
Truthful Approximation Schemes for Single-Parameter Agents∗

Peerapong Dhangwatnotai† Shahar Dobzinski‡ Shaddin Dughmi§

Tim Roughgarden¶

April 7, 2011

Abstract

We present the first monotone randomized polynomial-time approximation scheme (PTAS)
for minimizing the makespan of parallel related machines (Q||Cmax), the paradigmatic problem
in single-parameter algorithmic mechanism design. This result immediately gives a polynomial-
time, truthful (in expectation) mechanism whose approximation guarantee attains the best-
possible one for all polynomial-time algorithms (assuming P 6= NP). Our algorithmic techniques
are flexible and also yield a monotone deterministic quasi-PTAS for Q||Cmax and a monotone
randomized PTAS for max-min scheduling on related machines.

1 Introduction

Algorithmic mechanism design studies resource allocation problems where the underlying data (such
as the value of a good or the cost of performing a task) is a priori unknown to the algorithm designer,
and must be implicitly or explicitly elicited from self-interested agents (e.g., via a bid). There is
a complex interaction between the way an algorithm employs this information and the behavior
of the participants—for example, in a “first-price” auction (where winners pay their bids), bidders
will shade their bids below their maximum willingness to pay, while in a “second-price” auction
participants are incentivized to bid their true value for a good. Algorithmic mechanism design has
applications in the design of auctions, contracts, pricing schemes, and so on (see e.g. [21]).

An important research agenda, suggested roughly ten years ago [22], is to understand rig-
orously what can and cannot be efficiently computed when the problem data is held by selfish
agents, thereby reconciling strategic concerns with the computational requirements customary
in computer science. This agenda is centered around the following question: to what extent is

∗A preliminary version of this paper appeared in the Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, October 2008.

†Department of Computer Science, Stanford University, 460 Gates Building, 353 Serra Mall, Stanford, CA 94305.
Supported in part by the ONR Young Investigator Award of the fourth author. Email: pdh@cs.stanford.edu.

‡The School of Computer Science and Engineering, the Hebrew University of Jerusalem. This work was done while
the author was visiting Stanford University. Supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities, and by a grant from the Israeli Academy of Sciences. Email: shahard@cs.huji.ac.il.

§Department of Computer Science, Stanford University, 460 Gates Building, 353 Serra Mall, Stanford, CA 94305.
Supported in part by NSF grant CCF-0448664. Email: shaddin@cs.stanford.edu.

¶Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305.
Supported in part by NSF CAREER Award CCF-0448664, an AFOSR MURI grant, an ONR Young Investigator
Award, and an Alfred P. Sloan Fellowship. Email: tim@cs.stanford.edu.

1

“incentive-compatible” efficient computation fundamentally less powerful than “classical” efficient
computation?

By “incentive-compatible”, we mean the following. Suppose each agent i holds a private cost
function ti and we want to optimize some objective function involving the ti’s over a set of feasible
outcomes Ω. In our primary example, Ω is all schedules of n jobs with known sizes p1, . . . , pn on m
parallel related machines (the agents); ti is a function of the form xi(ω)/si, where si denotes the
(private) speed of agent i’s machine and xi(ω) denotes the work (sum of job sizes) assigned to i in
the schedule ω; and our objective is to minimize the makespan maxi ti(ω) of the machines. Every
vector t of private data induces an instance of an optimization problem Π, which in our example is
the strongly NP -hard problem Q||Cmax. An algorithm A for Π is implementable (read: “incentive-
compatible”) if there is a payment algorithm p that makes the following 3-step mechanism M(A, p)
truthful:

(1) request the agents’ private information, receiving reports t̂1, . . . , t̂m;

(2) under the working hypothesis that t̂i = ti for every i, invoke A on the induced instance of Π
and return the resulting outcome ω;

(3) charge or distribute the payment pi(ω, t̂1, . . . , t̂m) to each agent i.

Recall that such a mechanism is truthful if for every agent i and fixed reports by the other agents, re-
porting t̂i = ti is guaranteed to maximize i’s utility pi(ω, t̂1, . . . , t̂m)−ti(ω) over all possible reports.1

The key question above can be stated formally as: can non-implementable polynomial-time algo-
rithms for natural problems Π obtain better approximation ratios than implementable polynomial-
time algorithms?

This question remains poorly understood. The answer is known to be “yes” for some natural
problems, such as minimizing the sum of weighted completion times on parallel related machines,
that cannot be approximated well even by implementable algorithms that are computationally
unbounded [4]. Far more interesting are the problems that are optimally solvable via (computa-
tionally unbounded) implementable algorithms: these include Q||Cmax [4], as well as arbitrarily
general problems with a sum objective (

∑

i ti(ω)) [9, 13]. For NP -hard problems of this sort, any
separation between implementable and non-implementable polynomial-time algorithms must be con-
ditional on P 6= NP . Progress on this question in either direction is necessarily remarkable, both
conceptually and technically: either incentive-compatibility imposes no additional difficulty for a
massive class of important mechanism design problems, or else there is a non-trivial way of ampli-
fying (conditional) complexity-theoretic approximation lower bounds using information-theoretic
strategic requirements. The few results known along these lines are negative results for relatively
complex “multi-parameter” problems [7, 19, 23].2

1.1 Single-Parameter Problems

Our understanding of the fundamental research issue above is primitive even in the important
special case of single-parameter agents, for which a beautifully clean description of implementable

1Other definitions of incentive-compatibility are possible, but this strong notion has been advocated widely for
computational settings; see e.g. [24, Chapter 2] or [21] for detailed discussions.

2Since the conference version of this work, there have been positive results for problems that admit an FPTAS [10],
and for Bayes-Nash implementations in single-parameter problems with a sum objective [14].

2

algorithms was discovered by Archer and Tardos [4] (and earlier, in a somewhat different context [20,
25]). Formally, a mechanism design problem is single-parameter if all outcomes are real m-vectors
and agents’ private cost functions have the form ti(ω) = ciωi for a private real number ci. Q||Cmax

can be phrased as a single-parameter problem, with the vector ω denoting the work assigned to each
machine and each ci equal to the reciprocal of agent i’s machine speed si. An algorithm for a single-
parameter problem is monotone if increasing the value of a ci (keeping other cj’s fixed) can only
decrease the ith component of its solution. For Q||Cmax, monotonicity means that slowing down one
machine can only decrease the work assigned to it by the algorithm. Archer and Tardos [4] proved
that an algorithm for a single-parameter problem is implementable if and only if it is monotone.
Conceptually, polynomial-time single-parameter mechanism design is equivalent to polynomial-time
monotone algorithm design. Similarly, a randomized algorithm (for Q||Cmax, say) is implementable
— i.e., via suitable payments, it can be extended to a mechanism in which truthful reporting
always maximizes expected agent utility — if and only if the expected work assigned to a machine
is nondecreasing in the machine speed (for fixed speeds of the other machines) [4].

The problem Q||Cmax is the paradigmatic problem in single-parameter mechanism design (e.g. [18]),
and was considered a realistic candidate problem for a conditional separation between imple-
mentable and non-implementable polynomial-time approximation algorithms. The problem admits
an (exponential-time) implementable optimal algorithm, but all classical polynomial-time approx-
imation algorithms for it, such as the polynomial-time approximation scheme (PTAS) designed by
Hochbaum and Shmoys [15], are not monotone [4]. Archer and Tardos [4] devised a polynomial-
time monotone randomized approximation algorithm that is 3-approximate with probability 1.
Archer [3] later modified the algorithm and analysis to improve the performance guarantee to 2.
While no superior guarantees have since been obtained for monotone algorithms, a sequence of
papers have designed deterministic polynomial-time monotone algorithms with increasingly good
approximation ratios; the current record, due to Kovács [17], is 2.8. (See also [1, 2, 5, 16].)

