
Scalable Analysis of Linear Systems using

Mathematical Programming

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna ?

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{srirams,sipma,zm}@theory.stanford.edu

Abstract. We present a method for generating linear invariants for
large systems. The method performs forward propagation in an abstract
domain consisting of arbitrary polyhedra of a predefined fixed shape.
The basic operations on the domain like abstraction, intersection, join
and inclusion tests are all posed as linear optimization queries, which can
be solved efficiently by existing LP solvers. The number and dimension-
ality of the LP queries are polynomial in the program dimensionality,
size and the number of target invariants. The method generalizes sim-
ilar analyses in the interval, octagon, and octahedra domains, without
resorting to polyhedral manipulations. We demonstrate the performance
of our method on some benchmark programs.

1 Introduction

Static analysis is one of the central challenges in computer science, and increas-
ingly, in other disciplines such as computational biology. Static analysis seeks to
discover invariant relationships between the variables of a system that hold on
every execution of the system. In computer science, knowledge of these relation-
ships is invaluable for verification and optimization of systems; in computational
biology this knowledge may lead to better understanding of the system’s dynam-
ics.

Linear invariant generation, the discovery of linear relationships between vari-
ables, has a long history, starting with Karr [9], and cast in the general framework
of abstract interpretation by Cousot and Cousot [6]. The most general form of
linear invariant generation is polyhedral analysis. The analysis is performed in
the abstract domain of all the linear inequalities over all the system variables [7].
Although impressive results have been achieved in this domain, its applicability
is severely limited by its worst-case exponential time and space complexity. This
has led to the investigation of more restricted domains which seek to trade off

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134
and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014, by NAVY/ONR contract N00014-03-1-
0939, and by the Siebel Graduate Fellowship.

some precision against tractability. The interval domain consists of inequalities
of the form a ≤ xi ≤ b. This was first studied by Cousot and Cousot [5]. Miné et
al. consider the abstract domain of inequalities of the form xi − xj ≤ c, known
as Difference-Bound Matrices [12], and more generally, inequalities of the form
±xi ±xj ≤ c, known as the Octagon abstract domain [13]. The domain has been
applied to large programs with impressive results [3]. More recently, Clarisó et al.
generalized octagons to octahedra, inequalities of the form a1x1 + . . . anxn ≤ c,
where each ai is either ±1 or 0, and applied it to the verification of timing delays
in asynchronous circuits [4].

In this paper, we show that an efficient forward propagation-based analysis
can be performed in an abstract domain that lies between the interval domain
of Cousot&Cousot [5], and the general polyhedra [7]. Our proposed domain can
contain any inequality of the form a1x1 + . . . anxn + c ≥ 0. It requires the
coefficients a1, . . . , an for all inequalities in the abstract domain to be fixed in
advance, and thus is less general than polyhedra. Since a1, . . . , an can be user
specified, our domain neatly subsumes the body of work described above. We
show that all such analyses can be conducted in worst-case polynomial time in
the program size and the domain size.

The rest of the paper is organized as follows: Section 2 reviews the basic
theory of polyhedra, linear programming, system models and abstract interpre-
tation. In Section 3, we describe our abstract domain, followed by the analysis
algorithm and strategies on abstract domain construction. Section 4 discusses
the complexity of our algorithm, and presents the results of applying it to several
benchmark programs.

2 Preliminaries

We recall some standard results on polyhedra, followed by a brief description
of system models and abstract interpretation. Throughout the paper, x1, . . . , xn

denote real-valued variables, a, b with subscripts denote constant reals and c, d

denote unknown coefficients. Similarly A,B denote real matrices, while Ai rep-
resents the ith row of the matrix A. We let a, . . . , z denote vectors. A vector
is also a n × 1 column-matrix for n ≥ 0. The relation a ≤ b is used to denote
ai ≤ bi for all i = 1 . . . n.

2.1 Polyhedra

Definition 1 (Linear Assertions) A linear inequality is an expression of the
form a1x1 + · · · + anxn + b ./ 0, and ./ ∈ {≥, =}. A linear assertion is a finite
conjunction of linear inequalities. The assertion

ϕ :

a11x1 + . . . + a1nxn + b1 ≥ 0 ∧
... . . .

...
...

...
am1x1 + . . . + amnxn + bm ≥ 0

can concisely be written in matrix form as Ax+b ≥ 0, where x and b are n and
m-dimensional vectors, respectively. The set of points in Rn satisfying a linear
assertion is called a polyhedron. Polyhedra can be represented implicitly by a
linear assertion, also known as the constraint representation, or explicitly by a
set of vertices and rays, also known as the generator representation [15]. In this
paper we assume that linear assertions do not contain any strict inequalities.

The linear consequences of a linear assertion ϕ, that is, the linear inequalities
that are implied by ϕ, can be deduced using Farkas Lemma [15]:

Theorem 1 (Farkas Lemma). Consider the linear assertion

ϕ : Ax + b ≥ 0

over real-valued variables x. If ϕ is satisfiable, then it implies the linear inequality
c
t
x + d ≥ 0 iff there exists λ ≥ 0 such that

At
λ = c and b

t
λ ≤ d.

Furthermore, ϕ is unsatisfiable iff there exists λ ≥ 0 such that

At
λ = 0 and b

t
λ ≤ −1.

The main engine behind our analysis is a Linear Programming (LP) solver.
We shall describe the theory of linear programming briefly.

