

THEORY OF SYSTEMS MODELING AND ANALYSIS

Henny Sipma Stanford University

Master class Washington University at St Louis November 16, 2006

1

Master Class, Washington University, Nov 16

Introduction and Computational Model

COURSE OUTLINE

8:37 – 10:00 Introduction –– Computational model Fair transition systems –– Temporal logic

10:07 – 11:30 Verification methods Rules -- Diagrams -- Abstraction Traditional static analysis methods

1:07 – 2:30 Constraint-based static analysis methods Real-time and hybrid systems

2:37 – 4:00 Formalization of middleware services: Event correlation

My background

B.S. Chemistry, Groningen, The Netherlands M.S. Chemical Engineering, idem

7 years as Control Engineer with Shell in The Netherlands, Singapore and Houston, TX

M.S. Computer Science, Stanford Ph.D. Computer Science, Stanford

Sr. Research Associate at Stanford since 2000

Research Interests

• Static Analysis

- Constraint-based reasoning
- Runtime Analysis
 - Monitoring of temporal properties
- Decision Procedures
 - Data structures

Formalization of Middleware services

- Event Correlation
- Deadlock Avoidance

I. Introduction

$\frac{1}{1}$

Continuous interaction with the environment

Observable throughout its execution

Master Class, Washington University, Nov 16

OBJECTIVE: Analysis of System Behaviors

COMPONENTS: Model (+ Specification)

METHODS: Deductive and Algorithmic

THEORY: Logic + Automata

FORMAL METHODS - Scope

Formal Verification Natural-language Formal Complex system Model specification specification

Master Class, Washington University, Nov 16

Introduction and Computational Model

FORMAL METHODS - Scope

FORMALIZATION OF MIDDLEWARE SERVICES

Reactive Systems

Behavior: sequences of states

Specification: temporal logic

Verification process

Static analysis (traditional)

Master Class, Washington University, Nov 16

Static analysis (constraint-based)

Master Class, Washington University, Nov 16 15

Introduction and Computational Model

Verification techniques (1)

Algorithmic: exhaustive search for counterexamples

Issues:

- state space explosion problem
 efficient representations
 - applicable to finite-state systems only

Verification techniques (2)

Deductive: "theorem proving"

Verification techniques (2)

Deductive: "theorem proving"

II. COMPUTATIONAL MODEL

Fair transition systems
Temporal logic: LTL

Reference:

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.

Master Class, Washington University, Nov 16

V: Vocabulary -- set of typed variables {x,y: integer, b: boolean} expression over V x+y assertion over V x>y

s: state -- interpretation of all variables {x:2,y:3,b:true}
s[x]=2,s[y]=3,s[b]=true
extends to expressions
and assertions
s[x+y]=5
s[x>y]=false
Z × Z × {true,false}

System Description: Fair transition systems

Initial condition: first-order formula

Example: $x=0 \land y=0$

Set of typed variables

Example: {x,y}

Set of transitions

Fairness condition

Compact first-order representation of all sequences of states that can be generated by a system

Master Class, Washington University, Nov 16

21

Introduction and Computational Model

represented by a transition relation $\rho_{\tau}(V,V')$

V : values of variables in the current stateV': values of variables in the next state

Runs and Computations

Infinite sequence of states

 σ : $s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ \dots$

is a run of Φ if

• Initiality: $s_0 \models \Theta$

Consecution: for all i > 0

 s_{i+1} is a T-successor of s_i

for some $T \in \mathcal{T}$

(so is an initial state)

Runs and Computations

Infinite sequence of states

 $\sigma: s_0 s_1 s_2 s_3 s_4$

is a computation of Φ if

🔶 σ is a run

- Justice: for each $T \in \mathcal{F}$

if τ is enabled infinitely often in σ it is taken infinitely often in σ

τ is enabled on S_i: $τ(s_i) ≠ Ø$ τ is taken on s_i: s_{i+1} ∈ τ(s_i)

Runs and Computations: Example

V: {x:integer} Θ: x=0 $\begin{array}{c} \Theta: x=0 \\ \Im: \{\tau_1, \tau_2, \tau_3\} \text{ with } \begin{cases} \rho_{\tau_1}: x'=x+1 \lor x'=x+3 \\ \rho_{\tau_2}: x'=x+2 \lor x'=2x \\ \rho_{\tau_3}: x'=x \end{cases}$ F: {T₁, T₂}