1.2 Results

Our main result is the first randomized monotone PTAS for the Q||Cmax problem. The run-time
bound and the approximation guarantee hold with probability 1; randomization is needed only for
monotonicity. By applying the Archer-Tardos characterization and standard techniques to compute
suitable payments in polynomial time, we obtain a polynomial-time, truthful (in expectation) mech-
anism whose approximation guarantee attains the best-possible one for polynomial-time algorithms
(assuming P 6= NP).3

The algorithmic techniques we develop for this result are flexible and easily yield additional
new monotone algorithms for various single-parameter problems: a deterministic quasipolynomial-
time approximation scheme (QPTAS) for Q||Cmax (improving over [2]); a randomized PTAS and
deterministic QPTAS for minimizing the p-norm of loads on related machines; and a randomized
PTAS for max-min scheduling on related machines (cf. [12]).

1.3 Techniques

We identify two key sources of non-monotonicity in classical approximation algorithms for Q||Cmax

and related problems, and develop a number of ideas to overcome them. Both the known PTASes

3After the conference version of this work, Christodoulou and Kovács [8] gave a truthful deterministic PTAS for
the Q||Cmax problem.

3

for Q||Cmax [11, 15] optimize over a compact but coarse representation of an allowable subset
of schedules, represented as paths in a polynomial-size graph. This allowable subset fluctuates
as a function of the machine speeds, so varying a machine speed causes unpredictable (and non-
monotone) changes in algorithm behavior. Secondly, even when a machine speed perturbation leaves
the allowable schedules invariant, attempting to optimize over their coarse representation inevitably
yields only an approximate result. Approximation creates another opportunity for non-monotone
behavior, with small perturbations in a machine speed potentially influencing the approximate
solution chosen in an uncontrollable way. These difficulties are consistent with the empirical affinity
between implementability and exact optimization over a fixed set that pervades the mechanism
design literature.

Optimizing over a speed-dependent set of outcomes appears necessary to achieve a good approx-
imation in polynomial time, and we begin by introducing a simple but powerful way to accomplish
it safely: we first commit to a speed-independent set X of unordered partitions of the jobs, then
extend each partition to a concrete assignment of jobs to machines in a speed-dependent way, and
conclude by exactly optimizing over this induced set of schedules. We prove that under the natural
extension map for the second step, this three-step procedure is always monotone (for any set X).
This result is general and applies to many natural single-parameter problems.

The second and more technically challenging task is to identify a set X that is rich enough to
contain near-optimal solutions for all possible machine speeds, yet structured enough to permit
polynomial-time exact optimization. We use randomization twice to coax a job set into a form that
allows a good compact representation. First, we artificially equalize the sizes of jobs that originally
had similar sizes, randomly replacing them with the original job sizes at the end of the algorithm.
Second, we allow fractional schedules, which we eventually convert to integral schedules via ran-
domized rounding. Randomized rounding was also used by Archer and Tardos [3, 4], although our
approximation target of (1 + ǫ) allows only the barest use of the technique: the jobs fractionally
assigned to each machine must be dwarfed by those assigned fully. Nevertheless, we show that
allowing even these highly restricted fractional job partitions permits an exact compact represen-
tation of a set that is guaranteed to include a near-optimal solution for every choice of machine
speeds. Finally, our approach for optimizing over this set is inspired by the PTAS for Q||Cmax of
Epstein and Sgall [11], which in turn borrows some ideas from Hochbaum and Shmoys [15]; even
here additional work is required, as our monotonicity constraint robs us of one of the degrees of
freedom leveraged in [11], forcing us to enrich our representation.

2 A Monotone Randomized PTAS for Q||Cmax

2.1 Monotone Algorithms via Smoothing, Rounding, and Exact Optimization

This section identifies a large class of monotone randomized algorithms for Q||Cmax, together with
additional (strong) conditions that ensure an approximation ratio of (1+ǫ). The next three sections
design a polynomial-time algorithm that meets all of these requirements.

We first formally state the monotonicity requirement.

Definition 2.1 (Monotone Algorithm) A randomized algorithm for the Q||Cmax problem is
monotone if the expected load assigned to a machine i — holding the set of jobs and the speeds of
the other machines fixed — is always a nondecreasing function of the machine speed si.

4

Monotone algorithms are important because they are precisely the algorithms that can be extended
to truthful (in expectation) mechanisms [4].

We leverage randomization to achieve monotonicity in two distinct ways. First, for an arbitrary
group S of k jobs, we define the smoothed version of S as a set of k jobs, each of size equal
to the average size (

∑

j∈S pj)/k of a job of S. Given a schedule that includes these smoothed
jobs, a random shuffle replaces each of them with a distinct job from S, with each such bijection
equally likely. The smoothed size of a job is the same as its expected size following this random
instantiation.

Second, we use the well-known technique of randomly rounding a fractional schedule. Precisely,
a fractional schedule consists of a fractional assignment {yij}i∈M for each job j, where the yij’s
are nonnegative and sum to 1 for each j. The makespan of a fractional schedule is defined as the
value of the maximum (fractional) load (

∑

j pjyij)/si of a machine i. By randomly rounding a
fractional schedule, we mean that each job j is independently assigned to a machine, according
to the probability distribution {yij}i∈M . The expected work on a machine following randomized
rounding equals the work assigned to it in the fractional schedule.

Finally, we require a technique to optimize over a speed-dependent set of allowable schedules
without violating monotonicity. Every fractional schedule of n jobs to m machines induces an
unordered job partition by ignoring the machine identities—a fractional partition of the n jobs
into m classes, with each class corresponding to the job fractions assigned to a single machine. We
sometimes call such a class S a workload, and use |S| to denote the corresponding amount of work
(sum of fractional job sizes). We use Pi to denote the class of a partition P with the ith-smallest
amount of work (breaking ties arbitrarily). Given the speeds s of m machines, every job partition
naturally defines m! different fractional schedules, one for each bijection between workloads and
machines. We single out the fractional schedule in which Pi is assigned to the ith slowest machine
for each i, with ties between equal-speed machines broken in order of the machines’ names, and call
this the schedule induced by the given job partition and machine speeds. See Figure 1. A trivial
exchange argument shows that this is the “obvious” schedule to use given the workloads, in that
it minimizes the makespan over the m! possible schedules. Given m machine speeds, the makespan
of a job partition is the makespan of the fractional schedule it induces. Our final technique for
ensuring monotonicity is to optimize over some predetermined set X of (fractional) job partitions,
evaluating each via the makespan of the induced schedule, breaking ties among optimal partitions
according to a consistent ordering ≺.

We combine these three tools in the generic algorithm shown in Figure 2. The first step par-
titions the input jobs arbitrarily and applies job smoothing independently to each group. The
smoothing step and the definitions of X and ≺ are required to be independent of s. The third
step optimizes over the permissible partitions X with respect to s. The final two steps transform
the induced fractional schedule of the smoothed jobs into an integral schedule of the original jobs
via randomized rounding and random shuffling. A short but slightly subtle proof shows that this
algorithm is always monotone.

Lemma 2.2 (Monotonicity of Generic Algorithm) For every speed-independent job grouping
and choice of (X ,≺), the randomized algorithm of Figure 2 is monotone.