Definition 2 (Linear Programming) An instance of the linear programming
(LP) problem consists of a linear assertion ϕ and a linear expression f : b

t
x,

called the objective function. The goal is to determine the solution of ϕ for which
f is minimal. An LP problem can have one of three results: (1) an optimal solu-
tion; (2) ϕ has solutions, but none is optimal with respect to f (f is unbounded
in ϕ); (3) ϕ has no solutions.

In principle, an LP problem can be solved by computing the generators of the
polyhedron corresponding to ϕ. If the polyhedron is empty, i.e., it has no gen-
erators, then there are no solutions. If the polyhedron has a ray along which
the objective function f decreases, then f is unbounded. Also, it has been
demonstrated that an optimal solution (if it exists) is realized at a vertex of
the polyhedron. The optimal solution can be found by evaluating f at each of
the vertices. Enumerating all the generators is very inefficient because the num-
ber of generators is worst-case exponential in the number of constraints. The
popular simplex algorithm, although worst-case exponential in theory, is very
fast over most problems in practice. Our method scales by taking advantage of
this fact. Interior point methods like the Karmarkar’s algorithm can solve linear
programs in polynomial time. In practice, we shall use simplex for our linear
programming needs because of its free availability and its numerical stability.

2.2 Transition Systems and Invariants

As computational model, we use transition systems [11]. For ease of exposition we
assume that the transition systems are linear, as defined below. Any transition
can be linearized by omitting all nonlinear constructs from the initial condition
and transition relations.

Definition 3 (Linear Transition Systems) A linear transition system S :
〈L, T , `0, Θ〉 over a set of variables V consists of

– L: a set of locations;
– T : a set of transitions, where each transition τ : 〈`i, `j , ρτ 〉 consists of a pre-

location `i, a post-location `j , and a transition relation ρτ that is a linear
assertion over V ∪ V ′, where V denotes the values of the variables in the
current state, and V ′ their values in the next state;

– `0 ∈ L: the initial location;
– Θ: a linear assertion over V specifying the initial condition.

A run of a linear transition system is a sequence of pairs (l0, s0), (l1, s1), (l2, s2), . . .
with li ∈ L and si a valuation of V , also called a state, such that

– Initiation: l0 = `0, and s0 |= Θ

– Consecution: for all i ≥ 0 there exists a transition τ : 〈p, q, ρτ 〉 such that
li = p, li+1 = q, and (si, si+1) |= ρτ .

A state s is reachable at location l if (l, s) appears in some run.

Henceforth, we shall assume that transitions are limited to guarded assign-
ments of the form ξ ∧ x

′ = Ax + b, where the guard ξ is a linear assertion over
V , and A, b are matrices. This form is common in transition systems derived
from programs. However, the results easily extend to the general case too.

Example 1. Following is a transition system over V = {x, y} with one location
and two transitions that update the variables x and y atomically:

L : {l0}

T : {τ1, τ2} with

{
τ1 :

〈
l0, l0,

[
x′ = x+ 2y ∧ y′ = 1 − y

]〉

τ2 :
〈
l0, l0,

[
x′ = x+ 1 ∧ y′ = y + 2

]〉

`0 : l0
Θ : (x = 0 ∧ y = 0)

A given linear assertion ψ is a linear invariant of a linear transition system
(LTS) at a location ` iff it is satisfied by every state reaching `. An assertion
map maps each location of a LTS to a linear assertion. An assertion map η is
an invariant map if η(`) is an invariant at `, for each ` ∈ L. In order to prove a
given assertion map invariant, we use the theory of inductive assertions [11].

Definition 4 (Inductive Assertion Maps) An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: Θ |= η(`0),
Consecution: For each transition τ : 〈`i, `j , ρτ 〉, η(`i) ∧ ρτ |= η(`j)

′.

It can be proven by mathematical induction that any inductive assertion map
is also an invariant map. It is well known that the converse need not be true in
general. The standard technique for proving an assertion invariant is to find an
inductive assertion that strengthens it. For example, the assertion x + y ≥ 0 is
an inductive assertion for the LTS in Example 1.

2.3 Propagation-based Analysis

Forward propagation consists of a symbolic simulation of the program to com-
pute an assertion representing the reachable state space. Starting with the initial
condition, the assertion is iteratively weakened by adding states that are reach-
able in one step, as computed by the post operator, post(τ, ϕ) : ∃V0 . (ϕ(V0) ∧
ρτ (V0, V)) until no more states can be added. This procedure can be described
as the computation of a fixed point of the second order function (predicate trans-
former)

F(X) = Θ ∨X ∨
∨

τ∈T

post(τ,X)

starting from F(false). The least fixed point describes exactly the reachable
state space.

This approach has two problems: (1) the sequence F(false),F2(false), . . .
may not converge in a finite number of steps, and (2) we may not be able to
detect convergence, because the inclusion Fn+1(false) ⊆ Fn(false) may be un-
decidable. These problems were addressed by the abstract interpretation frame-
work formalized by Cousot and Cousot [6], and specialized for linear relations
by Cousot and Halbwachs [7].

The abstract interpretation framework performs the forward propagation in
a simpler, abstract domain, in which the detection of convergence is decidable.
Also the resulting fixed point, when translated back, is guaranteed to be a fixed
point (though not necessarily a least fixed point) of the concrete predicate trans-
former. The problem of finite convergence was addressed by the introduction of
a widening operator that guarantees termination in a finite number of steps.

