
What’s Decidable About Arrays??

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{arbrad,zm,sipma}@theory.stanford.edu

Abstract. Motivated by applications to program verification, we study
a decision procedure for satisfiability in an expressive fragment of a the-
ory of arrays, which is parameterized by the theories of the array ele-
ments. The decision procedure reduces satisfiability of a formula of the
fragment to satisfiability of an equisatisfiable quantifier-free formula in
the combined theory of equality with uninterpreted functions (EUF),
Presburger arithmetic, and the element theories. This fragment allows a
constrained use of universal quantification, so that one quantifier alterna-
tion is allowed, with some syntactic restrictions. It allows expressing, for
example, that an assertion holds for all elements in a given index range,
that two arrays are equal in a given range, or that an array is sorted.
We demonstrate its expressiveness through applications to verification of
sorting algorithms and parameterized systems. We also prove that sat-
isfiability is undecidable for several natural extensions to the fragment.
Finally, we describe our implementation in the πVC verification system.

1 Introduction

Software verification — whether via the classical Floyd-Hoare-style proof method
with some automatic invariant generation, or through automatic methods like
predicate abstraction — relies on the fundamental technology of decision pro-
cedures. Therefore, the properties of software that can be proved automatically
are to a large extent limited by the expressiveness of the underlying fragments
of theories for which satisfiability is decidable and can be checked efficiently.

Arrays are a basic data structure of imperative programming languages. The-
ories for reasoning about the manipulation of arrays in programs have been stud-
ied intermittently for about as long as computer science has been a recognized
field [5]. Nonetheless, the strongest predicate about arrays that appears in a
decidable fragment is equality between two unbounded arrays [7]. For software
verification, unbounded equality is not enough: for example, assertions such as
that two subarrays are equal or that all elements of a subarray satisfy a certain

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,
CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939. The first author was ad-
ditionally supported by a Sang Samuel Wang Stanford Graduate Fellowship.

property are not uncommon in normal programming tasks. We study a fragment
of a theory of arrays that allows expressing such properties and many others,
and for which satisfiability is decidable.

Various theories of arrays have been addressed in past work. Research in
satisfiability decision procedures has focused on the quantifier-free fragments
of array theories, as the full theories are undecidable (see Section 5). In our
discussion, we use the sorts array, elem, and index for arrays, elements, and
indices, respectively. The syntax a[i] represents an array read, while a{i ← e}
represents the array with position i modified to e, for array a, elem e, and index

i. McCarthy proposed the main axiom of arrays, read-over-write [5]:

(∀ array a)(∀ elem e)(∀ index i, j)
[

i = j → a{i← e}[j] = e

∧ i 6= j → a{i← e}[j] = a[j]

]

An extensional theory of arrays has been studied formally, most recently in [7]
and [1]. The extensional theory relates equations between arrays and equations
between their elements:

(∀ array a, b)[(∀ index i) a[i] = b[i] → a = b]

In [8], a decidable quantifier-free fragment of an array theory that allows a
restricted use of a permutation predicate is studied. Their motivation, as with our
work, is that verification of software requires decision procedures for expressive
assertion languages. They use their decision procedure to prove that various
sorting algorithms return a permutation of their input. In the conclusion of [8],
they suggest that a predicate expressing the sortedness of arrays would be useful.

The main theory of arrays that we study in this paper is motivated by prac-
tical requirements in software verification. We use Presburger arithmetic for our
theory of indices, so the abstract sort index is concrete for us. Additionally, the
theory is parameterized by the element theories used to describe the contents
of arrays. Typical element theories include the theory of integers, the theory of
reals, and the theory of equality.

Our satisfiability decision procedure is for a fragment, which we call the array
property fragment, that allows a constrained use of universal quantification. We
characterize the fragment in Section 2, but for now we note that the decidable
fragment is capable of expressing array equality, the usual equality in an exten-
sional theory of arrays; bounded equality, equality between two subarrays; and
various properties, like sortedness, of (sub)arrays.

The satisfiability procedure reduces satisfiability of a formula of the array
property fragment to satisfiability of a quantifier-free formula in the combined
theory of equality with uninterpreted functions (EUF), Presburger arithmetic,
and the element theories. The original formula is equisatisfiable to the reduced
formula. For satisfiability, handling existential quantification is immediate. Uni-
versally quantified assertions are converted to finite conjunctions by instantiating
the quantified index variables over a finite set of index terms. The main insight
of the satisfiability decision procedure, then, is that for a given formula in the

fragment, there is a finite set of index terms such that instantiating universally
quantified index variables from only this set is sufficient for completeness (and,
trivially, soundness).