Proof: By the properties of randomized rounding and shuffling, the expected amount of work
assigned to each machine equals the fractional work of the smoothed jobs assigned to it in the third
step of the algorithm. Therefore, we only need to show that the fractional schedule of the smoothed

5

2

2

5

1

7

2

1

(a) Job Partition

1

7

2

2

5

2

1

speed = 1 speed = 2 speed = 3

(b) Induced Schedule

Figure 1: An unordered job partition, in which labels denote job sizes, and the induced schedule
for three machines with speeds 1, 2, and 3. The makespan of the induced schedule is 4, with the
second machine being the bottleneck.

jobs computed in the third step is monotone in the declared speeds.
Let s = (si, s−i) and ŝ = (ŝi, s−i) denote two speed vectors that differ only for machine i, with

si > ŝi, and let P, P̂ ∈ X denote the corresponding optimal partitions. Let machine i be the kth
slowest in s and the k̂th slowest in ŝ, with k̂ ≤ k. Monotonicity demands that |P̂k̂| ≤ |Pk|.

Let σ and σ̂ denote the schedules induced by P for s and ŝ, respectively. If both schedules
have the same makespan, then P is also a ≺-minimum optimal schedule for ŝ, so P̂ = P and
|P̂k̂| = |Pk̂| ≤ |Pk|.

For the other case, call a machine slow if it is the ℓth slowest machine in ŝ and is strictly slower
than the ℓth slowest machine in s. The parameter ℓ lies in {k̂, . . . , k} for each such machine; see
Figure 3. If the makespan of σ̂ exceeds that of σ, then at least one slow machine, say the ℓth
slowest in ŝ, determines the makespan in σ̂ (since the load of each non-slow machines is no larger
in σ̂ than in σ). The load on machine ℓ can only be less in the schedule induced by the optimal
partition P̂ for ŝ — that is, |P̂ℓ| ≤ |Pℓ|. Combining what we know completes the proof:

|P̂k̂| ≤ |P̂ℓ| ≤ |Pℓ| ≤ |Pk|,

where the first and third inequalities follow from the facts that k̂ ≤ ℓ ≤ k and that workload sizes
are nondecreasing in an induced schedule. �

To control the approximation ratio of the generic algorithm in Figure 2, we impose three addi-
tional requirements — one for grouping, one for rounding, and one for the permissible job partitions.

Definition 2.3 (δ-Grouping) A partition of a set of jobs into groups is a δ-grouping if two jobs
are in a common group only when their sizes are within a (1 + δ) factor of each other.

Definition 2.4 (δ-Integrality) A fractional job partition P is δ-integral if:

6

Input: n jobs with sizes p1, . . . , pn and m machines with speeds s1, . . . , sm.

1. Group and smooth the jobs.

2. Define a set X of permissible fractional job partitions and a total ordering ≺ on X .

3. Compute the partition in X with minimum makespan for s, breaking ties via ≺, and let σfrac

denote the induced schedule.

4. Transform σfrac into an integral schedule σsmooth of the smoothed jobs using randomized
rounding.

5. Transform σsmooth into an integral schedule of the original jobs using random shuffling.

Figure 2: A generic monotone algorithm. Only the third step is allowed to depend on s.

speed = 1 speed = 3 speed = 5 speed = 7 speed = 9

machine i (k = 4)

(a) Schedule σ

speed = 1 speed = 9speed = 2 speed = 3 speed = 5

machine i (k = 2)

slow machines

^

(b) Schedule σ̂

Figure 3: Proof of Lemma 2.2. The schedules induced by a job partition P for two speed vectors s
and ŝ that differ only in the speed of machine i.

(1) whenever a non-integral fraction of a job j belongs to some class Pi, |Pi| ≥ pj/3δ; and

(2) every class of P contains at most two fractional jobs.

Definition 2.5 (δ-Good) A set X of permissible job partitions is δ-good if, for every speed vec-
tor s, X contains a partition with makespan at most (1 + δ) times that of an optimal integral
schedule.

We have engineered these definitions in service of the next lemma.

Lemma 2.6 (Approximation Guarantee) Let δ be a sufficiently small positive constant. For
every Q||Cmax instance, every δ-grouping of the jobs, every δ-good set X of δ-integral partitions of
the smoothed jobs, the schedule produced by the algorithm of Figure 2 has makespan 1+ O(δ) times
that of an optimal integral schedule, with probability 1.

Proof: Fix a Q||Cmax instance. Smoothing the jobs of this instance via a δ-grouping increases the
makespan of an optimal schedule by at most a (1 + δ) factor. The algorithm in Figure 2 then
computes an optimal permissible partition of the smoothed jobs; since X is δ-good, the makespan

7

of the induced (fractional) schedule is at most (1 + δ) times that of an optimal integral schedule
of the smoothed jobs, and at most (1 + O(δ)) times that of an optimal integral schedule of the
original jobs. By Definition 2.4, randomly rounding this δ-integral schedule increases the makespan
by at most a (1 + 6δ) factor. By Definition 2.3, the random shuffling step increases the makespan
further by at most a 1 + δ factor. The generic algorithm thus terminates, with probability 1, with
a (1 + O(δ))-approximate solution to the original Q||Cmax instance. �

2.2 Permissible Partitions

This section identifies a δ-grouping and a δ-good set X of δ-integral job partitions for use in the
generic algorithm (Figure 2). Consider n jobs, a parameter m, and a positive constant δ. We can
assume that 1/δ is a sufficiently large power of 2. We begin with our δ-grouping procedure, which
leads to what we call bucket smoothing. Group together all jobs that share the same values of two
parameters: the largest W that is a power of 2 with pj > δW (call it W ∗); and the unique i such that
the job size belongs to the ith W ∗-bucket, defined as the interval (δW ∗(1 + (i− 1)δ), δW ∗(1 + iδ)].
This procedure only groups together jobs with sizes that differ by at most a 1 + δ factor, so it is
a δ-grouping. By design, smoothing enforces the following property: if the smoothed jobs j, k lie
in a common W -bucket, where W is a power of 2 satisfying pj , pk ∈ (δW,W] — possibly smaller
than W ∗ above — then the jobs have the same size and are thus interchangeable.4

Bucket smoothing enables a succinct summary of the sizes of a set of jobs, described next.
A magnitude is either 0 or a power of 2, and is used to determine the resolution at which we
monitor job sizes. If W is a magnitude, we call a job W -small if its size is at most δW . If W is a
magnitude that is at least the full size of each job in a collection of (possibly fractional) jobs S, then
the W -configuration of S is a vector in which the first component (indexed by 0) denotes the total
(fractional) work of the W -small jobs of S, divided by δW ; and each of the other ≈ 1

δ2 components i
counts the number of jobs of S whose full size lies in the ith W -bucket. Bucket-smoothing ensures
that all (non-W -small) jobs in the same W -bucket have equal size.5

We now build up the defining properties of the job partitions that we include in our set X .

Definition 2.7 (Legal Magnitudes) Let P denote a fractional job partition of bucket-smoothed
jobs, with Pi denoting the ith smallest class. An m-vector w of magnitudes is legal for P if the
following properties hold for each i:

(P1) wi is a magnitude (0 or a power of 2) that is at least the full size of every job in Pi;

(P2) wi is at least 1/δ times the full size of every job that is fractionally assigned in Pi;

(P3) |Pi| ∈ [13wi,
7
6wi].

Property (P2) of Definition 2.7 ensures that only wi-small jobs can be fractional in Pi. Prop-
erty (P3) ensures that there are no more than two legal values of wi for a given Pi. Since the |Pi|’s
are nondecreasing, legal wi’s must be almost increasing in the sense that wk ≥ wi/2 whenever k > i.

