
Master Class, Washington University, Nov 16 Introduction and Computational Model

THEORY OF SYSTEMS
MODELING AND ANALYSIS

1

Henny Sipma
Stanford University

Master class
Washington University at St Louis

November 16, 2006

1

Master Class, Washington University, Nov 16 Introduction and Computational Model

COURSE OUTLINE

2

 8:37 - 10:00 Introduction -- Computational model
 Fair transition systems -- Temporal logic

10:07 - 11:30 Verification methods
 Rules -- Diagrams -- Abstraction
 Traditional static analysis methods

 1:07 - 2:30 Constraint-based static analysis methods
 Real-time and hybrid systems

 2:37 - 4:00 Formalization of middleware services:
 Event correlation

2

Master Class, Washington University, Nov 16 Introduction and Computational Model

My background

3

B.S. Chemistry, Groningen, The Netherlands
M.S. Chemical Engineering, idem

7 years as Control Engineer with Shell in
 The Netherlands, Singapore and Houston, TX

M.S. Computer Science, Stanford

Ph.D. Computer Science, Stanford

Sr. Research Associate at Stanford since 2000

3

Master Class, Washington University, Nov 16 Introduction and Computational Model

Research Interests

4

• Static Analysis
• Constraint-based reasoning

• Runtime Analysis
• Monitoring of temporal properties

• Decision Procedures
• Data structures

• Formalization of Middleware services
• Event Correlation
• Deadlock Avoidance

4

Master Class, Washington University, Nov 16 Introduction and Computational Model

I. Introduction

5

5

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reactive Systems

6

Continuous interaction with the environment

time

Observable throughout its execution

6

Master Class, Washington University, Nov 16 Introduction and Computational Model

OBJECTIVE: Analysis of System Behaviors

THEORY: Logic + Automata

COMPONENTS: Model (+ Specification)

METHODS: Deductive and Algorithmic

7

7

Master Class, Washington University, Nov 16 Introduction and Computational Model

FORMAL METHODS - Scope

8

Complex system Natural-language
specification

Model Formal
specification

Formal Verification

8

Master Class, Washington University, Nov 16 Introduction and Computational Model

FORMAL METHODS - Scope

9

Static analysisGene regulatory
network

properties

9

Master Class, Washington University, Nov 16 Introduction and Computational Model

FORMALIZATION OF MIDDLEWARE SERVICES

10

OS Kernel
OS I/O subsystem
Network Adapters

ORB Core

ORB Services

Event Notification
Event Correlation
Concurrency

Logging
Trading
Scheduling

Deadlock Avoidance
Load Balancing

OS Kernel
OS I/O subsystem
Network Adapters

Application ApplicationApplication

10

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reactive Systems

11

time

Behavior: sequences of states

Specification: temporal logic

11

Master Class, Washington University, Nov 16 Introduction and Computational Model

Verification process

12

Fair transition
system

System specificationSystem description

Verification
techniques

Temporal logic
formula

Proof Counterexample

12

Master Class, Washington University, Nov 16 Introduction and Computational Model

Static analysis (traditional)

13

Fair transition
system

System description

Symbolic simulation

abstract
domain

Invariants

13

Master Class, Washington University, Nov 16 Introduction and Computational Model

template
property

Static analysis (constraint-based)

14

Fair transition
system

System description

System of constraints

Invariants Proof of terminationtemporal properties

14

Master Class, Washington University, Nov 16 Introduction and Computational Model

Extension to real-time and hybrid systems

15

System specification

System description

Verification
techniques

Proof Counterexample

Real-time/hybrid
transition system

Nonzenoness
checking

Fair transition
system

Temporal logic
formula

15

Master Class, Washington University, Nov 16 Introduction and Computational Model

Verification techniques (1)

16

Algorithmic: exhaustive search for counterexamples

Issues: • state space explosion problem
• efficient representations
• applicable to finite-state systems only

16

Master Class, Washington University, Nov 16 Introduction and Computational Model

Verification techniques (2)

17

Deductive: “theorem proving”

system

Verification
techniques

formula

“Proof”

17

Master Class, Washington University, Nov 16 Introduction and Computational Model

Verification techniques (2)