After presenting and analyzing this decision procedure, we study a theory
of maps, which are like arrays except that indices are uninterpreted. Therefore,
the decidable fragment of the theory is less powerful for reasoning about arrays;
however, it is more expressive than, for example, the quantifier-free fragment of
the extensional theory presented in [7]. In particular, it is expressive enough to
reason about hashtables.

The paper is organized as follows. Section 2 defines the theory and the frag-
ment that we study. Section 3 describes the decision procedure for satisfiability
of the fragment. In Section 4, we prove that the procedure is sound and com-
plete. We also prove that when satisfiability for quantifier-free formulae of the
combined theory of EUF, Presburger arithmetic, and array elements is in NP,
then satisfiability for bounded fragments is NP-complete. In Section 5, we prove
that several natural extensions to the fragment result in fragments for which
satisfiability is undecidable; we identify one slightly larger fragment for which
decidability remains open. Section 6 presents and analyzes a parametric theory
of maps. Section 7 motivates the theories with several applications in software
verification. We implemented the procedure in our verifying compiler πVC; we
describe our experience and results in Section 7.4.

2 An Array Theory and Fragment

We introduce the theory of arrays and the array property fragment for which
satisfiability is decidable.

Definition 1 (Theories) The theory of arrays uses Presburger arithmetic, TZ,
for array indices, and the parameter element theories T 1

elem
, . . . , Tm

elem
, for m > 0,

for its elements. The many-sorted array theory for the given element theories is

called T
{elemk}k
A

. We usually drop the superscript.
Recall that the signature of Presburger arithmetic is

ΣZ = {0, 1,+,−,=, <} .

Assume each T k
elem

has signature Σk
elem

. TA then has signature

ΣA = ΣZ ∪
⋃

k

Σk
elem ∪ {·[·], ·{· ← ·}}

where the two new functions are read and write, respectively. The read a[i]
returns the value stored at position i of a, while the write a{i ← e} is the
array a modified so that position i has value e. For multidimensional arrays, we
abbreviate a[i] · · · [j] with a[i, . . . , j].

The theory of equality with uninterpreted functions (EUF), TEUF, is used in
the decision procedure.

Definition 2 (Terms and Sorts) Index variables and terms have sort Z and
are Presburger arithmetic terms. Element variables and terms have sort elemk,
for some element theory T k

elem
. Array variables and terms have functional sorts

constructed from the Z and elemk sorts:

– One-dimensional sort : Z→ elemk, for some element theory T k
elem

– Multidimensional sort : Z→ · · · → elemk, for some element theory T k
elem

; e.g.,
a two-dimensional array has sort Z→ Z→ elemk

For element term e, both a and a{i ← e} are array terms; the latter term
is a with position i modified to e. For array term a and index term i, a[i] is
either an element term if a has sort Z → elemk, or an array term if a has a
multidimensional sort; e.g., if a has sort Z → Z → elemk, then a[i, j] is an
element term of sort elemk, while a[i] is an array term of sort Z→ elemk.

Definition 3 (Literal and Formula) A TA-literal is either a TZ-literal or a
T k

elem
-literal; literals can contain array subterms. A formula ψ in TA is a quantified

Boolean combination of TA-literals.
Notationally, we say ψ[t] is the formula that contains subterm t. t ∈ ψ is true

iff ψ contains subterm t.

We study satisfiability for a fragment of TA that is a subset of the ∃∗∀∗
Z
-

fragment of TA, where the subscript on ∀ indicates that the quantifier is only
over index variables. We call this fragment the array property fragment.

Definition 4 (Array Property) An array property is a formula of the form

(∀i)(ϕI(i)→ ϕV (i))

where i is a vector of index variables, and ϕI(i) and ϕV (i) are the index guard
and the value constraint, respectively. The height of the property is the number
of quantified index variables in the formula.

The form of an index guard ϕI(i) is constrained according to the grammar

iguard → iguard ∧ iguard | iguard ∨ iguard | atom

atom → expr ≤ expr | expr = expr

expr → uvar | pexpr

pexpr → Z | Z · evar | pexpr + pexpr

where uvar is any universally quantified variable, and evar is any existentially
quantified integer variable.

The form of a value constraint ϕV (i) is also constrained. Any occurrence of
a quantified index variable i ∈ i in ϕV (i) must be as a read into an array, a[i],
for array term a. Array reads may not be nested; e.g., a1[a2[i]] is not allowed.

Definition 5 (Array Property Fragment) The array property fragment of
TA consists of all existentially-closed Boolean combinations of array property
formulae and quantifier-free TA-formulae. The height of a formula in the fragment
is the maximum height of an array property subformula.

Example 1 (Equality Predicates). Extensionality can be encoded in the array
property fragment. We present = and bounded equality as defined predicates. In
the satisfiability decision procedure, instances of defined predicates are expanded
to their definitions in the first step.