The application of abstract interpretation requires the definition of an ab-
stract domain ΣA, equipped with a partial order ≤A, an abstraction function
α : 2Σ 7→ ΣA that maps sets of states into elements in the abstract domain,
and a concretization function γ : ΣA 7→ 2Σ . The functions α and γ must form
a Galois connection, that is they must satisfy α(S) ≤A a iff S ⊆ γ(a) for all
S ⊆ Σ and a ∈ ΣA.

Forward propagation can now be performed in the abstract domain by com-
puting the fixed point of

FA(X) = ΘA tX t
⊔

τ∈T

postA(τ,X) .

If the operations t and postA satisfy γ(a1)∨γ(a2) ⊆ γ(a1ta2), and post(τ, γ(a)) ⊆
γ(postA(a)), and the abstract element ΘA satisfies Θ ⊆ γ(ΘA), then γ(lfp(FA))
is guaranteed to be a fixed point of F.

Polyhedra are a very popular abstract domain. Checking for inclusion is
decidable, and effective widening operators have been designed. However, ma-
nipulating large polyhedra remains computationally expensive and hence, this
analysis does not scale very well in practice.

Note. Throughout the rest of the paper, instead of the traditional ⊆ relation, we
shall use the models relation (|=) between formulas as the order on the concrete
domain.

3 Invariant Generation Algorithm

3.1 Abstract Domain

Our abstract domain consists of polyhedra of a fixed shape for a given set of
variables x of cardinality n. The shape is fixed by an m×n template constraint
matrix (TCM) T . If T is nonempty, i.e, m > 0, the abstract domain ΣT contains
m-dimensional vectors c. Each entry ci may be real-valued, or a special-valued
entry drawn from the set {∞, −∞}. A vector c in the abstract domain ΣT

represents the set of states described by the set of constraints Tx+c ≥ 0. If the
TCM T is empty, that is m = 0, the abstract domain ΣT is forced to contain
two elements c> and c⊥, representing the entire state space and the empty state
space, respectively.

Definition 5 (Concretization function) The concretization function γT is
defined by

γT (c) ≡

false if ∃ci = −∞ or c = c⊥,

true if c = c>,
∧

i s.t. ci 6=∞(Tix + ci ≥ 0) otherwise.

The value ci = ∞ drops the ith constraint from the concrete assertion, and the
value ci = −∞ makes the concrete assertion false. We assume that the standard
ordering ≤ on the reals has been extended such that −∞ ≤ x ≤ ∞ for all x ∈ R.

Example 2. Consider the template constraint matrix

T =

1 0
−1 0

0 1
0 −1

−1 1
1 −1

representing the
template assertions

x + c1 ≥ 0
−x + c2 ≥ 0

y + c3 ≥ 0
− y + c4 ≥ 0

−x + y + c5 ≥ 0
x − y + c6 ≥ 0

〈1, 1, 1, 1,∞,∞〉

(a)

〈1,∞, 1, 4, 3, 3〉

(b)

〈1,∞,∞,∞, 3,∞〉

(c)

〈?〉

(d)

Fig. 1. Polyhedra (a), (b) and (c) are concretizations of the elements in the abstract
domain ΣA of Example 2, whereas (d) is not.

The concretization of the abstract element c : 〈∞, 2, 3,∞, 5, 1〉 is the assertion

γT (c) :
[
−x+ 2 ≥ 0 ∧ y + 3 ≥ 0 ∧ −x+ y + 5 ≥ 0 ∧ x− y + 1 ≥ 0

]
.

Figure 1 shows three polyhedra that are concretizations of elements in ΣT , and
one that is not.

Definition 6 (Abstract domain pre-order) Let a, b ∈ ΣT ,

a � b iff γT (a) |= γT (b).

Also a ∼� b iff a � b and b � a. We set ⊥ = 〈−∞, . . . ,−∞〉 and > =
〈∞, . . . ,∞〉, and for T empty, ⊥ = c⊥ and > = c>. Note that γT (⊥) = false
and γT (>) = true.

The abstraction function αT maps sets of states into vectors c in ΣT . Since
we restrict ourselves to linear transition systems, we may assume that sets of
states can be described by linear assertions ϕ : Ax+b ≥ 0. Ideally, the value of
αT (ϕ) should be the vector c that represents the smallest polyhedron with shape
determined by T , that subsumes ϕ. Thus, αT should compute a �-minimal c

such that
Ax + b ≥ 0 |= Tx + c ≥ 0.

To begin with, if ϕ is unsatisfiable, we set c = ⊥.
If ϕ is satisfiable, we use linear programming to determine a suitable c.

Consider each half space of the form Tix + ci ≥ 0. We wish to ensure that

Ax + b ≥ 0 |= Tix + ci ≥ 0.

Applying Farkas Lemma, we obtain,

Ax + b ≥ 0 |= Tix + ci ≥ 0 iff (∃ λ ≥ 0) At
λ = Ti ∧ b

t
λ ≤ ci.

To find the smallest ci that satisfies the requirements above, we solve the LP
problem

Ψ : λ ≥ 0 ∧ At
λ = Ti with objective function b

t
λ .

If Ψ has a solution u, ci is set to u. If Ψ has no solutions, ci is set to ∞. The
third case, where ci is unbounded, does not occur if Ax + b ≥ 0 is satisfiable.

Claim. For satisfiable ϕ, then ci cannot be unbounded in Ψ .

