THEORY OF SYSTEMS
MODELING AND ANALYSIS

Henny Sipma
Stanford University

Master class
Washington University at St Louis
November 16, 2006

Master Class, Washington University, Nov 16 1 Introduction and Computational Model

' COURSE OUTLINE

8:37 - 10:00 Introduction -- Computational model
Fair transition systems -- Temporal logic

10:07 - 11:30 Verification methods
Rules -- Diagrams -- Abstraction

Traditional static analysis methods

1:07 - 2:30 Constraint-based static analysis methods
Real-time and hybrid systems

2:37 - 4:00 Formalization of middleware services:
Event correlation

Master Class, Washington University, Nov 16 2 Introduction and Computational Model

B.S. Chemistry, Groningen, The Netherlands

M.S. Chemical Engineering, idem

7 years as Control Engineer with Shell in
The Netherlands, Singapore and Houston, TX

M.S. Computer Science, Stanford
Ph.D. Computer Science, Stanford

Sr. Research Associate at Stanford since 2000

Master Class, Washington University, Nov 16 3 Introduction and Computational Model

&3 Research Interests

e Static Analysis

® Constraint-based reasoning

¢ Runtime Analysis
® Monitoring of temporal properties

e Decision Procedures
® Data structures

e Formalization of Middleware services
e Event Correlation
e Deadlock Avoidance

Master Class, Washington University, Nov 16 A Introduction and Computational Model

I. Introduction

Master Class, Washington University, Nov 16 5 Introduction and Computational Model

' Reactive Systems

time >

Continuous interaction with the environment

Observable throughout its execution

Master Class, Washington University, Nov 16 6 Introduction and Computational Model

OBJECTIVE: Analysis of System Behaviors

COMPONENTS: Model (+ Specification)

METHODS: Deductive and Algorithmic

THEORY: Logic + Automata

Master Class, Washington University, Nov 16 7 Introduction and Computational Model

' FORMAL METHODS - Scope

Formal Verification

CH

Model

| | | | || | | | || | | |

Formal : Natural-language

C t
omplex system specification 1specification

(0.0}

Master Class, Washington University, Nov 16 Introduction and Computational Model

FORMAL METHODS - Scope

Gene regulatory

RN Static analysis

[__1Transorplon facher F = Funolian fl dilier s
et o
B AT, ety @ Rapination @ Cotobydrate metebolam) Viacuotsr degradstion
FARosme bingenesis O S roma o Sponsatonipharrsone mep. | Cal-Cyle
B iy gl el SEacarE Privteir ayrtipri iy |0 CF b regrisiriaF Rl avia B Urkromn
il ChesbAiieasel v 0 F s whaion i Lipaafiaity s Byt

Master Class, Washington University, Nov 16 9 Introduction and Computational Model

! FORMALIZATION OF MIDDLEWARE SERVICES

[Application j [Application] [Application]

~
Event Notification Logging

Trading Load Balancing
Concurrency Scheduling

OS Kernel OS Kernel

OS I/0 subsystem OS I/0 subsystem
Network Adapters Network Adapters

Master Class, Washington University, Nov 16 10 Introduction and Computational Model

Reactive Systems

time >

Behavior: sequences of states

Specification: temporal logic

Master Class, Washington University, Nov 16 11 Introduction and Computational Model

System description System specification

Temporal logic
formula

Proof Counterexample

Master Class, Washington University, Nov 16 12 Introduction and Computational Model

12

Static analysis (traditional)

System description

abstract
domain

|

Invariants

Master Class, Washington University, Nov 16 13 Introduction and Computational Model

Static analysis (constraint-based)

System description

template
property

| | |

temporal properties Invariants Proof of termination

Master Class, Washington University, Nov 16 14 Introduction and Computational Model

Extension to real-time and hybrid systems

System description

System specification

Temporal logic
formula

Proof Counterexample

Master Class, Washington University, Nov 16 15 Introduction and Computational Model

1

5

Verification techniques (1)

Algorithmic: exhaustive search for counterexamples

Issues: e state space explosion problem
e efficient representations
e applicable to finite-state systems only

Master Class, Washington University, Nov 16 16 Introduction and Computational Model

Verification techniques (2)

Deductive: “theorem proving”

formula

®
Iﬂ.‘ "Proof”

Master Class, Washington University, Nov 16 17 Introduction and Computational Model

Verification techniques (2)

Deductive: “theorem proving”

formula

100s/1000s/10,000s of first-order verification conditions

|

Decision procedures

Master Class, Washington University, Nov 16 18 Introduction and Computational Model