18

Deductive: “theorem proving”

system

Verification
techniques

formula

100s/1000s/10,000s of first-order verification conditions

Decision procedures

18

Master Class, Washington University, Nov 16 Introduction and Computational Model

II. COMPUTATIONAL MODEL

19

• Fair transition systems
• Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

19

Master Class, Washington University, Nov 16 Introduction and Computational Model

States

20

V: Vocabulary -- set of typed variables

expression over V

assertion over V

{x,y: integer, b: boolean}

x+y

x>y

s: state -- interpretation of all variables

extends to expressions
and assertions

{x:2,y:3,b:true}

s[x]=2,s[y]=3,s[b]=true

s[x+y]=5

s[x>y]=false

Σ: set of all states Z × Z × {true,false}

20

Master Class, Washington University, Nov 16 Introduction and Computational Model

System Description: Fair transition systems

21

 Φ: < V , Θ , T , F >

Set of typed variables

Initial condition:
 first-order formula

Set of transitions

Fairness condition

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x,y} F⊆T

21

Master Class, Washington University, Nov 16 Introduction and Computational Model

Transitions

22

T: finite set of transitions

τ∈T: Σ → 2Σ

s

Σ τ-successors of sτ(s):

.

represented by a transition relation ρτ(V,V’)

V : values of variables in the current state
V’: values of variables in the next state

Example:

ρτ: x’=x+1 ⋁ x’=x+2

τ(<x:2>) = {<x:3>,<x:4>}

22

Master Class, Washington University, Nov 16 Introduction and Computational Model

Runs and Computations

23

Infinite sequence of states

σ: s0 s1 s2 s3 s4

is a run of Φ if

☛ Initiality: s0 ⊧ Θ (s0 is an initial state)

☛ Consecution: for all i > 0

si+1 is a τ-successor of si

for some τ ∈ T

s0 s1 s2 s3

τ τ τ τ

23

Master Class, Washington University, Nov 16 Introduction and Computational Model

Runs and Computations

24

Infinite sequence of states

σ: s0 s1 s2 s3 s4

is a computation of Φ if

☛ σ is a run
☛ Justice: for each τ∈F

if τ is enabled infinitely often in σ
it is taken infinitely often in σ

τ is enabled on Si: τ(si) ≠ ∅
τ is taken on si: si+1 ∈ τ(si)

24

Master Class, Washington University, Nov 16 Introduction and Computational Model

Runs and Computations: Example

25

V: {x:integer}
Θ: x=0

T: {τ1, τ2, τ3} with
ρτ1 : x’=x+1 ⋁ x’=x+3
ρτ2 : x’=x+2 ⋁ x’=2x
ρτ3 : x’=x

{
F: {τ1, τ2}

σ1: 0, 1, 2, 3, 4, 5, 6, 7,

σ2: 0, 0, 0, 0, 0, 0, 0, 0

σ3: 0, 2, 4, 8, 16, 32,

σ4: 0, 1, 1, 3, 3, 5, 5, 7, 7,

σ5: 1, 2, 3, 5, 6, 8, 9, 11,

Run? Computation?

✓
✓
✓
✓

×
×
×
×
××

25

Master Class, Washington University, Nov 16 Introduction and Computational Model

Runs and Computations: Example

26

V: {x:integer}
Θ: x=0

T: {τ1, τ2, τ3} with
ρτ1 : (x=0 ⋁ x=1) ⋀ (x’=x+1 ⋁ x’=x+3)
ρτ2 : x’=x+2 ⋁ x’=2x
ρτ3 : x’=x

{
F: {τ1, τ2}

σ1: 0, 1, 2, 3, 4, 5, 6, 7,

σ2: 0, 0, 0, 0, 0, 0, 0, 0

σ3: 0, 2, 4, 8, 16, 32,

σ4: 0, 1, 1, 3, 3, 5, 5, 7, 7,

σ5: 1, 2, 3, 5, 6, 8, 9, 11,

Run? Computation?

✓
✓
✓
✓

✓

✓

×
×

×
××

26

Master Class, Washington University, Nov 16 Introduction and Computational Model

System Description: Summary

27

Fair transition system: Φ: < V , Θ , T , F >

Run: Initiality + Consecution

Computation: Run + Justice

L(Φ): all computations of Φ

(all sequences of states that satisfy
Initiality, Consecution and Justice)

“Behavior of the program”

27

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reachable state space

28

state s is Φ-reachable if it appears in some Φ-computation

σ: s0 s1 s2 s3 s4

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {b1, b2}
Θ: b1⋀b2

T: {τ} with ρτ: b1’=¬b1⋀b2’=¬b2

Σ = {<t,t>,<t,f>,<f,t>,<f,f>}

ΣΦ⊳ = {<t,t>,<f,f>}

28

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reachable state space

29

state s is Φ-reachable if it appears in some Φ-computation

σ: s0 s1 s2 s3 s4

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {x}
Θ: x=0
T: {τ} with ρτ: x=0 ⋀ x’=x+1

Σ = N

ΣΦ⊳ = {x:0, x:1}

29

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reachable state space

30

state s is Φ-reachable if it appears in some Φ-computation

σ: s0 s1 s2 s3 s4

system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ : state space
ΣΦ⊳: Φ-reachable state space

Example:
V: {x}
Θ: 0 ≤ x ≤ M
T: {τ1,τ2} with
 ρτ1: odd(x) ⋀ x’=3x+1
 ρτ2: even(x) ⋀ x’=x/2

Σ = N

ΣΦ⊳ = ?