 σ_1 : 0, 1, 2, 3, 4, 5, 6, 7, σ_2 : 0, 0, 0, 0, 0, 0, 0, 0, 0 σ_3 : 0, 2, 4, 8, 16, 32, σ₄: 0, 1, 1, 3, 3, 5, 5, 7, 7, σ_5 : 1, 2, 3, 5, 6, 8, 9, 11,

Run? Computation? X X X \checkmark X X X

Master Class, Washington University, Nov 16

Runs and Computations: Example

V: {x:integer} $\mathcal{F}: \{\mathsf{T}_1, \mathsf{T}_2\}$

 $\mathcal{T}: \{ \tau_1, \tau_2, \tau_3 \} \text{ with } \begin{cases} \rho_{\tau_1} : (x=0 \lor x=1) \land (x'=x+1 \lor x'=x+3) \\ \rho_{\tau_2} : x'=x+2 \lor x'=2x \\ \rho_{\tau_3} : x'=x \end{cases}$

 σ_1 : 0, 1, 2, 3, 4, 5, 6, 7, σ_2 : 0, 0, 0, 0, 0, 0, 0, 0 σ₃: 0, 2, 4, 8, 16, 32, σ₄: 0, 1, 1, 3, 3, 5, 5, 7, 7, σ_5 : 1, 2, 3, 5, 6, 8, 9, 11,

Run?	Computation?	
\checkmark	×	
\checkmark	×	
\checkmark	\checkmark	
\checkmark	×	
×	×	

System Description: Summary

Fair transition system: $\Phi: \langle V, \Theta, \mathcal{T}, \mathcal{F} \rangle$

Run: Initiality + Consecution

Computation: Run + Justice

 $\mathcal{L}(\Phi)$: all computations of Φ

"Behavior of the program"

(all sequences of states that satisfy Initiality, Consecution and Justice)

state s is Φ -reachable if it appears in some Φ -computation

 σ : $s_0 s_1 s_2 s_3 s_4$

system Φ is finite-state if the set of Φ -reachable states is finite

Notation: Σ : state space $\Sigma_{\Phi \triangleright}$: Φ -reachable state space

Example: V: $\{b_1, b_2\}$ $\Theta: b_1 \land b_2$ $\Im: \{\tau\}$ with $\rho_{\tau}: b_1'=\neg b_1 \land b_2'=\neg b_2$

 $\Sigma = \{ <t, t>, <t, f>, <f, t>, <f, f> \}$ $\Sigma_{\Phi \vdash} = \{ <t, t>, <f, f> \}$

state s is Φ -reachable if it appears in some Φ -computation $\sigma: s_0 s_1 s_2 s_3 s_4$ system Φ is finite-state if the set of Φ -reachable states is finite Notation: Σ : state space $\Sigma_{\Phi \triangleright}$: Φ -reachable state space Example: $\Sigma = N$

V: {x} Θ : x=0 \mathcal{T} : {T} with ρ_{T} : x=0 \wedge x'=x+1

 $\Sigma_{\Phi \triangleright} = \{x:0, x:1\}$

state s is Φ -reachable if it appears in some Φ -computation

```
\sigma: s_0 s_1 s_2 s_3 s_4 .....
```

system Φ is finite-state if the set of Φ -reachable states is finite

Notation: Σ : state space $\Sigma_{\Phi \triangleright}$: Φ -reachable state space

Example: V: {x} $\Theta: 0 \le x \le M$ $\mathcal{J}: \{\tau_1, \tau_2\}$ with $\rho_{\tau_1}: \text{ odd}(x) \land x'=3x+1$ $\rho_{\tau_2}: \text{ even}(x) \land x'=x/2$

 $\Sigma = N$ $\Sigma_{\Phi \triangleright} = ?$

System Φ may have any combination of

finite state space

infinite state space

finite # of computations

infinite # of computations

II. COMPUTATIONAL MODEL

Fair transition systems
Temporal logic: LTL

Reference: Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.