II. COMPUTATIONAL MODEL

¢ Fair transition systems
e Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

Master Class, Washington University, Nov 16 19 Introduction and Computational Model

V: Vocabulary -- set of typed variables

expression over V

assertion over V

s: state -- interpretation of all variables 1x:2,y:3,b:frue;

extends to expressions s[x+y]=5

and assertions s[x>y]=false

2: set of all states Z X Z X {true,false}

Master Class, Washington University, Nov 16 20 Introduction and Computational Model

| System Description: Fair transition systems

Set of typed variables Fairness condition

\Example: {X,Y} / JCJ

DO: ¢ Va, G T 5

Ao\

Initial condition:

first-order formula Set of transitions

Compact first-order representation of all sequences of states
that can be generated by a system

Master Class, Washington University, Nov 16 21 Introduction and Computational Model

Transitions

</ : finite set of transitions
Example:
Tedii 2R 2

Pr: X =X+l V x'=x+2

T(s): T-successors of s T(<x: 29015 1<x:35,¢X:451

represented by a transition relation p+(V,V’)

V : values of variables in the current state
V’: values of variables in the next state

Master Class, Washington University, Nov 16 22 Introduction and Computational Model

22

Runs and Computations

Infinite sequence of states

O.°Sh Si:S52 IS4 i,

is a run of @ if

e Initiality: so £ © (so is an initial state)

« Consecution: for all i > 0O
T T T T

Sis1 IS @ T-successor of s s/\s/\g /\As/\
6) 1 2 3

for some T € J

Master Class, Washington University, Nov 16 23 Introduction and Computational Model

Runs and Computations

Infinite sequence of states

O.°Sh Si:S52 IS4 i,

is a computation of O if
e O IS arun

e Justice: for each Te<f

if T is enabled infinitely often in O
it is taken infinitely often in O

T is enabled on Si: T(si)) #+ O

T is taken on s;i: si,1 € T(si)

Master Class, Washington University, Nov 16 24 Introduction and Computational Model

3 Runs and Computations: Example

V: {x:integer}

O: x=0 Pr1 ¢ X'=X+1 V x'=x+3
o : {11, T2, T3} with { Pr2 ¢ X' =X+2 V X'=2x

F: T, T3} P
Run? Computation?

o 0,1,:2, 374 58 £ r. . & v X

gz 0,0 0,00 0,00 . 8

o3 0, 2,4, 8,16, 32, 55t

04 0,71,1, 3,73, 5, 5, (8l = nee

Os: 1, 2, 3,5, 6, 837 It

X | <~ LA

X I X [X | X

Master Class, Washington University, Nov 16 25 Introduction and Computational Model

' Runs and Computations: Example

V: {x:integer}

©: x=0 Pt : (x=0 V x=1) A (X'=x+1 V x'=x+3)
< : {11, T2, T3} with { Pr2 : X =X+2 V X =2X
F: {1y, T2} Pk e
Run? Computation?
O 0,%,:2 345 8 .5 .. .8 v X
Oz 0,0,0,0,0, 0700 . 88 v X
O3:. 0, 2,4,8, l6;, 38 .3 &% v v
O;: O, 1,1, 3,3, 5,5, 00 v X
Os: 1, 2, 3,5, 6, & 17 S X X
Master Class, Washington University, Nov 16 26 Introduction and Computational Model

System Description: Summary

Fair transition system: ®: <V , 0 , J ,F >

Run: Initiality + Consecution

Computation: Run + Justice

L(P): all computations of @ “Behavior of the program”

(all sequences of states that satisfy
Initiality, Consecution and Justice)

Master Class, Washington University, Nov 16 27 Introduction and Computational Model

' Reachable state space

state s is ®-reachable if it appears in some ®-computation

O: Sp S17°S2. S35 aia....
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example: 2 = <t <t <f, 1> <f, >}
V. {bl, bz}
©: bijAb2 o = 1<t 1> <f >}

T : {1} with pr: bi’=-biAbz'=-by

Master Class, Washington University, Nov 16 28 Introduction and Computational Model

Reachable state space

state s is ®-reachable if it appears in some ®-computation

O: Sp S17°S2. S35 aia....
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example: S =N
V: {x}
CRPE, o~ = §x:0, x:1}
< : {1} with pr: x=0 A x'=x+1
Master Class, Washington University, Nov 16 29 Introduction and Computational Model