Equality a = b: Arrays a and b are equal.

(∀i)(a[i] = b[i])

Bounded Equality beq(`, u, a, b): Arrays a and b are equal in the interval [`, u].

(∀i)(` ≤ i ≤ u → a[i] = b[i])

Example 2 (Sorting Predicates). More specialized predicates can also be defined
in the array property fragment. Consider the following predicates for specifying
properties useful for reasoning about sortedness of integer arrays in the array

property fragment of T
{Z}
A

.

Sorted sorted(`, u, a): Integer array a is sorted (nondecreasing) between ele-
ments ` and u.

(∀i, j)(` ≤ i ≤ j ≤ u → a[i] ≤ a[j])

Partitioned partitioned(`1, u1, `2, u2, a): Integer array a is partitioned such that
all elements in [`1, u1] are less than or equal to every element in [`2, u2].

(∀i, j)(`1 ≤ i ≤ u1 < `2 ≤ j ≤ u2 → a[i] ≤ a[j])

The literal u1 < `2 can be expressed as u1 ≤ `2 − 1 so that the syntactic
restrictions are met.

Example 3 (Array Property Formula). The following formula is in the array

property fragment of T
{Z}
A

:

(∃ array a)(∃w, x, y, z, k, `, n ∈ Z)
[

w < x < y < z ∧ 0 < k < ` < n ∧ `− k > 1
∧ sorted(0, n− 1, a{k ← w}{`← x}) ∧ sorted(0, n− 1, a{k ← y}{`← z})

]

3 Decision Procedure SATA

We now define the decision procedure SATA for satisfiability of formulae from
the array property fragment. After removing array writes and skolemizing exis-
tentially quantified variables, SATA rewrites universally quantified subterms to
finite conjunctions by instantiating the quantified variables over a set of index
terms. The next definitions construct the set of index terms that is sufficient for
making this procedure complete.

Definition 6 (Read Set) The read set for formula ψ is the set

R
def
= {t : ·[t] ∈ ψ}

for t representing index terms that are not universally quantified index variables.

Definition 7 (Bounds Set) The bounds set B for formula ψ is the set of Pres-
burger arithmetic terms that arise as root pexprs (i.e., pexpr terms whose parent
is an expr) during the parsing of all index guards in ψ, according to the grammar
of Def. 4.

The read set R is the set of index terms at which some array is read, while
the bounds set B is the set of index terms that define boundaries on some array
for an array property (e.g., the boundaries of an interval in which array elements
are sorted).

Definition 8 (Index Set) For a formula ψ, define

Iψ
def
=

{
{0} if R = B = ∅
R ∪ B otherwise

The procedure reduces the satisfiability of array property formula ψ to the
satisfiability of a quantifier-free (TEUF ∪ TZ ∪

⋃

k T
k
elem

)-formula.

Definition 9 (SATA)

1. Replace instances of defined predicates with their definitions, and convert to
negation normal form.

2. Apply the following rule exhaustively to remove writes:

ψ[a{i← e}]
ψ[b] ∧ b[i] = e ∧ (∀j)(j 6= i → a[j] = b[j])

for fresh b (write)

To meet the syntactic requirements on an index guard, we rewrite the third
conjunct as

(∀j)(j ≤ i− 1 ∨ i+ 1 ≤ j → a[j] = b[j]) .

3. Apply the following rule exhaustively:

ψ[(∃i)(ϕI(i) ∧ ¬ϕV (i))

ψ[ϕI(j) ∧ ¬ϕV (j)]
for fresh j (exists)

4. Apply the following rule exhaustively, where Iψ3
is determined by the for-

mula constructed in Step 3.

ψ[(∀i)(ϕI(i)→ ϕV (i))]

ψ






∧

i∈In
ψ3

(ϕI(i)→ ϕV (i))






(forall)

5. Associate with each n-dimensional array variable a a fresh n-ary uninter-
preted function fa, and replace each array read a[i, . . . , j] by fa(i, . . . , j).
Decide this formula’s satisfiability using a procedure for quantifier-free for-
mulae of TEUF ∪ TZ ∪

⋃

k T
k
elem

.

z

y

x

w

↑ k ↑ ↑ ` ↑

Fig. 1. Unsorted arrays

Step 2 introduces new index terms (i− 1 and i+ 1, above).

