechanism, even revenue
monotonicity — can fail?
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