ROCK: A Robust Clustering Algorithm for Categorical
Attributes®

Sudipto Guhaf

Stanford University
Stanford, CA 94305
sudipto@cs.stanford.edu

Abstract

We study clustering algorithms for data with boolean
and categorical attributes. We show that traditional
clustering algorithms that use distances between points
for clustering are not appropriate for boolean and cate-
gorical attributes. Instead, we propose a novel concept
of links to measure the similarity/prozimity between a
pair of data points. We develop a robust hierarchical
clustering algorithm ROCK that employs links and not
distances when merging clusters. Our methods natu-
rally extend to non-metric similarity measures that are
relevant in situations where a domain expert/similarity
table is the only source of knowledge. In addition to
presenting detailed complexity results for ROCK, we
also conduct an experimental study with real-life as
well as synthetic data sets. Our study shows that
ROCK not only generates better quality clusters than
traditional algorithms, but also exhibits good scalability
properties.

1 Introduction

Clustering is a useful technique for grouping data
points such that points within a single group/cluster
have similar characteristics (or are close to each other),
while points in different groups are dissimilar. Con-
sider a market basket database containing one transac-
tion per customer, each transaction containing the set
of items purchased by the customer. The transaction
data can be used to cluster the customers such that
customers with similar buying patterns are in a single
cluster. For example, one cluster may consist of pre-
dominantly married customers with infants who buy
diapers, baby food, toys etc. (in addition to necessities
like milk, sugar and butter), while another may consist

*This work is part of the Serendip data mining project at
Bell Labs. URL: http://www.bell-labs.com/project/serendip/.

tThe work was done while the author was visiting Bell
Laboratories.

0-7695-0071-4/99 $10.00 © 1999 IEEE

Rajeev Rastogi

Bell Laboratories
Murray Hill, NJ 07974
rastogi@research.bell-labs.com

512

Kyuseok Shim

Bell Laboratories
Murray Hill, NJ 07974
shim@research.bell-labs.com

of high-income customers that buy imported products
like French and ltalian wine, Swiss cheese and Belgian
chocolate. The clusters can then be used to charac-
terize the different customer groups, and these char-
acterizations can be used in targeted marketing and
advertising such that specific products are directed to-
wards specific customer groups. The characterizations
can also be used to predict buying patterns of new
customers based on their profiles.

The above market basket database containing trans-
actions is actually an example of a scenario in which
attributes of data points are non-numeric. Transac-
tions in the database can be viewed as records with
boolean attributes, each attribute corresponding to a
single item. Further, in the record for a transaction,
the attribute corresponding to an item is True if and
only if the transaction contains the item; otherwise, it
is False. Boolean attributes themselves are a special
case of categorical attributes. The domain of categor-
ical attributes is not limited to simply True and False
values, but could be any arbitrary finite set of values.
An example of a categorical attribute is color whose
domain includes values such as brown, black, white,
etc. Clustering in the presence of such categorical at-
tributes is the focus of this paper.

1.1 Shortcomings of Traditional Cluster-
ing Algorithms

Clustering algorithms developed in the literature
can be classified into partitional clustering and hier-
archical clustering [DH73, JD88]. Partitional cluster-
ing algorithms, as the name suggests, divide the point
space into k clusters that optimize a certain criterion
function. The most commonly used criterion function
for metric spaces is

k
E=) Y d&m)

i=1 F€C;

In the above equation, 77%; is the centroid of cluster
C; while d(Z,77;) is the euclidean distance! between
Z and ;. Thus, intuitively, the criterion function E
attempts to minimize the distance of every point from
the mean of the cluster to which the point belongs. A
common approach is to minimize the criterion func-
tion using an iterative, hill-climbing technique. For
example, starting with k initial partitions, data points
are moved from one cluster to another to improve the
value of the criterion function.

While the use of the above criterion function could
yield satisfactory results for numeric attributes, it
is not appropriate for data sets with categorical at-
tributes. For example, consider a market basket
database. Typically, the number of items, and thus
the number of attributes in such a database is very
large (a few thousand) while the size of an average
transaction is much smaller (less than a hundred). Fur-
thermore, customers with similar buying patterns and
belonging to a single cluster, may buy a small subset
of items from a much larger set that defines the clus-
ter. For instance, consider the cluster defined by the
set of imported items like French wine, Swiss cheese,
Italian pasta sauce, Belgian beer etc. Every transaction
in the cluster does not contain all of the above items,
but some subset of them. Thus, it is quite possible
that a pair of transactions in a cluster have few items
in common, but are linked by a number of other trans-
actions in the cluster, that have substantial items in
common with the two transactions.

