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' COURSE OUTLINE

8:37 - 10:00 Introduction -- Computational model
Fair transition systems -- Temporal logic

10:07 - 11:30  Verification methods
Rules -- Diagrams -- Abstraction

Traditional static analysis methods

1:07 - 2:30 Constraint-based static analysis methods
Real-time and hybrid systems

2:37 - 4:00 Formalization of middleware services:
Event correlation
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&3 Research Interests

e Static Analysis

® Constraint-based reasoning

¢ Runtime Analysis
® Monitoring of temporal properties

e Decision Procedures
® Data structures

e Formalization of Middleware services
e Event Correlation
e Deadlock Avoidance
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I. Introduction
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' Reactive Systems

time >

Continuous interaction with the environment

Observable throughout its execution
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OBJECTIVE: Analysis of System Behaviors

COMPONENTS: Model (+ Specification)

METHODS: Deductive and Algorithmic

THEORY: Logic + Automata
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' FORMAL METHODS - Scope

Formal Verification

CH

Model
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omplex system specification 1specification
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FORMAL METHODS - Scope
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RN Static analysis
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! FORMALIZATION OF MIDDLEWARE SERVICES

[ Application j [ Application ] [ Application ]

~
Event Notification Logging

Trading Load Balancing
Concurrency Scheduling

OS Kernel OS Kernel

OS I/0 subsystem OS I/0 subsystem
Network Adapters Network Adapters
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Reactive Systems

time >

Behavior: sequences of states

Specification: temporal logic
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System description System specification

Temporal logic
formula

Proof Counterexample
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Static analysis (traditional)

System description

abstract
domain

|

Invariants
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Static analysis (constraint-based)

System description

template
property

| | |

temporal properties Invariants Proof of termination
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Extension to real-time and hybrid systems

System description

System specification

Temporal logic
formula

Proof Counterexample
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Verification techniques (1)

Algorithmic: exhaustive search for counterexamples

Issues: e state space explosion problem
e efficient representations
e applicable to finite-state systems only
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Verification techniques (2)

Deductive: “theorem proving”

formula

®
Iﬂ.‘ "Proof”
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Verification techniques (2)

Deductive: “theorem proving”

formula

100s/1000s/10,000s of first-order verification conditions

|

Decision procedures
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II. COMPUTATIONAL MODEL

¢ Fair transition systems
e Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.
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V: Vocabulary -- set of typed variables

expression over V

assertion over V

s: state -- interpretation of all variables 1x:2,y:3,b:frue;

extends to expressions s[x+y]=5

and assertions s[x>y]=false

2: set of all states Z X Z X {true,false}
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| System Description: Fair transition systems

Set of typed variables Fairness condition

\Example: {X,Y} / JCJ

DO: ¢ Va, G T 5

Ao\

Initial condition:

first-order formula Set of transitions

Compact first-order representation of all sequences of states
that can be generated by a system
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Transitions

</ : finite set of transitions
Example:
Tedii 2R 2

Pr: X =X+l V x'=x+2

T(s): T-successors of s T(<x: 29015 1<x:35,¢X:451

represented by a transition relation p+(V,V’)

V : values of variables in the current state
V’: values of variables in the next state
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Runs and Computations

Infinite sequence of states

O.°Sh Si:S52 IS4 i,

is a run of @ if

e Initiality: so £ © (so is an initial state)

« Consecution: for all i > 0O
T T T T

Sis1 IS @ T-successor of s s/\s/\g /\As/\
6) 1 2 3

for some T € J
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Runs and Computations

Infinite sequence of states

O.°Sh Si:S52 IS4 i,

is a computation of O if
e O IS arun

e Justice: for each Te<f

if T is enabled infinitely often in O
it is taken infinitely often in O

T is enabled on Si: T(si)) #+ O

T is taken on s;i: si,1 € T(si)
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3 Runs and Computations: Example

V: {x:integer}

O: x=0 Pr1 ¢ X'=X+1 V x'=x+3
o : {11, T2, T3} with { Pr2 ¢ X' =X+2 V X'=2x

F: T, T3} P
Run? Computation?

o 0,1,:2, 374 58 £ r. . & v X

gz 0,0 0,00 0,00 . 8

o3 0, 2,4, 8,16, 32, 55t

04 0,71,1, 3,73, 5, 5, (8l = nee

Os: 1, 2, 3,5, 6, 837 It

X | <~ LA

X I X [ X | X
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' Runs and Computations: Example