Reachable state space

state s is ®-reachable if it appears in some ®-computation

0. Sp S1792 St ..

system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example:
V: {x} > =N
©:0<x <M
S . ZCD|> - ?
< {11, T2} with
pri: odd(X) A x'=3x+l1
pr2: even(x) A x'=x/2
Master Class, Washington University, Nov 16 30 Introduction and Computational Model

Reachable state space vs Computations

System ® may have any combination of

finite state space finite # of computations

infinite state space infinite # of computations

Master Class, Washington University, Nov 16 31 Introduction and Computational Model

3

1

II. COMPUTATIONAL MODEL

e Fair transition systems
e Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

Master Class, Washington University, Nov 16 32 Introduction and Computational Model

Temporal Logic

Language that specifies the behavior of a reactive system

System ¢ -l Smcian Be LLRE . System behavior: £(P)

Temporal formula @ --- Sequences of states that satisfy @: L(¢)

System ® satisfies specification @

®EO®
if L(®) € L(ep)

Master Class, Washington University, Nov 16 33 Introduction and Computational Model

Temporal logic

System @ satisfies specification ¢

®E®
if L(0) € L(p)

Master Class, Washington University, Nov 16 YA Introduction and Computational Model

| First-order logic --- Temporal logic

First-order logic Temporal logic
models are states models are sequences of states
X3y > IE X>Y <So S1 S2 S3 ...> F

assertion p temporal formula ¢
represents represents

the set of states the set of sequences of states

for which p is frue for which @ is true

Master Class, Washington University, Nov 16 35 Introduction and Computational Model

&3 Temporal logic: underlying assertion language

Assertion language {:

first-order language over system variables
(+ theories for their domains)

Formulas in : state formulas (aka assertions)

evaluated over a single state Example:
S: <X:4, y:I>

S l= p iff s[p] = true

S IE x=0 Vv y=1

p holds at s i
s satisfies s S I= X = y+3
s is a p-state s I~ odd(x)
Master Class, Washington University, Nov 16 36 Introduction and Computational Model

Temporal logic: underlying assertion language

Assertions represent sets of states

Master Class, Washington University, Nov 16 37 Introduction and Computational Model

37

Temporal logic: underlying assertion language

assertion p is state-satisfiable if s I= p for some state se2
Example: x>0

assertion p is state-valid if s I= p for all states s€2
Example: x>y = X+l > vy

Master Class, Washington University, Nov 16 38 Introduction and Computational Model

Temporal logic

assertions > temporal operators

first-order formulas L always
describing the < eventually
properties U until
of a single state W wait for
O next
Master Class, Washington University, Nov 16 39 Introduction and Computational Model

| Temporal logic: safety versus liveness

Safety property: “nothing bad will happen”

it will not happen that the train is in the crossing while
the gates are open

Liveness property: “something good will happen”

the train will eventually be able to pass the crossing

Master Class, Washington University, Nov 16 40 Introduction and Computational Model

Temporal logic -- informal

P P P.P P PSP R P P

[(p 0900000900060 006 09
P
Op —0—0—0—90—0—0—80—0—90—0—0—0—0—9
/ P+ P P PaBERs P 9
pllg o—eo—eo—9o—90—0—00o—00—0-000 o
P
P 6—90—0—0—90-0—0—90 000600909

present

Master Class, Washington University, Nov 16

41

Introduction and Computational Model

Temporal logic: syntax

« every assertion is a temporal formula

e if ¢ and Y are temporal formulas, so are

boolean combinations: - Q@AY OAVAY) -y

temporal combinations: <o O Ow @UY oUWy

Examples:

O(x=0 = <>(x>0))
plUq = q

Master Class, Washington University, Nov 16) Introduction and Computational Model

Temporal logic: semantics

Temporal formulas are evaluated over infinite sequences of states:

O: So S) 'S2iSaera i % ..

The truth value of a temporal formula @ over G at position j in the
sequence Is

(0,j) E @ (¢ holds at position j in O)

Master Class, Washington University, Nov 16 43 Introduction and Computational Model

| Temporal logic: semantics

e if @ is a state formula p
() =@ iff Sj = p
Example: o<x> 4, 3,1,7,5,8,0,0,0,0

(0,3) E x> 6 X: 7> 1= x> 6
(0,6) = x=0

e if @ is a temporal formula of the form (boolean operators)

(0.,) & - IFf (0,J) ¥ P
(0.J) = W v X iff (0.J) E W or (0,j) F X
Master Class, Washington University, Nov 16 AA Introduction and Computational Model

il Temporal logic: semantics

e if p is a temporal formula of the form (temporal operators)
(0,j) E O iff for all k2j, (0,j) IE P
VYyyYpypyyyuyy

