
Master Class, Washington University, Nov 16 Introduction and Computational Model

THEORY OF SYSTEMS
MODELING AND ANALYSIS

1

Henny Sipma
Stanford University

Master class
Washington University at St Louis

November 16, 2006

1



Master Class, Washington University, Nov 16 Introduction and Computational Model

COURSE OUTLINE
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 8:37 - 10:00   Introduction  --  Computational model
                   Fair transition systems -- Temporal logic

10:07 - 11:30    Verification methods
                   Rules -- Diagrams -- Abstraction
                   Traditional static analysis methods

 1:07  -  2:30   Constraint-based static analysis methods
                   Real-time and hybrid systems

 2:37  -  4:00  Formalization of middleware services:
                   Event correlation
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My background
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B.S. Chemistry, Groningen, The Netherlands
M.S. Chemical Engineering, idem

7 years as Control Engineer with Shell in 
   The Netherlands, Singapore and Houston, TX

M.S. Computer Science, Stanford

Ph.D. Computer Science, Stanford

Sr. Research Associate at Stanford since 2000
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Research Interests
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• Static Analysis
• Constraint-based reasoning

• Runtime Analysis
• Monitoring of temporal properties

• Decision Procedures
• Data structures

• Formalization of Middleware services
• Event Correlation
• Deadlock Avoidance
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I. Introduction
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Reactive Systems
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Continuous interaction with the environment

time

Observable throughout its execution
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OBJECTIVE: Analysis of System Behaviors

THEORY: Logic + Automata

COMPONENTS: Model (+ Specification)

METHODS: Deductive and Algorithmic

7
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FORMAL METHODS - Scope
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Complex system Natural-language
specification

Model Formal
specification

Formal Verification
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FORMAL METHODS - Scope
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Static analysisGene regulatory
network

properties
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FORMALIZATION OF MIDDLEWARE SERVICES
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OS Kernel
OS I/O subsystem
Network Adapters

ORB Core

ORB Services

Event Notification
Event Correlation
Concurrency

Logging
Trading
Scheduling

Deadlock Avoidance
Load Balancing

OS Kernel
OS I/O subsystem
Network Adapters

Application ApplicationApplication
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Reactive Systems
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time

Behavior: sequences of states

Specification: temporal logic
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Verification process
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Fair transition
system

System specificationSystem description

Verification 
techniques

Temporal logic
formula

Proof Counterexample
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Static analysis (traditional)
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Fair transition
system

System description

Symbolic simulation

abstract
domain

Invariants
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template
property

Static analysis (constraint-based)
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Fair transition
system

System description

System of constraints

Invariants Proof of terminationtemporal properties
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Extension to real-time and hybrid systems
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System specification

System description

Verification 
techniques

Proof Counterexample

Real-time/hybrid
transition system

Nonzenoness
checking

Fair transition
system

Temporal logic
formula

15
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Verification techniques (1)
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Algorithmic: exhaustive search for counterexamples 

Issues: • state space explosion problem
• efficient representations
• applicable to finite-state systems only

16
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Verification techniques (2)
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Deductive: “theorem proving”

system

Verification 
techniques

formula

“Proof”
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Verification techniques (2)
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Deductive: “theorem proving”

system

Verification 
techniques

formula

100s/1000s/10,000s of first-order verification conditions

Decision procedures

18
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II. COMPUTATIONAL MODEL

19

• Fair transition systems
• Temporal logic: LTL

Reference: 
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, 
Springer-Verlag, 1995.
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States
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V: Vocabulary  -- set of typed variables

expression over V

assertion over V

{x,y: integer, b: boolean}

x+y

x>y

s: state  --  interpretation of all variables

extends to expressions 
and assertions

{x:2,y:3,b:true}

s[x]=2,s[y]=3,s[b]=true

s[x+y]=5

s[x>y]=false

Σ: set of all states Z × Z × {true,false}

20
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System Description: Fair transition systems
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 Φ: < V , Θ , T , F >

Set of typed variables

Initial condition: 
  first-order formula

Set of transitions

Fairness condition

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x,y} F⊆T

21
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Transitions
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T: finite set of transitions

τ∈T:  Σ → 2Σ

s

Σ τ-successors of sτ(s):

.

represented by a transition relation ρτ(V,V’)

V : values of variables in the current state
V’: values of variables in the next state

Example:

ρτ: x’=x+1 ⋁ x’=x+2

τ(<x:2>) = {<x:3>,<x:4>}

22
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Runs and Computations
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Infinite sequence of states

σ: s0 s1 s2 s3 s4 .............

is a run of Φ if

☛ Initiality:  s0 ⊧ Θ                          (s0 is an initial state)

☛ Consecution: for all i > 0

si+1 is a τ-successor of si

for some τ ∈ T 

s0       s1    s2     s3  ....