4Other grouping schemes, such as buckets of the form (δW ∗(1 + δ)i−1, δW ∗(1 + δ)i], work equally well.
5For example, consider the case where W = 16 and δ = 1/4. The W -buckets are the intervals (4, 5], (5, 6], (6, 7],

. . . , (15, 16]. Suppose S is a set of (fractional) jobs, each with full size at most 16. Jobs with full size larger than 4
are counted in the W -buckets. If, say, S fully contains two different jobs of size 2 and contains half of a job with full
size 3, than the first component of the corresponding W -configuration was value (2 + 2 + 1.5)/4 = 11/8.

8

workload
w

2

4

8

1 2 3 4
2 4 8 4

2 - block 4 - block

4.1
3.9

3

1.8
A

m
o

u
n

t
o

f W
o

rk
 (

|P
i|

)

Figure 4: A job partition with four classes, legal magnitudes w for it, and the corresponding 2- and
4-blocks.

If a partition P admits some vector w of legal magnitudes, and additionally each Pi contains
at most two fractional jobs, then properties (P2) and (P3) together imply that P is δ-integral in
the sense of Definition 2.4. The set of all such partitions is 0-good — for example, it includes all
integral partitions — but appears far too rich to optimize over efficiently. This motivates our final
properties, which impose just enough additional structure on the allowable job partitions to enable
polynomial-time optimization without destroying δ-goodness.

Suppose w is legal for P . Place Pi in the wi-block if wk ≥ wi for all k > i, and in the (wi/2)-block
if there is a k > i with wk = wi/2. Note that if Pi is in the W -block, then wi ∈ {W, 2W}. Since
the wi’s are almost increasing, each block is a contiguous subset of the Pi’s; see Figure 4. The final
class Pi of a W -block (necessarily with wi = W) is the block endpoint. The largest class Pm is
always a block endpoint.

Definition 2.8 (Permissible Partitions) A fractional job partition P is permissible if it is δ-
integral and there are legal magnitudes w such that:

(P4) for every non-block endpoint Pi, the induced wi-configuration of Pi is integral — i.e., the
total (fractional) size of wi-small jobs of Pi is a multiple of δwi; and

(P5) for every block endpoint Pi other than Pm, the induced wi-configuration of Si is integral,
where Si = ∪k : wk≤wi

Pk.

Thus most classes of a permissible partition have integral configurations, and the cumulative
configurations at certain milestones (the block endpoints) are also integral. These properties are
essential for the existence of a polynomial-size representation of permissible partitions.

We take X to be the set of all permissible partitions, and order these partitions lexicographically
by the work vector (|P1|, . . . , |Pm|). (Ties between different partitions with the same work vector
can be broken arbitrarily.) Neither the set X nor this ordering ≺ depend on the machine speeds.
The next two sections give proofs of the following technical but important lemmas.

9

Lemma 2.9 (δ-Goodness of Permissible Partitions) For every positive integer m, sufficiently
small δ > 0, and set of bucket-smoothed jobs, the corresponding set of permissible partitions is O(δ)-
good.

Lemma 2.10 (Optimizing over Permissible Partitions) For every constant δ > 0, the prob-
lem of computing the permissible partition of a bucket-smoothed Q||Cmax instance with minimum
makespan, breaking ties via ≺, can be solved in polynomial time.

Since permissible partitions are δ-integral, Lemmas 2.2, 2.6, 2.9, and 2.10 imply our main result.

Theorem 2.11 There is a randomized monotone PTAS for Q||Cmax.

After applying the Archer-Tardos characterization theorem [4] and standard techniques for
efficiently computing suitable payments (see Section 2.5), Theorem 2.11 yields a polynomial-time,
(1 + ǫ)-approximate, truthful in expectation mechanism for Q||Cmax.

2.3 Proof of Lemma 2.9

Fix δ > 0, which we can assume is at most a sufficiently small constant, an instance of Q||Cmax with
bucket-smoothed jobs J and speed vector s, and an optimal schedule σ∗. Rename the machines so
that s1 ≤ s2 ≤ · · · ≤ sm. We extract from σ∗ a permissible partition with makespan (with respect
to s) at most 1 + O(δ) times that of σ∗.

Let Wmax denote the smallest power of 2 that upper bounds the work of every machine in σ∗.
We first create a reserve R ⊆ J for subsequent “rounding up” of fractional configurations. Assume
without loss that the smallest job size is 1. For W = 1, 2, 4, . . . ,Wmax in turn, greedily add W -small
jobs to R until the total size of R is at least 3δW (and at most 4δW), or until there are no such
jobs to add. If |R| < 3δWmax at termination, then we can finish easily: we can transform σ∗ into
a schedule that induces a (1 + 6δ)-approximate (integral) permissible partition by re-assigning the
jobs of R to the machine with the most work, so that only the largest workload contains small jobs.
For the rest of the proof, we assume that |R| ≥ 3δWmax.

The high-level proof plan is to begin with a set of legal weights (Definition 2.7), then enforce
properties (P4) and (P5) of Definition 2.8, and finally restore δ-integrality; each step preserves the
properties already established while increasing the makespan by a 1 + O(δ) factor.

Delete from σ∗ all jobs of R and permute the workloads so that work is nondecreasing in machine
speed. Let S1, . . . , Sm denote the corresponding workloads, an ordered partition of J \ R indexed
by machine name. For each i, define wi as the unique power of 2 with wi/2 < |Si| ≤ wi; these are
legal for the job partition induced by the schedule. Also, wm = maxi wi since |Sm| = maxi |Si|, and
wm ≥ Wmax/2 since |R| ≤ 4δWmax (for δ sufficiently small). We repeatedly transform the schedule
in what follows; by definition, the wi’s remain fixed at their initial values throughout the process.

Call machine i non-integral if i 6= m and if the wi-configuration of its current (possibly fractional)
workload Si is not integral — that is, the total (fractional) work created by the wi-small jobs
of Si is not a multiple of δwi. While there are two non-integral machines i and i′, say with
wi ≤ wi′ , we move wi-small jobs from the former to the latter (where they are also wi′-small),
allowing fractional assignments, until one of the two machines becomes integral. This process
terminates with at most one non-integral machine, say i. We conclude by moving wi-small jobs
from i to machine m — since wm = maxi wi, they are also wm-small — until the former becomes
integral. This procedure terminates with a (fractional) schedule (T1, . . . , Tm). Note that we cannot

10

assume that |T1| ≤ |T2| ≤ · · · ≤ |Tm|. Nevertheless, this schedule induces a job partition meeting
property (P4) of Definition 2.8.6 Since it alters the amount of work assigned to each machine i
by less than δwi and only reschedules small jobs, w remains legal for the job partition induced by
the Ti’s (for δ sufficiently small) and the makespan remains (1 + O(δ))-approximate.