30

Master Class, Washington University, Nov 16 Introduction and Computational Model

Reachable state space vs Computations

31

⊗
finite state space

infinite state space

finite # of computations

infinite # of computations

System Φ may have any combination of

31

Master Class, Washington University, Nov 16 Introduction and Computational Model

II. COMPUTATIONAL MODEL

32

• Fair transition systems
• Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

32

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal Logic

33

Language that specifies the behavior of a reactive system

System Φ ---------------------------- System behavior: L(Φ)

Temporal formula φ --- Sequences of states that satisfy φ: L(φ)

System Φ satisfies specification φ

Φ ⊨ φ
if L(Φ) ⊆ L(φ)

33

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic

34

System Φ satisfies specification φ

Φ ⊨ φ
if L(Φ) ⊆ L(φ)

Σ∞

L(φ)
L(Φ)

34

Master Class, Washington University, Nov 16 Introduction and Computational Model

First-order logic --- Temporal logic

35

Temporal logic

models are sequences of states

temporal formula φ
represents

the set of sequences of states
for which φ is true

First-order logic

models are states

assertion p
represents

the set of states
for which p is true

<x:3,y:1> ⊫ x > y <s0 s1 s2 s3> ⊨ φ

35

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: underlying assertion language

36

Assertion language A:

first-order language over system variables
(+ theories for their domains)

Formulas in A: state formulas (aka assertions)

evaluated over a single state

s ⊫ p iff s[p] = true

p holds at s
s satisfies s
s is a p-state

Example:
 s: <x:4, y:1>

s ⊫ x=0 ⋁ y=1
s ⊫ x > y
s ⊫ x = y+3
s ⊯ odd(x)

36

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: underlying assertion language

37

x>0
x>5

Σ
x2< 100

Assertions represent sets of states

37

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: underlying assertion language

38

assertion p is state-satisfiable if s ⊫ p for some state s∈Σ

assertion p is state-valid if s ⊫ p for all states s∈Σ
Example: x>y → x+1 > y

Example: x>0

38

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic

39

assertions + temporal operators

first-order formulas
describing the

properties
of a single state

□ always
◇ eventually
U until
W wait for
◯ next

39

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: safety versus liveness

40

Safety property: “nothing bad will happen”

Liveness property: “something good will happen”

it will not happen that the train is in the crossing while
the gates are open

the train will eventually be able to pass the crossing

40

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic -- informal

41

□p

p p p p p p p p p p p p p p p p

◇p
p

pUq
p p p p p p p q

◯p
p

present

41

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: syntax

42

☛ every assertion is a temporal formula

☛ if φ and ψ are temporal formulas, so are

¬φboolean combinations: φ⋀ψ φ⋁ψ φ→ψ

temporal combinations: ◇φ □φ ◯φ φUψ φWψ

Examples:

□(x=0 → ◇(x>0))
pUq → ◇q

42

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

43

Temporal formulas are evaluated over infinite sequences of states:

σ: s0 s1 s2 s3 s4

The truth value of a temporal formula φ over σ at position j in the
sequence is

(σ,j) ⊨ φ (φ holds at position j in σ)

43

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

44

☛ if φ is a state formula p

(σ,j) ⊨ φ iff sj ⊫ p

σ<x>: 4, 3, 1, 7, 5, 8, 0, 0, 0, 0Example:

(σ,3) ⊨ x > 6
(σ,6) ⊨ x=0

<x:7> ⊫ x > 6

☛ if φ is a temporal formula of the form (boolean operators)

(σ,j) ⊨ ¬ψ iff (σ,j) ⊭ ψ

(σ,j) ⊨ ψ ⋁ χ iff (σ,j) ⊨ ψ or (σ,j) ⊨ χ

44

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

45

☛ if φ is a temporal formula of the form (temporal operators)