τ τ τ τ

23
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Runs and Computations
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Infinite sequence of states

σ: s0 s1 s2 s3 s4 .............

is a computation of Φ if

☛ σ is a run
☛ Justice: for each τ∈F 

if τ is enabled infinitely often in σ
it is taken infinitely often in σ

τ is enabled on Si: τ(si) ≠ ∅
τ is taken on si: si+1 ∈ τ(si)

24
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Runs and Computations: Example
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V: {x:integer}
Θ: x=0

T: {τ1, τ2, τ3}  with
ρτ1 : x’=x+1 ⋁ x’=x+3
ρτ2 : x’=x+2 ⋁ x’=2x
ρτ3 : x’=x

{
F: {τ1, τ2}

σ1:  0, 1, 2, 3, 4, 5, 6, 7, .............

σ2:  0, 0, 0, 0, 0, 0, 0, 0 .............

σ3:  0, 2, 4, 8, 16, 32, .............

σ4:  0, 1, 1, 3, 3, 5, 5, 7, 7, .............

σ5:  1, 2, 3, 5, 6, 8, 9, 11, .............

Run? Computation?

✓
✓
✓
✓

×
×
×
×
××

25
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Runs and Computations: Example
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V: {x:integer}
Θ: x=0

T: {τ1, τ2, τ3}  with
ρτ1 : (x=0 ⋁ x=1) ⋀ (x’=x+1 ⋁ x’=x+3)
ρτ2 : x’=x+2 ⋁ x’=2x
ρτ3 : x’=x

{
F: {τ1, τ2}

σ1:  0, 1, 2, 3, 4, 5, 6, 7, .............

σ2:  0, 0, 0, 0, 0, 0, 0, 0 .............

σ3:  0, 2, 4, 8, 16, 32, .............

σ4:  0, 1, 1, 3, 3, 5, 5, 7, 7, .............

σ5:  1, 2, 3, 5, 6, 8, 9, 11, .............

Run? Computation?

✓
✓
✓
✓

✓

✓

×
×

×
××
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System Description: Summary
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Fair transition system: Φ: < V , Θ , T , F > 

Run:           Initiality + Consecution

Computation: Run + Justice

L(Φ): all computations of Φ

(all sequences of states that satisfy 
Initiality, Consecution and Justice)

“Behavior of the program”

27
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Reachable state space

28

state s is Φ-reachable if it appears in some Φ-computation  

σ: s0 s1 s2 s3 s4 .............

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ  : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {b1, b2}
Θ: b1⋀b2

T: {τ} with ρτ: b1’=¬b1⋀b2’=¬b2

Σ = {<t,t>,<t,f>,<f,t>,<f,f>}

ΣΦ⊳ = {<t,t>,<f,f>}

28
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Reachable state space

29

state s is Φ-reachable if it appears in some Φ-computation  

σ: s0 s1 s2 s3 s4 .............

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ  : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {x}
Θ: x=0
T: {τ} with ρτ: x=0 ⋀ x’=x+1

Σ = N

ΣΦ⊳ = {x:0, x:1}

29
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Reachable state space

30

state s is Φ-reachable if it appears in some Φ-computation  

σ: s0 s1 s2 s3 s4 .............

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ  : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {x}
Θ: 0 ≤ x ≤ M
T: {τ1,τ2} with
      ρτ1: odd(x) ⋀ x’=3x+1
      ρτ2: even(x) ⋀ x’=x/2

Σ = N

ΣΦ⊳ = ?

30
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Reachable state space vs Computations
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⊗
finite state space

infinite state space

finite # of computations

infinite # of computations

System Φ may have any combination of

31
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II. COMPUTATIONAL MODEL
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• Fair transition systems
• Temporal logic: LTL

Reference: 
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, 
Springer-Verlag, 1995.