We dip into our reserve R to establish property (P5). We call a machine a potential endpoint if
it is carrying a workload that would be a block endpoint in the job partition induced by the current
schedule and w. Precisely, machine i is a potential endpoint of the current schedule T1, . . . , Tm if
wk > wi whenever |Tk| > |Ti| and whenever |Tk| = |Ti| and k > i. There is at most one potential
endpoint per magnitude. A potential endpoint i is non-integral if wi < wm and the wi-configuration
of ∪k : wk≤wi

Tk is not integral. While there is a non-integral potential endpoint, we pick the one
(i, say) with smallest W -value, and move wi-small jobs from R to machine i, again permitting
fractional assignments, until it becomes integral. Adding these jobs cannot create new potential
endpoints and strictly decreases the number of non-integral potential endpoints. At termination, the
job partition induced by the final schedule (U1, . . . , Um) and magnitudes w satisfies property (P5).
Every machine to which we added jobs is a block endpoint of this partition, so the procedure does
not violate (P4). Less than δwi work is added to a non-integral potential endpoint i, so w remains
legal and the makespan is increased by only a 1+O(δ) factor. Also, R always contains enough jobs
to implement each iteration: non-integrality of a potential endpoint i implies that not all wi-small
jobs are in R, so R began with at least 3δwi units of wi-small jobs; since W -values at least double
each iteration, at most δwi of these units were removed in prior iterations, leaving more than the
requisite δwi units available.

Once no non-integral potential endpoints remain, obtain the schedule σ̂ by assigning all re-
maining jobs of R — of total size between 2δWmax and 4δWmax — to machine m; this destroys
neither the legality of w nor the 1 + O(δ) approximation factor. Since |Sm| = maxi |Si| and
both job re-assignment procedures add at most δwi work to i without removing jobs from m,
|Um| > maxi |Ui| − 2δWmax. Thus machine m has the most work in σ̂. The induced job partition,
together with the legal magnitudes w, satisfies (P4) and (P5) of Definition 2.8.

To restore δ-integrality, remove the w-small jobs V ⊆ J from σ̂, sort them in order of nonde-
creasing size, and re-assign them to machines in order of nondecreasing wi so that the work assigned
to each machine is the same as in σ̂ (using fractional assignments only when needed). Call this final
schedule σ. The makespan is obviously unchanged. One easily checks that all jobs of V remain
small for their assigned machine(s) in σ, so legality of w and properties (P4), (P5) are preserved.
Finally, a job of V is fractionally assigned in σ only if it is the final small job re-assigned to one
machine and the first to another. Since every machine has at most two (small) fractionally assigned
jobs in σ, the schedule induces a permissible partition.

2.4 Proof of Lemma 2.10

This section shows that the problem of optimizing over permissible partitions can be solved ex-
actly, with the requisite tie-breaking, in polynomial time. Figure 5 gives a high-level description of
our algorithm, and the details follow. We first describe the layered shortest-path network, includ-
ing motivation for its ingredients, and then give the precise correspondence between permissible
partitions and certain paths in this network. Lemma 2.10 then follows easily.

6Strictly speaking, this holds provided |Tm| > maxi<m |Ti|; as we’ll see, the mth workload will satisfy this property
by the end of the proof.

11

Input: n jobs with sizes p1, . . . , pn and m machines with speeds s1, . . . , sm.

1. Construct a directed layered network with m + 2 layers and a polynomial number of vertices
in each layer. Layers 0 and m + 1 contain only an origin o and a destination d, respectively.

2. Define edges between layers and associated edge lengths x so that every o-d path whose
sequence of edge lengths has the form 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm corresponds to a permissible
partition P with |Pi| = xi for every i, and conversely.

3. Compute the o-d path Q∗ that minimizes maxm
i=1 xi/si subject to having a sequence of edge

lengths of the form 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm. Break ties lexicographically by the vector
(x1, x2, . . . , xm).

4. Return the permissible partition that corresponds to Q∗.

Figure 5: Approach for optimizing over permissible partitions in polynomial time (Lemma 2.10).

Fix δ > 0, m, and a set J of bucket-smoothed jobs. The graph G has m + 2 layers; the first (0)
and last (m + 1) contain only the origin o and destination d, respectively. For i ∈ {1, 2, . . . ,m},
the ith layer will consist of a polynomial number of vertices, each endowed with six labels. An
edge from layer i to i + 1 is meant to dictate the ith-smallest workload of a permissible partition
and the corresponding magnitude wi, as well as the value W of the W -block to which the (i + 1)th
workload belongs (for i + 1 ≤ m). Our vertex labels will be rich enough so that the intentions of
an edge can be inferred uniquely from the labels of its endpoints.

Precisely, every vertex in a layer i ∈ {1, 2, . . . ,m} is labeled with two magnitudes W1 and
W2. Each is required to be either 0 or in a polynomial-size set of powers of 2, ranging from the
smallest power of two that upper bounds pmin to the smallest one that upper bounds npmax, where
pmin and pmax denote the smallest and largest job sizes. We also insist that W2 ≥ 2W1. Choices
of W1,W2 that meet these constraints are called valid. These labels are meant to indicate that the
ith workload belongs to the W2-block — and thus its magnitude will be either W2 or 2W2 — while
the previous distinct block is the W1-block.

The other four vertex labels A1, B1, A2, B2 summarize the sizes of the jobs assigned to the
first i−1 workloads. Each is constrained to be an integral W -configuration for some magnitude W ;
there are only polynomially many (nO(1/δ2)) such configurations. Configuration A1 is meant to be
the W1-configuration of the set of jobs assigned to previous workloads k < i with wk ≤ W1; B1

the 2W1-configuration of jobs in previous workloads k < i in the W1-block with wk = 2W1; A2 and
B2 the W2- and 2W2-configurations of jobs in previous workloads k < i in the (current) W2-block
with wk = W2 and wk = 2W2, respectively. Four distinct labels are required to faithfully capture
properties (P4) and (P5) of permissible partitions as integrality constraints on configurations.

Our intents for the labels A1, B1, A2, B2 suggest additional constraints. To explain them, recall
that a W -configuration has a component (indexed by 0) indicating the total (possibly fractional)
size of W -small jobs, divided by δW ; and ≈ 1/δ2 components that count the number of jobs in each
W -bucket. We call a W -configuration C realizable if the total size of the W -small jobs of J is at
least C0 ·δW , and for each i > 0, at least Ci jobs of J belong to the ith W -bucket. Next, note that a
W -configuration can be uniquely rewritten as a W ′-configuration at a coarser resolution W ′ ≥ W ,

12

with jobs moving to lower-indexed buckets, and some non-W -small jobs becoming W ′-small. Thus
two configurations with different magnitudes can be sensibly added to produce one at the larger
magnitude (though the sum of two integral configurations can have a fractional first component).
Finally, we call the parameters W1,W2, A1, B1, A2, B2 valid if W1,W2 are valid, and every subset of
{A1, B1, A2, B2} sums to a realizable configuration (at the appropriate magnitude W1, 2W1, W2, or
2W2). Every layer i ∈ {1, 2, . . . ,m} of G has one vertex for every possible set of valid parameters.

Next we describe the edge set of G, beginning with the edges from layer i to i + 1 for i ∈
{1, 2, . . . ,m − 1}. Let (W1,W2, A1, B1, A2, B2) be the (valid) parameters of a vertex u in layer i.
Let Nu denote the vertices v of layer i + 1 that meet one of the following three conditions:

(A) all of v’s parameters match those of u except for its fifth parameter, which is some configu-
ration that is (componentwise) at least A2;

(B) all of v’s parameters match those of u except for its sixth parameter, which is some configu-
ration that is (componentwise) at least B2;

(C) v’s parameters are (W2,W3,D,B2, 0, 0), where D is some integral W2-configuration that is
componentwise at least the (possibly fractional) W2-configuration A1 + B1 + A2.