Master Class, Washington University, Nov 16

Language that specifies the behavior of a reactive system

System Φ satisfies specification ϕ

 $\Phi \models \varphi$

if $\mathcal{L}(\Phi) \subseteq \mathcal{L}(\phi)$

Master Class, Washington University, Nov 16

System Φ satisfies specification ϕ

 $\Phi \models \varphi$

if $\mathcal{L}(\Phi) \subseteq \mathcal{L}(\phi)$

Master Class, Washington University, Nov 16

First-order logic --- Temporal logic

First-order logic

Temporal logic

models are states

models are sequences of states

<x:3,y:1> ⊫ x > y

assertion p represents the <mark>set of states</mark> for which p is true $\langle s_0 s_1 s_2 s_3 \dots \rangle \models \phi$

temporal formula φ represents the set of sequences of states for which φ is true

Temporal logic: underlying assertion language

Assertion language \mathcal{A} :

first-order language over system variables (+ theories for their domains)

Formulas in \hat{a} : state formulas (aka assertions) evaluated over a single state

s⊫p iff s[p] = true

p holds at s s satisfies s s is a p-state Example: s: <x:4, y:1>

 $s \Vdash x=0 \lor y=1$ $s \Vdash x > y$ $s \Vdash x = y+3$ $s \nvDash odd(x)$

Master Class, Washington University, Nov 16

Assertions represent sets of states

assertion p is state-satisfiable if s \models p for some state s $\in \Sigma$ Example: x>0

assertion p is state-valid if s \Vdash p for all states s $\in \Sigma$ Example: x>y \rightarrow x+1 > y

Temporal logic

assertions

first-order formulas describing the properties of a single state

temporal operators

□ always
◇ eventually
𝒰 until
𝐼 wait for
○ next

Temporal logic: safety versus liveness

Safety property: "nothing bad will happen"

it will not happen that the train is in the crossing while the gates are open

Liveness property: "something good will happen"

the train will eventually be able to pass the crossing

Master Class, Washington University, Nov 16

every assertion is a temporal formula
 if φ and ψ are temporal formulas, so are
 boolean combinations: ¬φ φ∧ψ φ∨ψ φ→ψ
 temporal combinations: ◇φ □φ ○φ φ𝒴ψ φ𝒴ψ

Examples:

 $\Box(x=0 \rightarrow \diamondsuit(x>0))$ $p\mathcal{U}q \rightarrow \diamondsuit q$

Temporal logic: semantics

Temporal formulas are evaluated over infinite sequences of states:

 σ : $s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ \dots$

The truth value of a temporal formula ϕ over σ at position j in the sequence is

 $(\sigma,j) \vDash \varphi$ (ϕ holds at position j in σ)

Temporal logic: semantics

🖝 if φ is a state formula p $(\sigma,j) \vDash \varphi$ iff sj⊫ p Example: σ<x>: 4, 3, 1, 7, 5, 8, 0, 0, 0, 0 $(\sigma,3) \models x > 6$ $\langle x:7 \rangle \models x > 6$ $(\sigma, 6) \vDash x=0$ \bullet if ϕ is a temporal formula of the form (boolean operators) $(\sigma,j) \vDash \neg \Psi$ iff (σ,j) ⊭ Ψ $(\sigma,j) \vDash \psi$ or $(\sigma,j) \vDash \chi$ $(\sigma,j) \models \psi \lor \chi$ iff

• if φ is a temporal formula of the form (temporal operators) $(\sigma, j) \models \Box \psi$ iff for all $k \ge j$, $(\sigma, j) \models \psi$ $\psi \psi \psi \psi \psi \psi \psi$ j $(\sigma, j) \models \diamondsuit \psi$ iff for some $k \ge j$, $(\sigma, j) \models \psi$

Master Class, Washington University, Nov 16

45

j

Ψ

Introduction and Computational Model

Temporal logic: semantics

 \bullet if ϕ is a temporal formula of the form (temporal operators) $(\sigma,j) \models \psi \mathcal{U}\chi$ iff for some $k \ge j$, $(\sigma,j) \models \chi$ and for all i, $j \le i < k$, $(\sigma, j) \models \psi$ ψψψψψχ k $(\sigma,j) \models \psi \mathcal{U} \chi$ iff $(\sigma,j) \models \psi \mathcal{U} \chi$ or $(\sigma,j) \models \Box \psi$ $(\sigma,j) \models \bigcirc \psi$ iff $(\sigma,j+1) \models \psi$ Ψ j j+1 Master Class, Washington University, Nov 16 Introduction and Computational Model 46