(σ,j) ⊨ □ψ iff for all k≥j, (σ,j) ⊫ ψ

j

ψ ψ ψ ψ ψ ψ ψ

(σ,j) ⊨ ◇ψ iff for some k≥j, (σ,j) ⊫ ψ

j

ψ

45

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

46

☛ if φ is a temporal formula of the form (temporal operators)

(σ,j) ⊨ ψUχ iff for some k≥j, (σ,j) ⊫ χ
 and for all i, j≤i<k, (σ,j) ⊫ ψ

j

ψ χ

k

(σ,j) ⊨ ψWχ iff (σ,j) ⊨ ψUχ or (σ,j) ⊨ □ψ

(σ,j) ⊨ ◯ψ iff (σ,j+1) ⊨ ψ

j

ψ

j+1

ψψψψψ

46

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: semantics

47

A sequence of states σ satisfies a temporal formula φ

σ ⊨ φ iff (σ,0) ⊨ φ

47

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic formulas: examples

48

p → ◇q

if initially p then eventually q

p q

□(p → ◇q)
p p p q p pq q

every p is eventually followed by a q

□(p → ◯p)
p p p

once p, always p

p p p p p p p p p p p

48

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic formulas: examples

49

□◇p
p p p p p p p

every position is eventually followed by a p
“infinitely often p”

◇□p
p p p p

eventually always p

p p p p p p p p

if there are infinitely many p’s then there are infinitely many q’s

□◇p → □◇q

49

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic formulas: examples

50

Nested waiting-for formulas: q1W(q2W(q3Wq4))

intervals of continuous qi:
q1 q1 q1 q1 q2 q2 q2 q3 q3 q3q3q4

possibly empty interval:
q1 q1 q1 q1 q3 q3 q3 q3 q3 q3q3q4

possibly infinite interval:
q1 q1 q1 q1 q2 q2 q2 q3 q3 q3q3q3 q3 q3 q3 q3 q3 q3 q3

50

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: summary

51

For temporal formula φ, sequence of states σ, position j≥0:

(σ,j) ⊨ φ
φ holds at position j in σ

σ satisfies φ at j
j is a φ-position in σ

For temporal formula φ and sequence of states σ

(σ,0) ⊨ φσ ⊨ φ iff
φ holds on σ
σ satisfies φ

51

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: satisfiability and validity

52

For temporal formula φ

☛ φ is satisfiable if σ ⊨ φ for some sequence of states σ

☛ φ is valid if σ ⊨ φ for all sequences of states σ

□(x>0) ◇(x>5)

Σ∞

(x>0)U(x>5)

52

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: satisfiability/validity examples

53

◇(x=0)

satisfiable? valid?

◇(x=0) ⋁ □(x≠0)

◇(x=0) ⋀ □(x≠0)

◇(x=0) ⋀ ◇(x=1)

◇(x=0) ⋁ ◇(x=1)

◇□p → □◇p

□◇p → ◇□p

pU(q⋀r) → (◇q ⋀ ◇r)

✓

✓ ✓

✓

✓

✓

✓

✓ ✓

✓

×

× ×

×

×

×

53

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: Equivalences

54

Temporal formulas φ, ψ are congruent φ ≈ ψ
if □(φ ↔ ψ) is valid

φ and ψ have the same truth value at all positions in all models

□(p ⋀ q)

□(p ⋁ q)

congruent?

□p ⋀ □q

□p ⋁ □q

pU(q⋁r) pUq ⋁ pUr

pU(q⋀r) pUq ⋀ pUr

✓

✓

×

×

54

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic: Expansions

55

□φ ≈ φ ⋀ ◯□φ

◇φ ≈ φ ⋁ ◯◇φ

φUψ ≈ ψ ⋁ (φ ⋀ ◯(φUψ))

Used in checking temporal formulas in model checking

55

Master Class, Washington University, Nov 16 Introduction and Computational Model

Expressiveness

56

Some properties cannot be expressed in LTL:

☛ p is true, if at all, only at even positions

Not specified by

∃t (t ⋀ □(t ↔ ¬◯t) ⋀ □(p → t))

p ⋀ □(p → ◯◯p) or p ⋀ □(p ↔ ¬◯p)

requires quantification

56

Master Class, Washington University, Nov 16 Introduction and Computational Model

Temporal logic vs First-order logic

57

Temporal formula

□(p → ◇(r ⋀ ◇q))

can be expressed in first-order logic as

(∀t1≥0) [p(t1) → (∃t2) [t1≤t2 ⋀ r(t2) ⋀
(∃t3)(t2≤t3 ⋀ q(t3)]]

57