These three cases are meant to correspond to the following scenarios: (A) workload i + 1 also
belongs to the (current) W2-block and wi = W2; (B) workload i + 1 also belongs to the (current)
W2-block but wi = 2W2; and (C) workload i+1 belongs to the W3-block for some W3 > W2. In all
three cases, we can extract from the labels of u, v a proposed magnitude wuv for the ith workload —
W2 in (A) and (C), 2W2 in (B). We can also infer a corresponding wuv-configuration, which we can
interpret as a proposed ith workload: in (A), the increase in the fifth parameter; in (B), the increase
in the sixth parameter; and D−A1−B1−A2 in (C). For v ∈ Nu, let xuv denote the amount of work
represented by the corresponding wuv-configuration C. Because the jobs J are bucket-smoothed,
xuv is uniquely defined as C0 ·δwuv plus

∑

h>0 Ch ·zh, where zh denotes the common size of every job
of J that lies in the hth wuv-bucket. Eying constraint (P3) of Definition 2.7, we connect vertex u
to every v ∈ Nu for which xuv ∈ [13wuv,

7
6wuv]. We assign each such edge (u, v) a length of xuv. We

classify such edges as type A, type B, or type C according to the condition met by its endpoints’
labels.

The edges incident to o and d are defined similarly. The origin is connected to all vertices v of
layer 1 that possess a label in which all parameters but the second are zero; such an edge effectively
determines the value of W for the first W -block, but does not determine any workloads. These
edges are all assigned a length of zero and have no type. Finally, consider a node v of layer m with
valid parameters (W1,W2, A1, B1, A2, B2). We adopt W2 as the proposed magnitude for the mth
workload. We connect v to d in G if and only if there is a realizable W2-configuration C such that
A1 + B1 + A2 + B2 + C is the 2W2-configuration of the full set J of jobs, and the corresponding
amount of work xvd of C lies in [13W2,

7
6W2]. (There can be more than one such configuration C,

but all solutions represent the same amount of work.) Each such edge (v, d) is assigned a length
of xvd and is classified as a type C edge. This construction of the network G can be performed in
polynomial time.

We now verify that our construction represents permissible partitions.

Lemma 2.12 Let G denote the network corresponding to a bucket-smoothed instance of Q||Cmax

and a constant δ > 0.

13

(a) For every permissible partition P , there is an o-d path of G whose sequence of edge lengths is
0, |P1|, |P2|, . . . , |Pm|.

(b) Given an o-d path of G whose sequence of edge lengths is 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm, a
permissible partition P with |Pi| = xi for every i can be constructed in polynomial time.

Proof: Consider a permissible partition P and corresponding legal weights w. For each i ∈
{1, . . . ,m}, P and w naturally induce a vertex vi = (W1,W2, A1, B1, A2, B2) of layer i of G: W1,W2

are defined so that Pi belongs to the W2-block of P and the previous distinct block is the W1-block
(or W1 = 0 if no such block exists); and A1, B1, A2, B2 are derived from P according to their
intended meanings, discussed above. Since P satisfies properties (P4) and (P5) of Definition 2.8,
all four configurations are integral. By construction and properties (P1)–(P3) of Definition 2.8,
W1,W2, A1, B1, A2, B2 are valid parameters, corresponding to some vertex vi of layer i of G. The
edge (o, v1) is clearly present in G. Our definition of edge lengths in G ensures that xvi,vi+1

equals
the work |Pi|, so property (P3) implies that the edges (v1, v2), (v2, v3), . . . , (vm, d) are present in G.
The sequence of edge lengths along this path is precisely 0, |P1|, |P2|, . . . , |Pm|.

Conversely, consider an o-d path of G with intermediate vertices v1, . . . , vm and a nondecreasing
sequence of edge lengths. As outlined above, the edges of this path suggest magnitudes w and, for
each i, a corresponding wi-configuration Ci. (Recall that Cm can be inferred from C1, . . . , Cm−1

and the set J of all jobs.) For example, if the label of vi is (W1,W2, A1, B1, A2, B2), (vi, vi+1) is a
type-A edge, and the fifth parameter of vi+1’s label is A′

2, then we define wi = W2 and Ci = A′
2−A2.

The components of Ci other than the first indicate how many jobs from the different wi-buckets
should be (integrally) assigned to the ith workload, while the first component of Ci describes the
total fractional size of wi-small jobs that should be assigned to this workload. Our realizability
constraints ensure that these configurations can be translated into a job partition P1, . . . , Pm in
the obvious way, with the final small job assignments performed as in the last step of Section 2.3
— in nondecreasing order of magnitude and of job size, resorting to fractional assignments only
when needed. This translation can be performed in polynomial time, ensures that |Pi| = xvivi+1

for every i, and enforces δ-integrality. The produced partition P clearly satisfies properties (P1)
and (P2) with respect to magnitudes w. The definition of the edge set of G ensures that P and w
satisfy (P3). For property (P4), observe that every fractional configuration Ci results from a type
C edge (vi, vi+1), and the corresponding workload Pi is necessarily a block endpoint of P with
respect to w. To complete the proof, note that every block endpoint Pi arises from some type
C edge (vi, vi+1), and property (P5) then follows immediately from the integrality of the third
parameter of vi+1 (representing the jobs assigned to workloads k ≤ i with wk ≤ wi). �

We now complete the proof of Lemma 2.10.

Proof of Lemma 2.10: Consider a bucket-smoothed Q||Cmax instance and a constant δ > 0. Rename
machines so that s1 ≤ s2 ≤ · · · ≤ sm. Form the (speed-independent) network representation G of
permissible partitions described above, and assign a cost of xuv/si to every edge (u, v) traveling
from layer i to layer i + 1. By Lemma 2.12, computing the permissible partition with minimum
makespan for s polynomial-time reduces to computing the o-d path of G that has a nondecreasing
sequence of x-values and minimizes the bottleneck edge cost (breaking ties among optimal solutions
lexicographically according to the vector of x-values).

We claim that the latter problem can be solved in polynomial time. First, ignoring the tie-
breaking requirement, we can solve the problem either directly using dynamic programming, or via

14

Dijkstra’s algorithm after a simple graph transformation that eliminates o-d paths that do not have
a nondecreasing sequence of x-values.

To implement the desired tie-breaking, we solve this problem repeatedly. Initially the first layer
is “active”. In the first iteration we compute a nondecreasing path with optimal bottleneck edge
length M∗ and some value a for x1. In the second iteration, we delete all edges e from layer 1 to
layer 2 with xe ≥ a, and recompute a nondecreasing minimum-bottleneck path. If the new optimal
path has bottleneck edge length larger than M∗, then every optimal path in the original graph
satisfies x1 ≥ a. Otherwise, we obtain a new path that is optimal in the original graph and has an
x1-value b that is smaller than a. In the former case, we return the discarded edges with x1 = a
back to the graph, deactivate the first layer, and activate the next layer. In the latter case, we
discard edges e from layer 1 to layer 2 with xe ≥ b and repeat.