Proof. If ci were unbounded, then appealing to the soundness of Farkas Lemma
leads us to the conclusion that Ax + b ≥ 0 |= Tix + ci ≥ 0 for all ci ≤ u, for
some constant u. If ϕ were satisfiable, then some point x0 satisfies it. Therefore,
(x = x0) |= ϕ |= Tix + ci ≥ 0. Setting ci to any value strictly less than Tix0

and u, yields −1 ≥ 0 and hence, a contradiction.

Example 3. Consider the assertion

ϕ :

1 0
0 1

−1 1
1 −1

︸ ︷︷ ︸

A

(
x

y

)

+

0
0
1
1

︸ ︷︷ ︸

b

≥ 0 .

The abstraction αT (ϕ) mapping ϕ into the abstract domain of Example 2 is
computed by solving six LP problems. For example, c2 is computed by solving

(
1 0 − 1 1
0 1 1 −1

)

︸ ︷︷ ︸

At

λ1

λ2

λ3

λ4

︸ ︷︷ ︸

λ

=

(
−1

0

)

︸ ︷︷ ︸

T2

with objective function λ3 + λ4 .

The problem has no solutions, yielding the value ∞ for c2. The value for c6 is
computed by solving the same problem, replacing T2 : (−1 0)t by T6 : (1 −1)t.
This problem yields an optimal solution c6 = 1. Solving all the six problems
produces αT (ϕ) = 〈0,∞, 0,∞, 1, 1〉.

Definition 7 (Abstraction function) Let ϕ be the linear assertion Ax+b ≥
0. Given a nonempty TCM T , the function αT assigns to ϕ the value c =
〈c1, . . . , cm〉, such that

ci =

−∞ if ϕ is unsatisfiable,

min. b
t
λ, s.t . λ ≥ 0 ∧ At

λ = Ti
︸ ︷︷ ︸

Ψi

if Ψi is feasible,

∞ if Ψi is infeasible .

For an empty TCM T , we set αT (ϕ) = c⊥ if ϕ is unsatisfiable, and αT (ϕ) = c>

otherwise.

Lemma 1 (Abstraction Lemma). The functions αT and γT form a Galois
connection, that is, (1) for all linear assertions ϕ and abstract elements a ∈ ΣA,
αT (ϕ) � a iff ϕ |= γT (a). (2) Furthermore, for nonempty T , if ϕ |= γT (a) then
αT (ϕ) ≤ a. That is, αT (ϕ) is minimal with respect to the standard order ≤ on
vectors.

Proof. For empty TCM T , both parts follow easily from Definitions 5, 6, and 7.
For the remainder, assume T is nonempty.

(1) (⇒) Assume αT (ϕ) � a. If ϕ is unsatisfiable, then trivially, ϕ |= γT (a).
Otherwise, let αT (ϕ) = c. By Def. 7 and the soundness of Farkas Lemma, ϕ |=
Tix+ ci ≥ 0, for each ci 6= ∞. Therefore, ϕ |= γT (c). By Def. 6 and by assuming
c � a, we obtain ϕ |= γT (c) |= γT (a).

(⇐) Assume ϕ |= γT (a). If ϕ is unsatisfiable, αT (ϕ) = ⊥ and hence trivially
αT (ϕ) � a. Otherwise let αT (ϕ) = c. By Def 5, ϕ |=

∧

ai 6=∞(Tix + ai ≥ 0),
and hence for arbitrary i such that ai 6= ∞, ϕ |= Tix + ai ≥ 0. By Def 7 and
the completeness of Farkas Lemma, both ci and ai belong to the (nonempty)
feasible set of the linear program generated for the implication ϕ |= Tix+ci ≥ 0.
Therefore, by optimality of ci, ci ≤ ai, and hence, Tix + ci ≥ 0 |= Tix + ai ≥ 0.
and hence by Def 6, c � a. In fact, we have also established that c ≤ a.

(2) This follows directly from the second part of (1).

The abstract domain ΣT is redundant. It contains multiple elements that
map to the same concrete element. We eliminate this redundancy by choosing a
canonical element cmin for each equivalence class [c] of the relation ∼�.

Example 4. Consider the abstract domain from Example 2. The elements a1 =
〈1, 1, 1, 1, 2, 2〉, a2 = 〈1, 1, 1, 1, 3, 3〉, and a3 : 〈1, 1, 1, 1,∞,∞〉 all map to the
rectangle described by −1 ≤ x, y ≤ 1 ∧ −2 ≤ x − y ≤ 2, and thus a1 ∼�

a2 ∼� a3. The reason is that the last two constraints, on x− y, are redundant
in all these elements. In fact any abstract element 〈1, 1, 1, 1, x, y〉, x ≥ 2, y ≥ 2
belongs to the same equivalence class.

Definition 8 (Canonical element) Let ΣT be an abstract domain with or-
dering �. Given an equivalence class [c] of ∼�, its canonical element, denoted
can(c) is defined as can(c) = αT (γT (c)).

We need to show that can(c) belongs to the equivalence class of c, and also
that the canonical element is unique.

Claim. (1) can(c) ∼� c, (2) for any a, such that a ∼� c, can(c) ≤ a, (3) can(c)
is unique, i.e., if a ∼ c, then can(c) = can(a).

Proof. This follows directly from Lemma 1.

Example 5. For the abstract domain of Example 2, 〈1, 1, 1, 1, 2, 2〉 is the canon-
ical element for the equivalence class represented by

[〈1, 1, 1, 1, 2, 2〉] = {〈1, 1, 1, 1, x, y〉 | x, y ≥ 2}

Computation of the greatest lower bound of two canonical elements in ΣT for
nonempty T consists of taking the entrywise minimum and canonizing the result.