Example 4 (New Indices). Consider again the array property formula

w < x < y < z ∧ 0 < k < ` < n ∧ `− k > 1
∧ sorted(0, n− 1, a{k ← w}{`← x}) ∧ sorted(0, n− 1, a{k ← y}{`← z})

(which is existentially closed). The first step of SATA replaces the sorted literals
with definitions; the second applies write to remove array writes. For readability,
we write the index guards resulting from write using disequalities:

w < x < y < z ∧ 0 < k < ` < n ∧ `− k > 1
∧ (∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j])
∧ (∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j])
∧ (∀i)(i 6= ` → b[i] = c[i]) ∧ c[`] = x

∧ (∀i)(i 6= k → a[i] = b[i]) ∧ b[k] = w

∧ (∀i)(i 6= ` → d[i] = e[i]) ∧ e[`] = z

∧ (∀i)(i 6= k → a[i] = d[i]) ∧ d[k] = y

Then R = {k, `}, B = {0, n − 1, ` − 1, ` + 1, k − 1, k + 1}, and Iψ = {0, n −
1, k − 1, k, k + 1, `− 1, `, `+ 1}. Note that R and B do not include i or j, which
are universally quantified, while B contains the terms produced by converting
disequalities to disjunctions of inequalities. Applying forall to each array property
subformula converts universal quantification to finite conjunction over Iψ. We
have in particular that

c[k + 1] ≤ c[`] = x < y = d[k] ≤ d[k + 1] ,

yet c[k + 1] = b[k + 1] = a[k + 1] = d[k + 1], a contradiction. Thus, the original

formula is T
{Z}
A

-unsatisfiable. The index term k + 1 is essential for this proof.
We visualize this situation in Figure 1. Arrows indicate positions represented

by the new indices introduced in Step 2. Pictorially, for both modified versions
of a to be sorted requires that the two parallel lines in Figure 1 be one line. To
prove that sortedness is impossible requires considering elements in the interval
between k and `, not just elements at positions k and `.

4 Correctness

We prove the soundness and completeness of SATA. Additionally, we show that if
satisfiability of quantifier-free (TEUF∪TZ∪

⋃

k T
k
elem

)-formulae is in NP, then satis-

fiability for each bounded fragment, in which all array properties have maximum
height N , is NP-complete.

We refer to the formula constructed in Step n of SATA by ψn; e.g., ψ5 is the
final quantifier-free formula constructed in Step 5.

Lemma 1 (Complete). If ψ5 is satisfiable, then ψ is satisfiable.

Proof. Suppose that I is an interpretation such that I |= ψ5; we construct an
interpretation J such that J |= ψ. To this end, we define under I a projection
operation, proj : Z→ IIψ3

: proj(z) = tI such that t ∈ Iψ3
; and either tI ≤ z and

(∀s ∈ Iψ3
)(sI ≤ tI ∨ sI > z), or tI > z and (∀s ∈ Iψ3

)(sI ≥ tI). That is, proj(z)
is the nearest neighbor to z in tI , with preference for left neighbors. Extend proj

to tuples of integers in the natural way: proj(z1, . . . , zk) = (proj(z1), . . . , proj(zk)).
Equate all non-array variables in J and I; note that proj is now defined the

same under I and J . For each k-dimensional array a of ψ, set aJ [z] = fJa (proj(z)).
We now prove that J |= ψ.

The manipulations in Steps 1, 3, and 5 are trivial. Step 2 implements the
definition of array write, so that the resulting formula is equivalent to the original
formula. Thus, we focus on Step 4. We prove that if J |= ψ4, then J |= ψ3.

Suppose that rule forall is applied to convert ψb to ψa and that J |= ψa.
Application of this rule is the main focus of the proof: we prove that J |= ψb.
That is, we assume that

J |= ψ′






∧

i∈In
ψ

(ϕI(i)→ ϕV (i))






︸ ︷︷ ︸

ψa

(1)

and prove that
J |= ψ′

[
(∀i)(ϕI(i)→ ϕV (i))

]

︸ ︷︷ ︸

ψb

. (2)

Below, we prove that

J |=






∧

i∈In
ψ

(ϕI(i)→ ϕV (i)) → (∀i)(ϕI(i)→ ϕV (i))




 ,

which implies (2) since ψ′ is in negation normal form. Our proof takes the form

ϕI(proj(z)) ϕV (proj(z))

J |=

ϕI(z) ϕV (z)

(A) (B)

?

where, for arbitrary z ∈ Z
n, we prove the implication labeled “?” by proving (A)

and (B). The top implication follows from (1) and the definition of proj.

For (A), consider the atoms of the index guard under J . If `J ≤ mJ , then
the definition of proj implies that proj(`J) ≤ proj(mJ). At worst, it may be that
`J < mJ , while proj(`J) = proj(mJ). For an equation, `J = mJ iff proj(`J) =
proj(mJ). Then (A) follows by structural induction over the index guard, noting
that the index guard is a positive Boolean combination of atoms.