32
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Temporal Logic

33

Language that specifies the behavior of a reactive system

System Φ  ----------------------------  System behavior:  L(Φ)

Temporal formula φ --- Sequences of states that satisfy φ: L(φ)

System Φ satisfies specification φ

Φ ⊨ φ
if L(Φ) ⊆ L(φ)

33
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Temporal logic
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System Φ satisfies specification φ

Φ ⊨ φ
if L(Φ) ⊆ L(φ)

Σ∞

L(φ)
L(Φ)

34
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First-order logic --- Temporal logic
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Temporal logic

models are sequences of states

temporal formula φ
represents

the set of sequences of states
for which φ is true

First-order logic

models are states

assertion p 
represents 

the set of states 
for which p is true 

<x:3,y:1> ⊫ x > y <s0 s1 s2 s3 ....> ⊨ φ

35
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Temporal logic: underlying assertion language
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Assertion language A:

first-order language over system variables
(+ theories for their domains)

Formulas in A: state formulas (aka assertions)

evaluated over a single state

s ⊫ p     iff     s[p] = true

p holds at s
s satisfies s
s is a p-state

Example: 
       s: <x:4, y:1>

s ⊫ x=0 ⋁ y=1
s ⊫ x > y
s ⊫ x = y+3
s ⊯ odd(x)

36
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Temporal logic: underlying assertion language
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x>0
x>5

Σ
x2< 100

Assertions represent sets of states

37
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Temporal logic: underlying assertion language

38

assertion p is state-satisfiable if  s ⊫ p for some state s∈Σ

assertion p is state-valid if s ⊫ p for all states s∈Σ 
Example: x>y → x+1 > y

Example: x>0

38
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Temporal logic

39

assertions       +        temporal operators 

first-order formulas
describing the 

properties
of a single state

□ always
◇ eventually
U until
W wait for
◯ next

39
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Temporal logic: safety versus liveness

40

Safety property:  “nothing bad will happen”

Liveness property:  “something good will happen”

it will not happen that the train is in the crossing while
the gates are open 

the train will eventually be able to pass the crossing

40
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Temporal logic -- informal
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□p

p p p p p p p p p p p p p p p p

◇p
p

pUq
p p p p p p p q

◯p
p

present

41
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Temporal logic: syntax

42

☛ every assertion is a temporal formula 

☛ if φ and ψ are temporal formulas, so are

¬φboolean combinations: φ⋀ψ φ⋁ψ φ→ψ

temporal combinations: ◇φ □φ ◯φ φUψ φWψ

Examples:

□(x=0 → ◇(x>0))
pUq → ◇q

42



Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

43

Temporal formulas are evaluated over infinite sequences of states:

σ: s0 s1 s2 s3 s4 .............

The truth value of a temporal formula φ over σ at position j in the 
sequence is

(σ,j) ⊨ φ (φ holds at position j in σ)

43
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Temporal logic: semantics

44

☛ if φ is a state formula p

(σ,j) ⊨ φ       iff           sj ⊫ p

σ<x>: 4, 3, 1, 7, 5, 8, 0, 0, 0, 0Example:

(σ,3) ⊨ x > 6
(σ,6) ⊨ x=0

<x:7> ⊫ x > 6

☛ if φ is a temporal formula of the form (boolean operators)

(σ,j) ⊨ ¬ψ             iff          (σ,j) ⊭ ψ       

(σ,j) ⊨ ψ ⋁ χ         iff          (σ,j) ⊨ ψ  or  (σ,j) ⊨ χ   

44
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Temporal logic: semantics

45

☛ if φ is a temporal formula of the form (temporal operators)

(σ,j) ⊨ □ψ      iff      for all k≥j,  (σ,j) ⊫ ψ       

j

ψ ψ ψ ψ ψ ψ ψ

(σ,j) ⊨ ◇ψ      iff      for some k≥j,  (σ,j) ⊫ ψ       

j

ψ

45
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Temporal logic: semantics

46

☛ if φ is a temporal formula of the form (temporal operators)