Definition 9 (Intersection) Let a, b be two canonical elements of ΣT . For
T nonempty, a u b = can(〈min(a1, b1), . . . ,min(am, bm)〉, where min(x, y)
is defined as the minimum under the ≤ relation. For T empty we define the
intersection operation on the elements > and ⊥ in the standard fashion.

The following example shows that 〈min(a1, b1), . . . ,min(am, bm)〉 is not nec-
essarily a canonical element.

Example 6 (Failure of Canonicity). Consider the abstract domain ΣT with tem-
plate constraint matrix T = (1 − 1)t, representing the template assertions
x+ c1 ≥ 0 and −x+ c2 ≥ 0. The entrywise minimum of the elements 〈1, 2〉, and
〈5,−2〉 is 〈1,−2〉. Verify that γT (〈1,−2〉) = false, and hence can(〈1,−2〉) = ⊥.

Claim. Let m = a1 u a2. Then (1) m � a{1,2} and (2) for any b � a{1,2}, it
follows that b � m

Proof. If T is empty, a1 = ⊥, or a2 = ⊥, both parts hold immediately.

(1) If m = ⊥ then the first part holds immediately. If m 6= ⊥, then we
show that γT (m) |= γT (a1). Since m = can(min(a1,a2)), for each row i, mi ≤
min(a1i, a2i). If a1i 6= ∞, then mi 6= ∞. Therefore, γT (m) |= Tix + mi ≥ 0 |=
Tix + a1i ≥ 0. Thus, γT (m) |= γT (a1), leading to m � a1. Similarly, m � a2.

(2) Let b � a{1,2} and a{1,2} 6= ⊥. For each i, such that a1i 6= ∞, γT (b) |=
Tix + a1i ≥ 0. Similarly, if a2i 6= ∞, then γT (b) |= Tix + a2i ≥ 0. Therefore, for
each mi 6= ∞, there are four cases to consider depending on a1i 6= ∞, a2i 6= ∞.
In either case, γT (b) |= Tix+min(a1i, a2i) ≥ 0. Therefore b � min(a1,a2) � m.

Computation of the lowest upper bound of two canonical elements consists of
taking the entrywise maximum, and is guaranteed to result in a canonical ele-
ment.

Definition 10 (Union) Let a, b be two canonical elements of ΣT . For T

nonempty, a t b = 〈max(a1, b1), . . . ,max(am, bm)〉 For T empty the union is
the usual result for > and ⊥.

Claim. Let m = a1 t a2. Then (1) a{1,2} � m; (2) if for some b, a{1,2} � b,
it follows that m � b; and (3) m is canonical

Proof. Proofs for parts (1), (2) are similar to the proof for intersection. For part
(3), assume otherwise. Then there exists a vector b ∼ m, and some position j

such that bj < mj . Assume w.l.o.g., that a1j ≤ a2j = mj . Let a2
′ be the vector

a2 with a2j replaced by bj . It follows immediately, that a2
′ � a2. γT (a2) |=

γT (m) |= Tjx + bj ≥ 0, therefore a2 � a2
′, and consequently, a2 ∼ a2

′. Thus
a2 fails to be canonical in this case, contradicting our assumptions.

Claim. Let a, b be two canonical elements. Then a � b iff for each i, ai ≤ bi.

Proof. This follows directly from the two claims above, using the fact that a � b

iff atb ∼� b, along with the property that if two canonical forms are equivalent
then they are identical.

3.2 Analysis Algorithm

Traditionally forward propagation is performed entirely in the abstract domain
until convergence, and the resulting fixed point is concretized. Our analysis al-
gorithm performs the analysis in multiple abstract domains: one domain per
program location. This allows for tailoring the template constraint matrix to
the assertions that are likely to hold at that location. It also complicates the
presentation of the post operation.

Let Ψ : 〈L, T , `0, Θ〉 be an LTS over a set of variables V . Let each location
` ∈ L be associated with an abstract domain Σ` parameterized by the template
constraint matrix T`, with k` template rows. The objective is to construct an
abstract invariant map η that maps each location ` ∈ L to a (canonical) element
in the abstract domain Σ`.

We construct this invariant map by forward propagation as follows. The
starting point is the map η0 that assigns to the initial location, `0, the abstract
value of the initial condition, that is η0(`0) = α`0(Θ), and the element ⊥ to all
other locations.

Example 7. Consider the LTS from Example 1. The associated domain of the
single location `0 has template constraint matrix

1 0
−1 0

1 1
1 −1

representing the
template assertions

x + c1 ≥ 0
−x + c2 ≥ 0
x + y + c3 ≥ 0
x − y + c4 ≥ 0

Using this template, the initial condition, Θ : x = 0 ∧ y = 0 is abstracted to
η0(`0) = 〈0, 0, 0, 0〉.

The postcondition operator for a transition leading from location `i to lo-
cation `j computes the element c in Σ`j

that represents the states that can be
reached from states represented by the current value of η at `i. More formally,

Definition 11 (Postcondition operator) Given τ : 〈`i, `j , ρτ 〉, then

post(η(`i), τ) =

{

⊥ η(`i) = ⊥

αj(γi(η(`i) ∧ ρτ)) otherwise

where αj is the abstraction function for Σ`j
and γi is the concretization function

of Σ`i
.