For (B), recall that arrays in J are constructed using proj. In particular, for
any z, aJ [z] = aJ [proj(z)], so that (B) follows.

Therefore, J |= ψb, and SATA is complete.

Lemma 2 (Sound). If ψ is satisfiable, then ψ5 is satisfiable.

Proof. An interpretation I satisfying ψ can be altered to J satisfying ψ5 by

assigning fJa (i
I
) = aI [i

I
] for each array variable a and equating all else. Universal

quantification is replaced by conjunction over a finite subset of all indices, thus
weakening each (positive) literal.

Theorem 1. If satisfiability of quantifier-free (TEUF ∪ TZ ∪
⋃

k T
k
elem

)-formulae
is decidable, then SATA is a decision procedure for satisfiability in the array

property fragment of T
{elemk}k
A

.

Theorem 2 (NP-Complete). If satisfiability of quantifier-free (TEUF ∪ TZ ∪⋃

k T
k
elem

)-formulae is in NP, then for the subfragment of the array property frag-

ment of T
{elemk}k
A

in which all array property formulae have height at most N ,
satisfiability is NP-complete.

Proof. NP-hardness, even when ψ is a conjunction of literals, follows by NP-
hardness of satisfiability of TZ [6]. Steps 1-3 increase the size of the formula by
an amount linear in the size of ψ. The rule forall increases the size of formulae by
an amount polynomial in the size of ψ and exponential in the maximum height
N . For fixed N , the increase is thus polynomial in ψ. The proof requires only a
polynomial number (in the size of ψ) of applications of rules, so that the size of
the quantifier-free (TEUF ∪ TZ ∪

⋃

k T
k
elem

)-formula is at most polynomially larger
than ψ. Inclusion in NP follows from the assumption of the theorem.

5 Undecidable Problems

Theorem 1 states that for certain sets of element theories {elemk}k, SATA is

a satisfiability decision procedure for the array property fragment of T
{elemk}k
A

.
The theory of reals, TR, in which variables range over R and with signature
ΣR = {0, 1,+,−,=, <}, and the theory of integers, TZ, are such element theories.
We now show that several natural extensions of the array property fragment

result in a fragment of T
{R}
A

or T
{Z}
A

for which satisfiability is undecidable. We
identify one extension for which decidability remains open.

Theorem 3. Satisfiability of the ∃∗∀Z∃Z-fragment of both T
{R}
A

and T
{Z}
A

is
undecidable, even with syntactic restrictions like in the array property fragment.

Proof. In [3], we prove that termination of loops of this form is undecidable:

real x1, . . . , xn

θ :
∧

i∈I⊆{1,...,n}

xi = ci

while x1 ≥ 0 do
choose τi : x := Aix

done

ci are constant integers, ci ∈ Z, while each Ai is an n×n constant array of inte-
gers, Ai ∈ Z

n×n. θ is the initial condition of the loop. Variables x1, . . . , xn range
over the reals, R. There are m > 0 transitions, {τ1, . . . , τm}; on each iteration,
one is selected nondeterministically to be taken. x is an R

n-vector representing
the n variables {x1, . . . , xn}; each transition thus updates all variables simul-
taneously by a linear transformation. We call loops of this form linear loops.
Termination for similar loops in which all variables are declared as integers is
also undecidable.

We now prove by reduction from termination of linear loops that satisfiability
of the ∃∗∀Z∃Z-fragment is undecidable. That is, given linear loop L, we construct
formula ϕ such that ϕ is unsatisfiable iff L always terminates. In other words, a
model of ϕ encodes a nonterminating computation of L.

For each loop variable xi, we introduce array variable xi. Let ρτ (s, t), for
index terms s and t, encode transition τ : x := Ax as follows:

ρτ (s, t)
def
=

n∧

i=1

xi[t] = Ai,1 · x1[s] + · · ·+Ai,n · xn[s] .

Let g(s), for index term s, encode the guard x1 ≥ 0:

g(s)
def
= x1[s] ≥ 0 .

Let θ(s), for index term s, encode the initial condition:

θ(s)
def
=

∧

i∈I⊆{1,...,n}

xi[s] = ci .

Then form ϕ:

ϕ : (∃x1, . . . , xn, z)(∀i)(∃j)

[

θ(z) ∧ g(z) ∧
∨

k

ρτk(i, j) ∧ g(j)

]

.

Suppose ϕ is satisfiable. Then construct a nonterminating computation
s0s1s2 . . . as follows. Let each variable xk of state s0 take on the value xk[z]
of the satisfying model. For s1, choose the j that corresponds to i = z and as-
sign xk according to xk[j]. Continue forming the computation sequentially. Each
state is guaranteed to satisfy the guard, so the computation is nonterminating.