(σ,j) ⊨ ψUχ      iff      for some k≥j,  (σ,j) ⊫ χ 
                              and for all i, j≤i<k,  (σ,j) ⊫ ψ      

j

ψ χ

k

(σ,j) ⊨ ψWχ      iff   (σ,j) ⊨ ψUχ   or   (σ,j) ⊨ □ψ    

(σ,j) ⊨ ◯ψ         iff   (σ,j+1) ⊨ ψ  

j

ψ

j+1

ψψψψψ

46
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Temporal logic: semantics

47

A sequence of states σ satisfies a temporal formula φ 

σ ⊨ φ      iff       (σ,0) ⊨ φ

47
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Temporal logic formulas: examples

48

p → ◇q

if initially p then eventually q

p q

□(p → ◇q)
p p p q p pq q

every p is eventually followed by a q

□(p → ◯p)
p p p

once p, always p

p p p p p p p p p p p

48
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Temporal logic formulas: examples

49

□◇p
p p p p p p p

every position is eventually followed by a p
“infinitely often p”

◇□p
p p p p

eventually always p

p p p p p p p p

if there are infinitely many p’s then there are infinitely many q’s

□◇p → □◇q

49
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Temporal logic formulas: examples

50

Nested waiting-for formulas: q1W(q2W(q3Wq4))

intervals of continuous qi:
q1 q1 q1 q1 q2 q2 q2 q3 q3 q3q3q4

possibly empty interval:
q1 q1 q1 q1 q3 q3 q3 q3 q3 q3q3q4

possibly infinite interval:
q1 q1 q1 q1 q2 q2 q2 q3 q3 q3q3q3 q3 q3 q3 q3 q3 q3 q3

50
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Temporal logic: summary

51

For temporal formula φ, sequence of states σ, position j≥0:

(σ,j) ⊨ φ
φ holds at position j in σ

σ satisfies φ at j
j is a φ-position in σ

For temporal formula φ and sequence of states σ

(σ,0) ⊨ φσ ⊨ φ     iff
φ holds on σ
σ satisfies φ

51
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Temporal logic: satisfiability and validity

52

For temporal formula φ

☛ φ is satisfiable if σ ⊨ φ for some sequence of states σ 

☛ φ is valid if σ ⊨ φ for all sequences of states σ 

□(x>0) ◇(x>5)

Σ∞

(x>0)U(x>5)

52
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Temporal logic: satisfiability/validity examples
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◇(x=0)

satisfiable? valid?

◇(x=0) ⋁ □(x≠0)

◇(x=0) ⋀ □(x≠0)

◇(x=0) ⋀ ◇(x=1)

◇(x=0) ⋁ ◇(x=1)

◇□p → □◇p

□◇p → ◇□p

pU(q⋀r) → (◇q ⋀ ◇r)

✓

✓ ✓

✓

✓

✓

✓

✓ ✓

✓

×

× ×

×

×

×
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Temporal logic: Equivalences
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Temporal formulas φ, ψ are congruent φ ≈ ψ
if □(φ ↔ ψ) is valid

φ and ψ have the same truth value at all positions in all models

□(p ⋀ q)

□(p ⋁ q)

congruent?

□p ⋀ □q

□p ⋁ □q

pU(q⋁r) pUq ⋁ pUr

pU(q⋀r) pUq ⋀ pUr

✓

✓

×

×
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Temporal logic: Expansions
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□φ  ≈  φ ⋀ ◯□φ

◇φ  ≈  φ ⋁ ◯◇φ

φUψ  ≈ ψ ⋁ (φ ⋀ ◯(φUψ))

Used in checking temporal formulas in model checking

55
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Expressiveness

56

Some properties cannot be expressed in LTL:

☛ p is true, if at all, only at even positions 

Not specified by

∃t ( t ⋀ □(t ↔ ¬◯t) ⋀ □(p → t) )

p ⋀ □( p → ◯◯p ) or p ⋀ □( p ↔ ¬◯p )

requires quantification

56



Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic vs First-order logic 

57

Temporal formula

□( p → ◇( r ⋀ ◇q ) )

can be expressed in first-order logic as 

(∀t1≥0) [ p(t1) → (∃t2) [ t1≤t2 ⋀ r(t2) ⋀
(∃t3)( t2≤t3 ⋀ q(t3) ] ]
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