Let T`i
and T`j

be the template constraint matrices for locations `i and `j ,
respectively. Let ρτ be ξ ∧ x

′ = Ax + b. If post(η(`i), τ) = c, we require that

(T`i
x + η(`i) ≥ 0) ∧ ξ ∧ x

′ = Ax + b |= T`j
x
′ + c ≥ 0, equivalently,

(T`i
x + η(`i) ≥ 0) ∧ ξ |= (T`j

A)x + (T`j
b + c)

In practice, we precompute the TCM T ′ = T`j
A for each transition. We then

abstract the assertion γj(η(`i)) ∧ ξ using this TCM. Care should be taken to

subtract T`j
b from the result of the abstraction. This yields the post-condition

at location `j w.r.t. transition τ . Note that this technique is also applied to self-
looping transitions. Therefore, labeling each location with a different template
complicates our presentation but not the complexity of the procedure.

Example 8. Consider the map η0(`0) = 〈0, 0, 0, 0〉 from Example 7 and the tran-
sition τ1 =

〈
`0, `0,

[
x′ = x+ 2y ∧ y′ = 1 − y

]〉
. For this transition, ξ = true,

A =

(
1 2
0 −1

)

and b =

(
0
1

)

We compute T ′ = TA and a = Tb for performing the abstraction. Abstracting
γT (η(`0)) ≡ (x = y = 0), w.r.t T ′ yields the result 〈0, 0, 0, 0〉. Subtracting a from
this yields, 〈0, 0,−1, 1〉, which is the required post-condition.

Using the postcondition the map at step i > 0 is updated in the standard
fashion, as follows:

ηi+1(`n) = ηi(`n) t

⊔

τ :〈`m,`n,ρ〉

post(ηi(`m), τ)

This process does not necessarily terminate. Termination can be ensured by
a form of widening that is a natural generalization of widening in the interval
and octagon domain. At each location we limit the number of updates to each
parameter to a fixed number. If that number is exceeded for a particular pa-
rameter, we impoverish the abstract domain at that location by removing the
corresponding constraint from the TCM. Clearly this guarantees termination,
since for each TCM the number of constraints is finite.

Remark The reason that we remove the constraint from the TCM, rather than
set the parameter to ∞, is that the latter may lead to infinite ascending chains.
The problem, as pointed out by Miné [13, 12], is that when a parameter ci is
set to ∞, subsequent canonization may set ci back to a finite value, effectively
bringing back the corresponding constraint.

Example 9. Figure 2 shows the results of applying the algorithm to the LTS
in Example 1. The maximum number of updates to any template constraint
expression is set to 3. The Figure shows that only three constraints survive,
corresponding to the invariants x ≥ 0 ∧ x+ 2y ≥ 0 ∧ x+ y ≥ 0.

Instead of directly removing a constraint from the TCM if the number of
updates has exceeded the threshold, a more elegant solution is to use a Local
Widening operator, similar to the widening-upto operator introduced in [8]. Let
T`,ix + ci ≥ 0 be one of the template constraints at location `, such that the
number of updates to ci has exceeded the set threshold. Let τ be an incoming
transition at location `. The local value of ci w.r.t τ is obtained by computing
the minimum ci for which ρτ |= T`,ix

′ + ci ≥ 0 holds. Assuming that τ can

Iteration num.

Template 1 2 3 4 5 6 7

y + c1 0 0 2 4 6 x x

−y + c2 0 3 5 7 x x x

x + c3 0 0 0 0 0 0 0
−x + c4 0 1 8 x x x x

x − y + c5 0 2 3 4 x x x

x + y + c6 0 0 0 0 0 0 0
−x − y + c7 0 4 8 x x x x

y − x + c8 0 0 9 16 x x x

x + 2y + c9 0 0 0 0 0 0 0
−x − 2y + c10 0 7 12 17 x x x

x + 3y + c11 0 0 0 0 1 ∞ ∞
−x − 3y + c12 0 10 17 24 x x x

Fig. 2. A run of the invariant generation algorithm

be executed for some state, the corresponding LP problem either shows optimal
solution bi,τ , or is infeasible, in which case the local value is set to ∞. As a
result, if bi is the maximum among all the local values of all the transitions τ
with target location `, the assertion T`,ix + bi ≥ 0 is a local invariant at `, and
ci can be set to bi instead of ∞. Thus, the local widening operator computes the
local value of an expression instead of dropping the expression. In this case the
computed value is frozen, and further updates to it are disallowed.

Example 10. Consider the template expression −x + c ≥ 0 and the transition
τ : x ≤ 3 ∧ x′ = x+2. The local value of c w.r.t. τ is 5, since τ |= −x′ +5 ≥ 0.

3.3 Template Formation

The algorithm presented so far has assumed the presence of a template con-
straint matrix for every location. In this section we propose some strategies for
constructing these templates.

A first source of expressions is the description of the transition system itself:
expressions in the initial condition and transition guards are likely to be invari-
ants for some constant values. A second source are expressions present in target
properties. A third source are expressions of a certain form such as intervals,
xi ≤ c, xi ≥ c, which are often useful in applications involving array bounds and
pointer safety, or octagons, ±xi ±xj + c ≥ 0 for each pair of variables [13]. How-
ever, these expressions, albeit good candidates, cannot be the only expressions.
The reason is that they seldom are inductive by themselves: they need support.

Example 11. Consider the LTS from Example 1 and the assertion x ≥ 0. Al-
though Example 9 showed that x ≥ 0 is an invariant, it is not preserved by the
transition τ1 : x′ = x+ 2y, y′ = 1− y. However, x+ 2y ≥ 0∧ x ≥ 0 is inductive.
We call x+ 2y ≥ 0 the support expression for x ≥ 0.