Suppose s0s1s2 . . . is a nonterminating computation of L. Then construct the
following model for ϕ. Let z = 0; for each index i ≥ 0, set xk[−i] = xk[i] = xk
of state si.

Therefore, ϕ is unsatisfiable iff L always terminates, and thus satisfiability
of the ∃∗∀Z∃Z-fragment of TA is undecidable. Note that ϕ meets the syntac-
tic restrictions of the array property fragment, except for the extra quantifier
alternation.

Theorem 4. Extending the array property fragment with any of

– nested reads (e.g., a1[a2[i]], where i is universally quantified);
– array reads by a universally quantified variable in the index guard;
– general Presburger arithmetic expressions over universally quantified index

variables (even just addition of 1, e.g., i + 1) in the index guard or in the
value constraint

results in a fragment of T
{Z}
A

for which satisfiability is undecidable.

Proof. In T
{Z}
A

, the presence of nested reads allows skolemizing j in ϕ of the
proof of Theorem 3:

(∃x1, . . . , xn, z, aj)(∀i)

[

θ(z) ∧ g(z) ∧
∨

k

ρτk(i, aj [i]) ∧ g(aj [i])

]

.

Allowing array reads in the index guard enables flattening of nested reads
through introduction of another universally quantified variable:

ψ[ϕI → ϕV [a[a[i]]]] ⇒ ψ[ϕI ∧ j = a[i] → ϕV [a[j]]] .

Allowing addition of 1 in the value constraint allows an encoding of termination
similar to that in the proof of Theorem 3:

(∃x1, . . . , xn, z)(∀i ≥ z)

[

θ(z) ∧ g(z) ∧
∨

k

ρτk(i, i+ 1) ∧ g(i+ 1)

]

.

Finally, addition of 1 in the index guard can encode addition of 1 in the value
constraint through introduction of another universally quantified variable:

ψ[ϕI → ϕV [a[i+ 1]]] ⇒ ψ[ϕI ∧ j = i+ 1 → ϕV [a[j]]] .

Theorem 3 implies that a negated array property cannot be embedded in
the consequent of another array property. Theorem 4 states that loosening most
syntactic restrictions results in a fragment for which satisfiability is undecidable.
One extension remains for which decidability of satisfiability is an open problem:
the fragment in which index guards can contain strict inequalities, < (equiva-
lently, in which index guards can contain negations). In this fragment, one could
express that an array has unique elements:

(∀i, j)(i < j → a[i] 6= a[j]) .

6 Maps

We consider an array theory in which indices are uninterpreted. For clarity, we
call indices keys in this theory, and call the arrays maps.

Definition 10 (Map Theory) The parameterized map theory T
{elem`}`
M

has
signature

ΣM = ΣEUF ∪
⋃

`

Σ`
elem ∪ {·[·], ·{· ← ·}} .

Key variables and terms are uninterpreted, with sort EUF. Element variables
and terms have some sort elem`. Map variables and terms have functional sorts
constructed from the EUF and elem` sorts; e.g., EUF→ elem`.

Definition 11 (Map Property Fragment) A map property is a formula of
the form (∀k)(ϕK(k)→ ϕV (k)), where k is a vector of key variables, and ϕK(k)
and ϕV (k) are the key guard and the value constraint, respectively. The height
of the property is the number of quantified variables in the formula.

The form of a key guard ϕK(k) is constrained according to the grammar

kguard → kguard ∧ kguard | kguard ∨ kguard | atom

atom → var = var | evar 6= var | var 6= evar
var → evar | uvar

where uvar is any universally quantified key variable, and evar is any existentially
quantified variable.

The form of a value constraint ϕV (k) is also constrained. Any occurrence of
a quantified key variable k ∈ k in ϕV (k) must be as a read into a map, h[k], for
map term h. Map reads may not be nested; e.g., h1[h2[k]] is not allowed.

The map property fragment of TM consists of all existentially-closed Boolean
combinations of map property formulae and quantifier-free TM-formulae.

Definition 12 (Key Set) For a formula ψ, define R = {t : ·[t] ∈ ψ}; B as
the set of variables that arise as evars in the parsing of all key guards according
to the grammar of Def. 11; and K = R∪ B ∪ {κ}, where κ is a fresh variable.

Definition 13 (SATM)

1. Step 1 of SATA.

2. Apply the following rule exhaustively to remove writes:

ψ[h{k ← e}]
ψ[h′] ∧ h′[k] = e ∧ (∀j)(j 6= k → h[j] = h′[j])

for fresh h′ (write)

3. Step 3 of SATA.

4. Apply the following rule exhaustively, where Kψ3
is determined by the for-

mula constructed in Step 3.