V: {x:integer}

©: x=0 Pt : (x=0 V x=1) A (X'=x+1 V x'=x+3)
< : {11, T2, T3} with { Pr2 : X =X+2 V X =2X
F: {1y, T2} Pk e
Run? Computation?
O 0,%,:2 345 8 .5 .. .8 v X
Oz 0,0,0,0,0, 0700 . 88 v X
O3:. 0, 2,4,8, l6;, 38 .3 &% v v
O;: O, 1,1, 3,3, 5,5, 00 v X
Os: 1, 2, 3,5, 6, & 17 S X X
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System Description: Summary

Fair transition system: ®: <V , 0 , J ,F >

Run: Initiality + Consecution

Computation: Run + Justice

L(P): all computations of @ “Behavior of the program”

(all sequences of states that satisfy
Initiality, Consecution and Justice)
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' Reachable state space

state s is ®-reachable if it appears in some ®-computation

O: Sp S17°S2. S35 aia....
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example: 2 = <t <t <f, 1> <f, >}
V. {bl, bz}
©: bijAb2 o = 1<t 1> <f >}

T : {1} with pr: bi’=-biAbz'=-by
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Reachable state space

state s is ®-reachable if it appears in some ®-computation

O: Sp S17°S2. S35 aia....
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example: S =N
V: {x}
CRPE, o~ = §x:0, x:1}
< : {1} with pr: x=0 A x'=x+1
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Reachable state space

state s is ®-reachable if it appears in some ®-computation

0. Sp S1792 St ..

system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
2¢-: P-reachable state space

Example:
V: {x} > =N
©:0<x <M
S . ZCD|> - ?
< {11, T2} with
pri: odd(X) A x'=3x+l1
pr2: even(x) A x'=x/2
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Reachable state space vs Computations

System ® may have any combination of

finite state space finite # of computations

infinite state space infinite # of computations
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II. COMPUTATIONAL MODEL

e Fair transition systems
e Temporal logic: LTL

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.
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Temporal Logic

Language that specifies the behavior of a reactive system

System ¢ -l Smcian Be LLRE . System behavior: £(P)

Temporal formula @ --- Sequences of states that satisfy @: L(¢)

System ® satisfies specification @

®EO®
if L(®) € L(ep)
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Temporal logic

System @ satisfies specification ¢

®E®
if L(0) € L(p)

Master Class, Washington University, Nov 16 YA Introduction and Computational Model



| First-order logic --- Temporal logic

First-order logic Temporal logic
models are states models are sequences of states
X3y > IE X>Y <So S1 S2 S3 ...> F

assertion p temporal formula ¢
represents represents

the set of states the set of sequences of states

for which p is frue for which @ is true
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&3 Temporal logic: underlying assertion language

Assertion language {:

first-order language over system variables
(+ theories for their domains)

Formulas in : state formulas (aka assertions)

evaluated over a single state Example:
S: <X:4, y:I>

S l= p iff s[p] = true

S IE x=0 Vv y=1

p holds at s i
s satisfies s S I= X = y+3
s is a p-state s I~ odd(x)
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Temporal logic: underlying assertion language

Assertions represent sets of states
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Temporal logic: underlying assertion language

assertion p is state-satisfiable if s I= p for some state se2
Example: x>0

assertion p is state-valid if s I= p for all states s€2
Example: x>y = X+l > vy

Master Class, Washington University, Nov 16 38 Introduction and Computational Model



Temporal logic

assertions > temporal operators

first-order formulas L always
describing the < eventually
properties U until
of a single state W wait for
O next
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| Temporal logic: safety versus liveness

Safety property: “nothing bad will happen”

it will not happen that the train is in the crossing while
the gates are open

Liveness property: “something good will happen”

the train will eventually be able to pass the crossing
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Temporal logic -- informal

P P P.P P PSP R P P

[(p 0900000900060 006 09
P
Op —0—0—0—90—0—0—80—0—90—0—0—0—0—9
/ P+ P P PaBERs P 9
pllg o—eo—eo—9o—90—0—00o—00—0-000 o
P
P 6—90—0—0—90-0—0—90 000600909

present
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Temporal logic: syntax

« every assertion is a temporal formula

e if ¢ and Y are temporal formulas, so are

boolean combinations: - Q@AY OAVAY) -y

temporal combinations: <o O Ow @UY oUWy

Examples:

O(x=0 = <>(x>0))
plUq = q
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Temporal logic: semantics

Temporal formulas are evaluated over infinite sequences of states:

O: So S) 'S2iSaera i % ..