Type Original Support
TCM Template expression TCM Template expression

bound 1 0 x + c1 ≥ 0 1 2 x + 2y + c2 ≥ 0
bound −1 0 −x + c3 ≥ 0 −1 −2 −x − 2y + c4 ≥ 0
bound 0 1 y + c5 ≥ 0 0 −1 − y + c6 ≥ 0

octagon 1 1 x + y + c7 ≥ 0 1 1 x + y + c7 ≥ 0
octagon 1 −1 x − y + c8 ≥ 0 1 3 x + 3y + c9 ≥ 0
octagon −1 1 −x + y + c10 ≥ 0 −1 −3 −x − 3y + c11 ≥ 0
octagon −1 −1 −x − y + c12 ≥ 0 −1 −1 −x − y + c12 ≥ 0

Fig. 3. Support vectors for bound and octagon expressions

Definition 12 (Support vector) Given a coefficient vector a and a transition
τ : 〈`i, `j , ξ ∧ x

′ = Ax + b〉, the coefficient vector (At
a)t is called the support

vector for a with respect to τ .

Example 12. The support vector for the vector 〈1,−1〉 corresponding with x−y
from Example 7, under the update x′ = x+ 2y, y′ = 1 − y is 〈1, 3〉 correspond-
ing with x + 3y. The table in Figure 3 shows the support vectors and their
corresponding template expressions for the interval and octagon expressions in
Example 9 with respect to τ1. Every vector is its own support with respect to
transition τ2. In this case, the table is closed under computing support vectors.

Support vectors are computed for each location. Given template constraint
matrices T`i

and T`j
and a transition τ : 〈`i, `j , ρτ 〉, then a support vector for

location `j with respect to τ is computed from a row of T`j
and ρτ and added

as a row to T`i
. Note the similarity to computing weakest preconditions.

4 Performance

Complexity The complexity of our algorithm is polynomial in the size of the
program and the size of the template constraint matrix. Consider a transition
system with n variables, |L| locations and |T | transitions, and assume that each
location is labeled with an m × n template constraint matrix. Let k be the
maximum number of updates allowed to the abstract invariant map. Then the
number of post-condition computations is bounded by (k+1)m|L||T |. Each post-
condition computation requires m LP queries, one for each row in the template
constraint matrix, and thus the total number of LP queries is O(km2|L||T |).

In practice, the number of updates to reach convergence is much less than
(k + 1)m|L||T |. In addition, the number of LP queries can be reduced further
by skipping post-condition computations for transitions whose prelocation as-
sertions did not change.

Practial Performance We have implemented our algorithm and applied it to
several benchmark programs. The results are shown in Figure 4. Our implemen-
tation is based on the GNU Linear programming kit, which uses the simplex

Program Template Statistics

name | L | | T | #t #s t(sec) tlp(sec) # lps #avg. #dim.

Mcc91 (3) 1 2 11 0 0.05 0.01 227 1.5 15 (20)
trainHPR97(3) 4 12 58 3 0.1 0.02 673 0.9 18(25)
berkeley(4) 1 3 63 16 0.23 0.11 1,632 1.36 64(96)
dragon(5) 1 12 129 157 3.94 2.38 11,426 3.23 202 (298)
heapsort(5) 1 4 33 24 0.34 0.13 1,751 2.45 75(90)

efm(6) 1 5 506 461 7.65 2.36 10,872 0.69 359(981)
lifo(7) 1 10 85 79 1.87 0.91 5,401 3.37 141 (174)
cars-midpt(7) 1 2 101 324 3.72 2.21 4,641 6.23 154(329)
barber(8) 1 12 128 0 1.97 0.83 9,210 1.96 124(141)
swim-pool(9) 1 6 104 0 0.56 0.27 2,710 2.11 97(118)

ttp(9) 4 20 3,555 127 62.8 40.9 61,263 4.41 574(1032)
req-grant(11) 1 8 221 18 2.96 1.41 8,635 2.10 241(255)
consprot(12) 2 14 533 40 4.88 2.00 12,487 1.83 266(286)

csm(13) 1 8 313 73 9.65 5.21 14,890 3.69 380(414)
c-pJava(16) 1 14 453 93 35.16 15.19 33,288 5.00 433(567)
consprod(18) 1 14 529 96 38.72 19.43 35,797 5.17 468(663)

incdec(32) 1 28 961 267 287.54 110.27 103,841 6.57 877(1294)
mesh2x2(32) 1 32 438 0 43.9 17.5 52,622 4.53 390(506)
bigjava(44) 1 37 864 376 331.98 117.68 122,643 5.25 1018 (1280)
mesh3x2(52) 1 54 1133 0 432.85 192.15 216,600 6.70 930(1241)

Fig. 4. Experimental results for benchmark examples. All timings were measured on
an Intel Xeon processor running linux 2.4, with 2Gb RAM.

algorithm for linear programming [10]. The library uses floating point arithmetic.
Soundness is maintained by careful rounding, and checking the obtained invari-
ants using the exact arithmetic implemented in the polyhedral library PPL [1].