Inductively, the procedure above maintains the following invariant, where i denotes the currently
active layer: in the current network, there is at least one nondecreasing path with bottleneck edge
length M∗; and every such path in the current network minimizes lexicographically the vector
(x1, x2, . . . , xi−1) over all such paths in the original network G. Since every iteration either deletes
edges from the currently active layer or makes a later layer active, this procedure terminates in
polynomial time. By the invariant, it terminates with the nondecreasing minimum bottleneck path
of G, with ties broken lexicographically according to the vector of x-values. �

2.5 Computing Payments

To extend our randomized monotone PTAS for Q||Cmax to a truthful (in expectation) mechanism,
we compute suitable payments by integrating the “work curve” of each machine as described in [4].
For a given Q||Cmax instance with machine speeds s, this computation boils down to determining,
for every machine i and alternative speed report s′i, the expected amount of work that would have
been assigned to machine i had it reported s′i instead of si. Accomplishing this in polynomial time
requires two observations; see also [3, §2.6]. First, we can pre-round each machine speed down to
the nearest power of 1+δ before running our algorithm without affecting its monotonicity or PTAS
guarantee (where δ is a suitably small constant). Second, let pmin and pmax denote the smallest and
largest job sizes, respectively. The minimum non-zero expected load assigned to a machine by our
algorithm is pmin; this follows from properties (P2) and (P3) of permissible partitions, assuming δ is
sufficiently small. The approximation guarantee of (1 + ǫ) therefore ensures that no machine more
than a (1+ ǫ)npmax/pmin factor slower than the fastest receives non-zero work. This in turn implies
that, with pre-rounded speeds and for fixed reports s−i, we can infer the expected work assigned
to machine i for every alternative report from the results for a polynomial number of such reports
(the powers of (1+ δ) in the appropriate range). We can obtain these in polynomial time by simply
rerunning the third step of the generic algorithm (Figure 2) for each such report. The formula in [4]
for appropriate payments is then easy to compute exactly for each machine i in polynomial time.

3 Extensions

Variants of the algorithmic and analytical approach in Section 2 yield a number of additional
results: a deterministic QPTAS for Q||Cmax (Section 3.1); a randomized PTAS and deterministic
QPTAS for minimizing the p-norm on related machines (Section 3.2); and a randomized PTAS for
maximizing the minimum load on related machines (Section 3.3). Throughout this section, we omit

15

details that are essentially redundant with Section 2 and highlight only the main new ideas needed
to obtain the claimed results.

3.1 Monotone Deterministic QPTAS for Q||Cmax

The importance of randomization in our monotone PTAS for Q||Cmax (Theorem 2.11) is evident and
we leave open the question of whether or not a deterministic monotone PTAS exists. Nevertheless,
we can apply our generic algorithm (Figure 2) to obtain easily a monotone deterministic quasi-
polynomial-time approximation scheme (QPTAS) for the problem.

Theorem 3.1 There is a deterministic monotone QPTAS for Q||Cmax.

Proof: Fix a set of n jobs and parameters m, δ, and set l = ⌈log(1+δ)(m/δ)⌉. Let S denote the

nondecreasing speed vectors s with sm = 1 and with each si either 0 or of the form (1 + δ)−ki for
an integer ki between 0 and l. There is a quasi-polynomial number mO(l) of such speed vectors.
Compute a (1 + δ)-approximate schedule for each using a (non-monotone) PTAS for Q||Cmax such
as [15] or [11], and let X denote the induced set of (integral) job partitions. We can explicitly
construct and optimize over X in quasi-polynomial time. Order X lexicographically by sorted work
vectors, as in Theorem 2.11.

By Lemmas 2.2 and 2.6, we can complete the proof by showing that X is O(δ)-good. Consider an
arbitrary speed vector s; renaming and scaling, we can assume that s is nondecreasing with sm = 1.
Call machine i slow if si < δ/m. Obtain the speed vector ŝ by zeroing out the speeds of slow
machines and rounding all other speeds down to the nearest integer power of (1 + δ)−1. The
optimal makespan for speeds ŝ is at most 1 + O(δ) times that for s (in proof, take an optimal
schedule for s and reassign jobs on slow machines to machine m). By construction, X contains a
partition inducing a (1 + δ)-approximate schedule for ŝ; this schedule is (1 + O(δ))-approximate
for s. �

The exponential dependence on log2 m in Theorem 3.1 improves upon the exponential depen-
dence on m in the deterministic monotone algorithm of Andelman, Azar, and Sorani [2].

3.2 Minimizing the p-Norm on Related Machines

We can also extend our results to other parallel related machine scheduling problems. We first
consider the problem of minimizing the p-norm of the machine loads (for p ∈ [1,∞]). This problem
admits a non-monotone PTAS [11], but no previous monotone algorithms were known.

The obvious modification of our generic algorithm (Figure 2), in which we replace the makespan
objective in the third step by that of minimizing the p-norm, remains monotone. The proof of
Lemma 2.2 requires some modifications, as follows.

Proof: (of Lemma 2.2, adapted to minimizing the p-norm.) Let s = (si, s−i) and ŝ = (ŝi, s−i)
denote two speed vectors that differ only for machine i, with si > ŝi, and let P, P̂ ∈ X denote
the corresponding optimal partitions. Let machine i be the kth slowest in s and the k̂th slowest
in ŝ, with k̂ ≤ k. Assume for contradiction that |Pk| < |P̂k̂|, so |Pℓ| ≤ |Pk| < |P̂k̂| ≤ |P̂ℓ| for each

ℓ ∈ {k̂, . . . , k}.

16

Let s(ℓ), ŝ(ℓ) denote the speeds of the ℓth slowest machines in s and ŝ, respectively. Switching
from speeds s to ŝ increases the pth power of the p-norm of the schedule induced by P by

k
∑

ℓ=k̂

|Pℓ|
p
(

ŝ(ℓ)−p − s(ℓ)−p
)

and that of the schedule induced by P̂ by

k
∑

ℓ=k̂

|P̂ℓ|
p
(

ŝ(ℓ)−p − s(ℓ)−p
)

.

Thus the p-norm of the latter schedule increases at least as much as the former, contradicting the
assumption that P̂ is the ≺-minimum optimal schedule for ŝ. �

The proofs of Theorems 3.1 and 2.11 then carry over with only cosmetic changes. For example,
for the analog of Theorem 2.11, we define permissible partitions as in Section 2. Lemma 2.9
remains valid because its proof extracts a permissible partition from an arbitrary integral schedule
while increasing the work assigned to each machine, and hence the p-norm, by a 1 + O(δ) factor.
Lemma 2.10 requires only trivial modifications and truthful payments can be computed as in
Section 2.5.

Theorem 3.2 There is a deterministic monotone QPTAS for minimizing the p-norm on related
machines.

Theorem 3.3 There is a randomized monotone PTAS for minimizing the p-norm on related ma-
chines.

3.3 Max-Min Scheduling on Related Machines

Finally, we consider the problem of maximizing the minimum load on related machines, for which a
non-monotone PTAS was given in [6]. Again, the natural variant of our generic algorithm, using the
max-min objective in the third step, is monotone; the proof is very similar to that of Lemma 2.2.
Theorem 3.1 does not obviously extend to max-min scheduling, as the reassignment procedure
(from slow machines to the fastest one) used in the proof need not produce a near-optimal solution.
We can, however, extend Theorem 2.11 to max-min scheduling via some non-trivial modifications.

The main difficulty in extending the proof of Theorem 2.11 to the max-min objective is that
removing jobs from machines, as in the reservation procedure in the proof of Lemma 2.9, can destroy
near-optimality. To circumvent this problem, we relax our definition of permissible partitions.
First, we insist only on 2δ-integrality rather than δ-integrality. For magnitudes w to be legal for
a partition P , we require that wi is at least 1/δ times the full size of every job that is fractionally
assigned in Pi for every i < m; and that wm is at least 1/2δ times the full size of every job
fractionally assigned in Pm (cf., property (P2)). Finally, we replace property (P5) by:

(P5’) for every block endpoint Pi other than Pm, either the induced wi-configuration of Si is integral,
or else Si includes all wi-small jobs, where Si = ∪k :wk≤wi

Pk.

17

Next, we show how to modify the proof of Lemma 2.9 to establish that this relaxed set of permissible
partitions is O(δ)-good for the max-min objective.