The truth value of a temporal formula @ over G at position j in the
sequence Is

(0,j) E @ (¢ holds at position j in O)
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| Temporal logic: semantics

e if @ is a state formula p
() =@ iff Sj = p
Example: o<x> 4, 3,1,7,5,8,0,0,0,0

(0,3) E x> 6 X: 7> 1= x> 6
(0,6) = x=0

e if @ is a temporal formula of the form (boolean operators)

(0.,) & - IFf (0,J) ¥ P
(0.J) = W v X iff (0.J) E W or (0,j) F X
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il Temporal logic: semantics

e if p is a temporal formula of the form (temporal operators)
(0,j) E O iff for all k2j, (0,j) IE P
VYyyYpypyyyuyy

00090900 -0-0-—0 000
J

(0,j) EOW iff for some k2j, (0,j) E WP

—0—0—0 00 ¢ ¢ 8 9 o 0 0 0 9
J
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| Temporal logic: semantics

e« if ¢ is a temporal formula of the form (temporal operators)

(0,j)) E WUYX iff for some k2j, (0,j) I= X
and for all i, jcick, (0,j) = Y
VyYyyYywywyy vy

—0—0—0—0 00 0 0 8 D 0" 0
J K

(0,)) = WY iff (0,)) = wUy or (o) OyY

(0.j) = O iff  (0,j+]) = P
W
O—0—0—0— 00 90 6 O U Ol 0 T
J J+l
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' Temporal logic: semantics

A sequence of states O satisfies a temporal formula ¢
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€3 Temporal logic formulas: examples

P 9
p = O 0 0000000000000 0000

if initially p then eventually g

PP Pl P s

D(p — <>q) O 0 0000000000000 0000

every p is eventually followed by a g

FPelt P EEPCBEPRRTP PP PP
(p = Op) 0 0000000000000 0000

once p, always p
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&Y, Temporal logic formulas: examples

P P PR PP
1P 00 0000000000000 000

every position is eventually followed by a p
“infinitely often p”

FRP PR RaERPP P P

<SLp 00 0000000000000000

eventually always p

L1Op —H e

if there are infinitely many p's then there are infinitely many q's
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Temporal logic formulas: examples

Nested waiting-for formulas: q W (q2 W (qs W qa))

intervals of continuous q;:

919191 q1 9292929393 439394
0 0000000000000 0000

possibly empty interval:

91919191 9393939393 4393 q4
000 000000000000000

possibly infinite interval:

91919191 9292929393 939393 43439393 q3 q3 Gs
00 0000000000000000
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Temporal logic: summary

For temporal formula ¢, sequence of states o, position j20:

® holds at position j in O
O satisfies @ at j

J is a -position in O

For temporal formula @ and sequence of states O

@ holds on T

O satisfies
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Temporal logic: satisfiability and validity

For temporal formula ¢

e p is satisfiable if 0 = ¢ for some sequence of states T

e @ is valid if 0 = @ for all sequences of states o
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&3 Temporal logic: satisfiability/validity examples

satisfiable? | wvalid?
O(x=0) v X
O(x=0) v O(x#0) 4 4
O(x=0) A (x0) X X
O(x=0) A O(x=1) v X
O(x=0) v O(x=1) v X
SOp — OOp v v
OOp = OlElp v X
pU(gar) = (Og A ) v v
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| Temporal logic: Equivalences

Temporal formulas ¢, P are congruent Q@ =y

if DO < P) is valid

(¢ and P have the same truth value at all positions in all models

congruent?
O(p A q) Op A Ogq v
O(p Vv q) Cp v Oq X
p U(qVr) plg Vv plUr 4
p U(qAr) plq A pUr X
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3 Temporal logic: Expansions

@ = @ A OUp
Q = VvV OO

PUY =Y V(P A O(@UY))

Used in checking temporal formulas in model checking
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Expressiveness

Some properties cannot be expressed in LTL:

e p is true, if at all, only at even positions

Not specified by
pAO(p— OOp) or pADO(p < —Op)

requires quantification

dt(t A0 -O)AOpP—1))
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&3 Temporal logic vs First-order logic

Temporal formula
O(p =2 O(radq))

can be expressed in first-order logic as

- ticta A r(t2) A
(Vt:20) [ p(t) — (It2) [ (F13)( tasts A q(ts) ] ]
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