The benchmark programs were taken from the related work, mostly from
the fast project [2]. Many of these programs (eg., berkeley, dragon, ttp

and csm) are models of bus and network protocols. Other programs, including
bigjava, c-pJava and heapsort, were obtained by abstracting java programs.
Some programs are academic examples from the Petri net literature (eg., swim-

pool, efm, meshixj). These programs, ranging in size from 4 to 52 variables,
exhibit complex behaviours and require non-trivial invariants for their correct-
ness proofs. Figure 4 shows for each program the number of variables (next to
the name in parentheses), the number of locations (|L|) and transitions (|T |).

The templates for these programs were obtained in two ways: they were
generated from user-defined patterns or automatically derived from the initial
condition and the transition guards. An example of a user-defined pattern is: “%i
+ 2 * %j + 3 * %k ”. It generates all constraints of the form xi + 2xj + 3xk +

bijk ≥ 0, for all combinations (xi, xj , xk) of system variables. In many cases the
patterns were suggested by the target property. For instance the target property
x ≤ K for some variable x and constant K, suggests the patterns -%i, -%i -%j

and so on. The columns “#t” and “#s” in Figure 4 show the number of template
constraints considered initially, and the number of support constraints generated
for these initial constraints, respectively. Thus the total number of constraints is
the sum of these two values. For each program, the maximum number of updates
to each constraint was set to 3.

The statistics part in Figure 4 shows the performance of our algorithm in
terms of computation time and number of LP queries solved. The first two
columns (t(sec) and tlp) show the total time needed to reach convergence and
the time spent by the LP solver, respectively. The last three columns show the
number of LP instances solved, the average number of simplex iterations for
each LP call, and the the maximum (and average between parentheses) dimen-
sionality of each LP problem. The memory used ranged from KBs for the smaller
examples to 50 MB for bigjava and 67MB for mesh3x2.

Invariants. The invariants obtained for the benchmark programs were of mixed
quality. On one hand, the pattern-generated constraints produced invariants that
were able to prove the target properties for most examples including the csm

and bigjava. On the other hand, we were unable to prove the desired properties
for examples like incdec and consprod. In general, like with polyhedra, our
technique fails in cases where non-convex and non-linear invariants are required.
For all programs the propagation converged within 10 iterations, which is much
faster than the theoretical maximum.

5 Conclusions

In this paper, we have demonstrated an efficient algorithm for computing invari-
ants by applying abstract interpretation on a domain that is less powerful than
that of polyhedra but more general than related domains like intervals, octagons
and the very recent octahedra. In theory, we have thus generalized the previous
results and appealed to the complexity of linear programming to show that all
of these analyses can be performed in polynomial time. In practice, we have ex-
ploited the power of LP solvers to provide time and space-efficient alternatives
to polyhedra. We have shown through our benchmark examples that our method
is scalable to large examples and has the potential of scaling to even larger ex-
amples through a wiser choice of templates. Our support assertion generation
greatly improves the ability of our algorithm to infer non-trivial invariants, and
exploits the fact that we can support arbitrary coefficients in our assertions.

Future extensions to this work need to consider many issues both theoret-
ical and practical. The analysis can be performed on non-canonical elements.
This can greatly simplify the post-condition computation but complicate inclu-
sion checks. Preprocessing LP calls using an equality simplifier could reduce the
dimensionality of each call. Possible extensions include the use of semi-definite

programming to extend the method to non-linear systems and non-linear tem-
plates. The work of Parillo et al. gives us a direct extension of Farkas Lemma
for the non-linear case [14].

Acknowledgements We would like to thank the anonymous referees for their
comments and suggestions. We are also grateful to the developers of GLPK [10]
and PPL [1] for making their tools public, and hence making this study possi-
ble. Many thanks to Aaron Bradley, Michael Colón, César Sánchez and Matteo
Slanina for their comments and suggestions.

References

1. Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In Static Analysis Symposium

(2002), vol. 2477 of LNCS, Springer-Verlag, pp. 213–229.
2. Bardin, S., Finkel, A., Leroux, J., and Petrucci, L. FAST: Fast accel-

ereation of symbolic transition systems. In Computer-aided Verification (July
2003), vol. 2725 of LNCS, Springer-Verlag.

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,

Monniaux, D., and Rival, X. A static analyzer for large safety-critical software.
In ACM SIGPLAN PLDI’03 (June 2003), vol. 548030, ACM Press, pp. 196–207.

4. Clarisó, R., and Cortadella, J. The octahedron abstract domain. In Static

Analysis Symposium (2004), vol. 3148 of LNCS, Springer-Verlag, pp. 312–327.
5. Cousot, P., and Cousot, R. Static determination of dynamic properties of

programs. In Proceedings of the Second International Symposium on Programming

(1976), Dunod, Paris, France, pp. 106–130.
6. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

7. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM Principles of Programming Languages (Jan.
1978), pp. 84–97.

8. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11, 2 (1997), 157–
185.

9. Karr, M. Affine relationships among variables of a program. Acta Inf. 6 (1976),
133–151.

10. Makhorin, A. The GNU linear programming kit, 2000. http://www.gnu.org/

software/glpk/glpk.html.
11. Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.
12. Miné, A. A new numerical abstract domain based on difference-bound matrices.

In PADO II (May 2001), vol. 2053 of LNCS, Springer-Verlag, pp. 155–172.
13. Miné, A. The octagon abstract domain. In AST 2001 in WCRE 2001 (October

2001), IEEE, IEEE CS Press, pp. 310–319.
14. Parrilo, P. A. Semidefinite programming relaxation for semialgebraic problems.

Mathematical Programming Ser. B 96, 2 (2003), 293–320.
15. Schrijver, A. Theory of Linear and Integer Programming. Wiley, 1986.