Proof: (of Lemma 2.9, adapted to max-min scheduling.) Fix a job set, machine speeds s, and an
optimal schedule σ∗. Let (S1, . . . , Sm) denote the corresponding workloads. We can assume that
s1 ≤ · · · ≤ sm and, by an exchange argument, that |S1| ≤ · · · ≤ |Sm|. We extract from σ∗ a
permissible partition, in the current relaxed sense, with minimum load (with respect to s) at least
1 − O(δ) times that of σ∗.

For each i, define wi as the unique power of 2 with wi/2 < |Si| ≤ wi; these are legal for the job
partition induced by the schedule. We begin by iterating through the magnitudes W occurring in w
in increasing order. We fractionally re-assign W -small jobs from machines with magnitude larger
than W to those with magnitude equal to W , until the total fractional amount of W -small jobs
assigned to the latter machines is either a multiple of δW or is all W -small jobs. This procedure
enforces a strengthened form of property (P5’), and it removes at most δwi work from each machine i
(at most δW in each iteration with W < wi).

To establish (P4), we again iterate through the magnitudes W of w, in arbitrary order. As
in the proof of Lemma 2.9, we can re-assign W -small-jobs between machines with magnitude W
until only one such machine remains with a non-integral W -configuration. Re-assigning again if
needed, we can assume that this machine is the most heavily loaded one with magnitude W (and
thus will be a block endpoint provided there is a W -block). These re-assignments do not affect
any previously established properties. The job partition induced by the resulting schedule satisfies
property (P4), except for machines i that belong to the (wi/2)-block of the partition and are the
most heavily loaded machine with magnitude wi. For each such machine i, we re-assign the minimal
(fractional) amount of wi-small jobs to the next block endpoint with magnitude exceeding wi. This
is always possible unless wi is the largest magnitude; in this case, we move the same amount to
the most heavily loaded machine k. Our relaxed version of property (P2) allows this, even in the
event that wk is only wi/2. (Note that if we reindex machines according to their new workload
sizes, machine k corresponds to machine m in property (P2).) No machine i loses more than δwi

work in this second round of re-assignments.
Finally, we restore 2δ-integrality of the job partition by re-assigning small jobs as at the end of

Section 2.3. �

Modifying the representation and algorithm in Section 2.4 to accommodate this wider set of
permissible partitions is relatively straightforward. Parameters W1,W2, A1, B1, A2, B2 are now valid
if each of B1, A2, B2 is integral, A1 is either integral or represents a superset of all W1-small jobs,
and all subsets of {A1, A2, B1, B2} sum to realizable configurations. Crucially, there are still only
polynomially many valid sets of parameters. As in Section 2.4, given machine speeds, the optimal
permissible partition can be found by an s-t path computation.

Theorem 3.4 There is a randomized monotone PTAS for maximizing the minimum load on related
machines.

Epstein and van Stee [12] previously gave a (deterministic) monotone PTAS for the special case
of a constant number of machines. Truthful payments can be computed as in Section 2.5. Unlike
all other problems studied in this paper, however, the form of the max-min objective — where a
finite approximation algorithm must assign non-zero work to every machine — implies that such
payments cannot be chosen to satisfy individual rationality in the sense of [4].

18

4 Conclusions

Prior to the present work, the problem Q||Cmax was viewed as a single-parameter problem that
might separate the power of arbitrary polynomial-time approximation algorithms from that of
implementable (or equivalently, monotone) polynomial-time approximation algorithms, conditional
on P 6= NP . Theorem 2.11 largely dispels this possibility and suggests two challenging and
important open questions:

1. Is there a deterministic monotone PTAS for the Q||Cmax problem?7

2. Is there a single-parameter problem that is optimally solvable by a computationally un-
bounded monotone algorithm, but for which the best-achievable monotone polynomial-time
approximation is strictly worse than the best (arbitrary) polynomial-time approximation (as-
suming P 6= NP)?

References

[1] P. Ambrosio and V. Auletta. Deterministic monotone algorithms for scheduling on related
machines. Theoretical Computer Science, 406(3):173–186, 2008.

[2] N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for scheduling
selfish related machines. Theory of Computing Systems, 40(4):423–436, 2007.

[3] A. Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD thesis, Cornell
University, 2004.

[4] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings of
the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 482–491,
2001.

[5] V. Auletta, R. De Prisco, P. Penna, and G. Persiano. Deterministic truthful approximation
mechanisms for scheduling related machines. In Proceedings of the 21st Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes in Computer
Science, pages 608–619, 2004.

[6] Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on related ma-
chines. In Proceedings of the First International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), volume 1444 of Lecture Notes in Computer
Science, pages 39–47, 1998.

[7] D. Buchfuhrer, S. Dughmi, H. Fu, R. D. Kleinberg, E. Mossel, C. Papadimitriou, M. Schapira,
Y. Singer, and C. Umans. Inapproximability for VCG-based combinatorial auctions. In Pro-
ceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
518–536, 2010.

[8] G. Christodoulou and A. Kovács. A deterministic truthful PTAS for scheduling related ma-
chines. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1005–1016, 2010.

7Recently, Christodoulou and Kovács [8] gave an affirmative answer to this question.

19

[9] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[10] S. Dughmi and T. Roughgarden. Black-box randomized reductions in algorithmic mechanism
design. In Proceedings of the 51st Annual Symposium on Foundations of Computer Science
(FOCS), 2010. To appear.

[11] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and
identical parallel machines. Algorithmica, 39(1):43–57, 2004.

[12] L. Epstein and R. van Stee. Maximizing the minimum load for selfish agents. In Proceedings
of the 8th Conference on Latin American Theoretical Informatics (LATIN), volume 4957 of
Lecture Notes in Computer Science, pages 264–275, 2008.

[13] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[14] J. D. Hartline and B. Lucier. Bayesian algorithmic mechanism design. In Proceedings of the
42nd Annual ACM Symposium on Theory of Computing (STOC), pages 301–310, 2010.

[15] D. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation approach. SIAM Journal on Computing,
17(3):539–551, 1988.

[16] A. Kovács. Fast monotone 3-approximation algorithm for scheduling related machines. In
Proceedings of the 13th Annual European Symposium on Algorithms (ESA), volume 3669 of
Lecture Notes in Computer Science, pages 616–627, 2005.

[17] A. Kovács. Tighter approximation bounds for LPT scheduling in two special cases. In Pro-
ceedings of the 6th Italian Conference on Algorithms and Complexity (CIAC), volume 3998 of
Lecture Notes in Computer Science, pages 187–198, 2006.

[18] R. Lavi. Computationally efficient approximation mechanisms. In N. Nisan, T. Roughgarden,
É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 12, pages 301–329.
Cambridge University Press, 2007.

[19] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial
auctions. In Proceedings of the 44th Annual Symposium on Foundations of Computer Science
(FOCS), pages 574–583, 2003.

[20] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.

[21] N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan, T. Rough-
garden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 9, pages
209–241. Cambridge University Press, 2007.

[22] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35(1/2):166–196, 2001.

[23] C. H. Papadimitriou, M. Schapira, and Y. Singer. On the hardness of being truthful. In
Proceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS),
pages 250–259, 2008.

20

[24] D. Parkes. Iterative Combinatorial Auctions: Achieving Economic and Computational Effi-
ciency. PhD thesis, University of Pennsylvania, 2001.

[25] J. Riley and W. Samuelson. Optimal auctions. American Economic Review, 71(3):381–392,
1981.

21