ψ[(∀k)(ϕK(k)→ ϕV (k))]

ψ






∧

k∈Kn
ψ3

(ϕK(k)→ ϕV (k))






(forall)

5. Construct

ψ4 ∧
∧

k∈K\{κ}

k 6= κ

6. Step 5 of SATA, except that the resulting formula is decided using a procedure
for TEUF ∪

⋃

` T
`
elem

.

Theorem 5. If satisfiability of quantifier-free (TEUF ∪
⋃

` T
`
elem

)-formulae is de-
cidable, then SATM is a decision procedure for satisfiability in the map property

fragment of T
{elem`}`
M

.

The main idea of the proof, as in the proof of Theorem 1, is to define a
projection operation, proj : EUF→ KIψ3

, for interpretation I. For object o of I, if

o = tI for some t ∈ Kψ3
, then proj(o) = o (= tI); otherwise, proj(o) = κI . If proj

is used to define J , as in the proof of Theorem 1, then proj preserves equations
and disequalities in key guards and values of map reads in value constraints.

The relevant undecidability results from Section 5 carry over to maps, with
the appropriate modifications.

7 Applications, Implementation, and Results

7.1 Verification of Sorting Algorithms

Figure 2 presents an annotated version of InsertionSort in an imperative
language, where the annotations specify that InsertionSort returns a sorted
array. @pre, @post, and @ label preconditions, postconditions, and (loop) asser-
tions, respectively. For variable x, x0 refers to its value upon entering a function;
|arr| maps array arr to its length; rv is the value returned by a function. Each

verification condition is expressible in the array property fragment of T
{Z}
A

and
is unsatisfiable, proving that InsertionSort returns a sorted array.

7.2 Verification of Parameterized Programs

The parallel composition of an arbitrary number of copies of a process is often
represented as a parameterized program. Variables for which one copy appears
in each process are modeled as arrays. Thus, it is natural to specify and prove
properties of parameterized programs with a language of arrays.

@pre >
@post sorted(0, |rv| − 1, rv)
int[] InsertionSort(int[] arr) {
int i, j, t;
for (i := 1; i < |arr|; i := i + 1)

@(1 ≤ i ∧ sorted(0, i − 1, arr) ∧ |arr| = |arr0|)
{

t := arr[i];
for (j := i − 1; j ≥ 0 ∧ arr[j] > t; j := j − 1)

@

��
1 ≤ i < |arr| ∧ −1 ≤ j ≤ i − 1

∧ sorted(0, i − 1, arr) ∧ |arr| = |arr0|
∧ (j < i − 1 → (arr[i − 1] ≤ arr[i] ∧ (∀k ∈ [j + 1, i]) arr[k] > t))

��
arr[j + 1] := arr[j];

arr[j + 1] := t;
}
return arr;

}

Fig. 2. InsertionSort

int[] y := int[0..M − 1];
θ: y[0] = 1 ∧ (∀j ∈ [1, M − 1]) y[j] = 0

||
i∈[0,M−1]

����������
request(y, i);
while (true) @((∀j ∈ [0, M − 1]) y[j] = 0 ∧ i = i0 ∧ |y| = |y0|) {

critical;
release(y, i ⊕M 1);
noncritical;
request(y, i);

}

�����������

Fig. 3. Sem-N

Figure 3 presents a simple semaphore-based algorithm for mutual exclusion
among M processes [4]. The semantics of request and release are the usual
ones:

request(y, i) : y[i] > 0 ∧ y′ = y{i← y[i]− 1}
release(y, i) : y′ = y{i← y[i] + 1}

Mutual exclusion at the critical section is implied by the invariant (∀j ∈ [0,M−
1]) y[j] = 0, which appears as part of the loop invariant. The mutual exclusion
property is verified using the array decision procedure.

7.3 A Decision Procedure for Hashtables

We show how to encode an assertion language for hashtables, with parameter

theories T 1

elem
, . . . , Tm

elem
for values, into T

{elem`}`
M

. Hashtables have the following
operations: put(h, k, v) returns the hashtable that is equal to h except that key

k maps to value v; remove(h, k) returns the hashtable that is equal to h except
that key k does not map to a value; and get(h, k) returns the value mapped by k,
which is undetermined if h does not map k to any value. init(h) is true iff h does
not map any key. For reasoning about keys, k ∈ keys(h) is true iff h maps k; key
sets keys(h) can be unioned, intersected, and complemented. For the encoding
onto the map property fragment of TM, universal quantification is restricted to
quantification over key variables; such variables may only be used in membership
checking, k ∈ K, and gets, get(h, k). Finally, an init in the scope of a universal
quantifier must appear positively. The encoding then works as follows:

1. Construct ψ ∧ > 6= ⊥, for fresh constants > and ⊥.
2. Rewrite

ψ[put(h, k, v)] ⇒ ψ[h′] ∧ h′ = h{k ← v} ∧ keysh′ = keysh{k ← >}
ψ[remove(h, k)] ⇒ ψ[h′] ∧ keysh′ = keysh{k ← ⊥}

for fresh variable h′.
3. Rewrite

ψ[get(h, k)] ⇒ ψ[h[k]]
ψ[init(h)] ⇒ ψ[(∀k)(h[k] = ⊥)]

ψ[k ∈ keys(h)] ⇒ ψ[keysh[k] 6= ⊥]
ψ[k ∈ K1 ∪K2] ⇒ ψ[k ∈ K1 ∨ k ∈ K2]
ψ[k ∈ K1 ∩K2] ⇒ ψ[k ∈ K1 ∧ k ∈ K2]

ψ[k ∈ K] ⇒ ψ[¬(k ∈ K)]

where K, K1, and K2 are constructed from union, disjunction, and comple-
mentation of membership atoms.

Note that we rely on the defined predicate of equality between maps, h1 = h2,
which is defined by (∀k)(h1[k] = h2[k]). Subset checking between key sets, K1 ⊂
K2, and other useful operations can also be defined in this language.

An example specification might assert that (∀k ∈ keys(h))(get(h, k) ≥ 0).
Suppose that a function modifies h; then a verification condition could be

(∀h, s, v, h′)

[
(∀k ∈ keys(h)) get(h, k) ≥ 0 ∧ v ≥ 0 ∧ h′ = put(h, s, v)
→ (∀k ∈ keys(h′)) get(h′, k) ≥ 0

]

.

The key sets provide a mechanism for reasoning about modifying hashtables.

7.4 Implementation and Results

We implemented SATA in our verifying compiler, πVC, which verifies programs
written in the pi (for Prove It) programming language. The syntax of the lan-
guage is similar to that of Figure 2. We used CVC Lite [2] as the underlying
decision procedure. We found that there is usually no need to instantiate quan-
tifiers with all terms in I; instead, the implementation makes several attempts
to prove a formula unsatisfiable. It first tries using the set R, then R ∪ B, and
finally I. Moreover, common sense rules restrict the instantiation in the early

attempts. If any attempt results in an unsatisfiable formula, then the original
formula is unsatisfiable; and if the formula of the final attempt is satisfiable,
then the original formula is satisfiable.

Frame conditions are ubiquitous in verification conditions. Thus, the imple-
mentation performs a simple form of resolution to simplify the original formula.
After rewriting based on equations in the antecedent, conjuncts in the conse-
quent that are syntactically equal to conjuncts in the antecedent are replaced
with true. In practice, the resulting index sets are smaller. The combination of
the phased instantiation and simplification makes the decision procedure quite
responsive in practice.

We implemented annotated versions of MergeSort, BubbleSort, Inser-

tionSort, QuickSort, Sem-N, and BinarySearch for integer arrays in our
programming language pi. Verifying that the sorting algorithms return sorted
arrays required less than 20 seconds each (1 second for each of BubbleSort

and InsertionSort). Verifying mutual exclusion in Sem-N required a second.
Verifying the membership property of BinarySearch required a second. All
tests were performed on a 3 GHz x86; memory was not an issue.

8 Future Work

Future work will focus on the decidability of the extension identified in Section
5; on the complexity of deciding satisfiability for the full array property fragment
for particular element theories; and, most importantly, on generating inductive
invariants in the array property fragment automatically.

Acknowledgments. We thank the reviewers, Tom Henzinger, and members of
the STeP group for their insightful comments and suggestions on this work.

References

1. Armando, A., Ranise, S., and Rusinowitch, M. Uniform derivation of decision
procedures by superposition. In International Workshop on Computer Science Logic
(CSL) (2001), Springer-Verlag.

2. Barrett, C., and Berezin, S. CVC Lite: A new implementation of the cooperat-
ing validity checker. In Computer Aided Verification (CAV) (2004), Springer-Verlag.

3. Bradley, A. R., Manna, Z., and Sipma, H. B. Polyranking for polynomial loops.
In submission; available at http://theory.stanford.edu/~arbrad.

4. Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

5. McCarthy, J. Towards a mathematical science of computation. In IFIP Congress
62 (1962).

6. Schrijver, A. Theory of Linear and Integer Programming. Wiley, 1986.
7. Stump, A., Barrett, C. W., Dill, D. L., and Levitt, J. R. A decision procedure

for an extensional theory of arrays. In Logic in Computer Science (LICS) (2001).
8. Suzuki, N., and Jefferson, D. Verification decidability of Presburger array pro-

grams. J. ACM 27, 1 (1980).