Temporal logic: semantics

A sequence of states σ satisfies a temporal formula ϕ

$$\sigma \vDash \phi$$
 iff $(\sigma, 0) \vDash \phi$

Temporal logic formulas: examples

Temporal logic formulas: examples

PPP PP PP □◇p

every position is eventually followed by a p "infinitely often p"

PPP PPPPPPP
 PPPPPPPP
 eventually always p

$\Box \Diamond \mathsf{p} \to \Box \Diamond \mathsf{q}$

if there are infinitely many p's then there are infinitely many q's

Temporal logic formulas: examples

Nested waiting-for formulas:

 $q_1\mathcal{W}(q_2\mathcal{W}(q_3\mathcal{W}q_4))$

intervals of continuous q_i:

q₁ **q**₁ **q**₁ **q**₂ **q**₂ **q**₂ **q**₃ **q**₃ **q**₃ **q**₃ **q**₄

possibly empty interval:

q₁ **q**₁ **q**₁ **q**₃ **q**₄

possibly infinite interval:

Master Class, Washington University, Nov 16

Temporal logic: summary

For temporal formula φ , sequence of states σ , position j \geq 0:

φ holds at position j in σ σ satisfies φ at j j is a φ-position in σ

For temporal formula ϕ and sequence of states σ

$$\sigma \vDash \phi$$
 iff $(\sigma, 0) \vDash \phi$

 ϕ holds on σ σ satisfies ϕ

Temporal logic: satisfiability and validity

For temporal formula ϕ

- ϕ is satisfiable if $\sigma \models \phi$ for some sequence of states σ
- ϕ is valid if $\sigma \vDash \phi$ for all sequences of states σ

Temporal logic: satisfiability/validity examples

	satisfiable?	valid?
<>(x=0)	\checkmark	×
◇(x=0) ∨ □(x≠0)	\checkmark	\checkmark
◇(x=0) ∧ □(x≠0)	×	×
(x=0) ∧ <>(x=1)	\checkmark	×
(x=0) ∨ <>(x=1)	\checkmark	×
$\Diamond \Box p \to \Box \Diamond p$	\checkmark	\checkmark
$\Box \diamondsuit p \to \diamondsuit \Box p$	\checkmark	×
$p\mathcal{U}(q \wedge r) \rightarrow (\Diamond q \wedge \Diamond r)$	\checkmark	\checkmark

Master Class, Washington University, Nov 16

Temporal logic: Equivalences

Temporal formulas φ , ψ are congruent

if $\Box(\phi \leftrightarrow \psi)$ is valid

 ϕ and ψ have the same truth value at all positions in all models

		congruent?
□(p ∧ q)	$\Box \mathbf{p} \land \Box \mathbf{q}$	\checkmark
□(p ∨ q)	$\Box p \vee \Box q$	×
p𝒴 (q∨r)	pUq ∨ pUr	\checkmark
pℓl(q∧r)	pUq ∧ pUr	×

 $\phi \approx \psi$

 $\Box \phi \approx \phi \land \bigcirc \Box \phi$ $\diamond \phi \approx \phi \lor \bigcirc \diamond \phi$ $\phi \approx \phi \lor \bigcirc \diamond \phi$ $\phi \forall \psi \approx \psi \lor (\phi \land \bigcirc (\phi \forall \psi))$

Used in checking temporal formulas in model checking

Some properties cannot be expressed in LTL:

rep is true, if at all, only at even positions

Not specified by

 $p \land \Box(p \rightarrow \bigcirc \bigcirc p)$

or

 $p \land \Box (p \leftrightarrow \neg \bigcirc p)$

requires quantification

 $\exists t (t \land \Box(t \leftrightarrow \neg \bigcirc t) \land \Box(p \rightarrow t))$

Master Class, Washington University, Nov 16

Temporal logic vs First-order logic

Temporal formula

 $\Box(p \rightarrow \Diamond (r \land \Diamond q))$

can be expressed in first-order logic as

$$(\forall t_1 \ge 0) \qquad p(t_1) \rightarrow (\exists t_2) \qquad \begin{array}{c} t_1 \le t_2 \wedge r(t_2) \wedge \\ (\exists t_3)(t_2 \le t_3 \wedge q(t_3) \end{array} \end{array}$$