00090900 -0-0-—0 000
J

(0,j) EOW iff for some k2j, (0,j) E WP

—0—0—0 00 ¢ ¢ 8 9 o 0 0 0 9
J
Master Class, Washington University, Nov 16 45 Introduction and Computational Model

| Temporal logic: semantics

e« if ¢ is a temporal formula of the form (temporal operators)

(0,j)) E WUYX iff for some k2j, (0,j) I= X
and for all i, jcick, (0,j) = Y
VyYyyYywywyy vy

—0—0—0—0 00 0 0 8 D 0" 0
J K

(0,)) = WY iff (0,)) = wUy or (o) OyY

(0.j) = O iff (0,j+]) = P
W
O—0—0—0— 00 90 6 O U Ol 0 T
J J+l
Master Class, Washington University, Nov 16 46 Introduction and Computational Model

' Temporal logic: semantics

A sequence of states O satisfies a temporal formula ¢

Master Class, Washington University, Nov 16 47 Introduction and Computational Model

€3 Temporal logic formulas: examples

P 9
p = O 0 0000000000000 0000

if initially p then eventually g

PP Pl P s

D(p — <>q) O 0 0000000000000 0000

every p is eventually followed by a g

FPelt P EEPCBEPRRTP PP PP
(p = Op) 0 0000000000000 0000

once p, always p

Master Class, Washington University, Nov 16 48 Introduction and Computational Model

&Y, Temporal logic formulas: examples

P P PR PP
1P 00 0000000000000 000

every position is eventually followed by a p
“infinitely often p”

FRP PR RaERPP P P

<SLp 00 0000000000000000

eventually always p

L1Op —H e

if there are infinitely many p's then there are infinitely many q's

Master Class, Washington University, Nov 16 49 Introduction and Computational Model

Temporal logic formulas: examples

Nested waiting-for formulas: q W (q2 W (qs W qa))

intervals of continuous q;:

919191 q1 9292929393 439394
0 0000000000000 0000

possibly empty interval:

91919191 9393939393 4393 q4
000 000000000000000

possibly infinite interval:

91919191 9292929393 939393 43439393 q3 q3 Gs
00 0000000000000000

Master Class, Washington University, Nov 16 50 Introduction and Computational Model

Temporal logic: summary

For temporal formula ¢, sequence of states o, position j20:

® holds at position j in O
O satisfies @ at j

J is a -position in O

For temporal formula @ and sequence of states O

@ holds on T

O satisfies

Master Class, Washington University, Nov 16 51 Introduction and Computational Model

Temporal logic: satisfiability and validity

For temporal formula ¢

e p is satisfiable if 0 = ¢ for some sequence of states T

e @ is valid if 0 = @ for all sequences of states o

Master Class, Washington University, Nov 16 52 Introduction and Computational Model

5

2

&3 Temporal logic: satisfiability/validity examples

satisfiable? | wvalid?
O(x=0) v X
O(x=0) v O(x#0) 4 4
O(x=0) A (x0) X X
O(x=0) A O(x=1) v X
O(x=0) v O(x=1) v X
SOp — OOp v v
OOp = OlElp v X
pU(gar) = (Og A) v v

Master Class, Washington University, Nov 16

53

Introduction and Computational Model

| Temporal logic: Equivalences

Temporal formulas ¢, P are congruent Q@ =y

if DO < P) is valid

(¢ and P have the same truth value at all positions in all models

congruent?
O(p A q) Op A Ogq v
O(p Vv q) Cp v Oq X
p U(qVr) plg Vv plUr 4
p U(qAr) plq A pUr X
Master Class, Washington University, Nov 16 54 Introduction and Computational Model

3 Temporal logic: Expansions

@ = @ A OUp
Q = VvV OO

PUY =Y V(P A O(@UY))

Used in checking temporal formulas in model checking

Master Class, Washington University, Nov 16 55 Introduction and Computational Model

Expressiveness

Some properties cannot be expressed in LTL:

e p is true, if at all, only at even positions

Not specified by
pAO(p— OOp) or pADO(p < —Op)

requires quantification

dt(t A0 -O)AOpP—1))

Master Class, Washington University, Nov 16 56 Introduction and Computational Model

&3 Temporal logic vs First-order logic

Temporal formula
O(p =2 O(radq))

can be expressed in first-order logic as

- ticta A r(t2) A
(Vt:20) [p(t) — (It2) [(F13)(tasts A q(ts)]]

Master Class, Washington University, Nov 16 57 Introduction and Computational Model