The above situation is further exacerbated by the
fact that the set of items that define clusters may not
have uniform sizes. A cluster involving all the common
items such as diapers, baby food and toys will typically
involve a large number of items and customer transac-
tions, while the cluster defined by imported products
will be much smaller. In the larger cluster, since trans-
actions are spread out over a larger number of items,
most transaction pairs will have few items in common
and consequently, a smaller percentage of transaction
pairs will have a sizable number of items in common.
Thus, distances of transactions from the mean in the
larger cluster will be much higher. Since the criterion
function is defined in terms of distance from the mean,
splitting the larger cluster reduces its value, and thus
minimizing the criterion function favors splitting large
clusters. However, this is not desirable since the large
cluster is split even though transactions in the cluster
are well connected and strongly linked.

Hierarchical clustering algorithms, too, may be un-

IThe euclidean distance between two points (z1, 2, .-
. d 1
and (y1,y2,---,¥a) is (Qi_, (=i —%:)?) 2.

> Ta)

513

suitable for clustering data sets containing categori-
cal attributes. For instance, consider the centroid-
based agglomerative hierarchical clustering algorithm
[DH73, JD88]. In this algorithm, initially, each point
is treated as a separate cluster. Pairs of clusters whose
centroids or means are the closest are then successively
merged until the desired number of clusters remain.
For categorical attributes, however, distances between
centroids of clusters is a poor estimate of the similarity
between them as is illustrated by the following exam-
ple.

Example 1.1: Consider a market basket database
containing the following 4 transactions over items 1,
2,3,4,5and 6 - (a) {1, 2, 3, 5}, (b) {2, 3, 4, 5}, (¢)
{1, 4}, and (d) {6}. The transactions can be viewed
as points with boolean (0/1) attributes correspond-
ing to the items 1, 2, 3, 4, 5 and 6. The four points
thus become (1,1,1,0,1,0), (0,1,1,1,1,0), (1,0,0,1,0,0)
and (0,0,0,0,0,1). Using euclidean distance to mea-
sure the closeness between points/clusters, the dis-
tance between the first two points is v/2, which is the
smallest distance between pairs of points. As a result,
they are merged by the centroid-based hierarchical al-
gorithm. The centroid of the new merged cluster is
(0.5,1,1,0.5,1,0). In the next step, the third and fourth
points are merged since the distance between them is
/3 which is less than the distance between the cen-
troid of the merged cluster from each of them — V35
and V4.5, respectively. However, this corresponds to
merging transactions {1, 4} and {6} that don’t have a
single item in common. Thus, using distances between
the centroids of clusters when making decisions about
the clusters to merge could cause points belonging to
different clusters to be assigned to a single cluster. B

Once points belonging to different clusters are
merged, the situation gets progressively worse as the
clustering progresses. What typically happens is a rip-
ple effect — as the cluster size grows, the number of at-
tributes appearing in the mean go up, and their value
in the mean decreases. This makes it very difficult
to distinguish the difference between two points that
differ on few attributes, or two points that differ on ev-
ery attribute by small amounts. A detailed description
with an example of the ripple effect in centroid-based
hierarchical algorithms is provided in [GRS97].

Set theoretic similarity measures such as the Jaccard
coefficient? [JD88] have often been used, instead of eu-
clidean distance, for document clustering. With the
Jaccard coefficient as the distance measure between

2The Jaccard coefficient for similarity between transactions

T, NTy

[T VT2 "

<1,2,3,4,5> <1,2,6,7>
{1,2,3} {1,4,5}
{1,2,4} {2,3,4)
{1,2,5} {2,3,5}
{1,3,4} {2,4,5}
{1,3,5} {3,4,5)

Figure 1: Basket data example for Jaccard coefficient

clusters, centroid-based hierarchical clustering schemes
cannot be used since the similarity measure is non-
metric, and defined for only points in the cluster and
not for its centroid. Thus, we have to use either the
minimum spanning tree (MST) hierarchical clustering
algorithm or hierarchical clustering with group aver-
age [JD88]. The MST algorithm merges, at each step,
the pair of clusters containing the most similar pair of
points while the group average algorithm merges the
ones for which the average similarity between pairs of
points in the clusters is the highest. The MST algo-
rithm is known to be very sensitive to outliers while
the group average algorithm has a tendency to split
large clusters (since, as mentioned earlier, the average
similarity between two subclusters of a large cluster is
small). Furthermore, the Jaccard coefficient is a mea-
sure of the similarity between only the two points in
question — it thus, does not reflect the properties of the
neighborhood of the points. Consequently, the Jac-
card coefficient fails to capture the natural clustering
of “not so well-separated” data sets with categorical
attributes and this is illustrated further in the follow-
ing example.

Example 1.2: Consider a market basket database
over items 1,2,...,8,9. Consider the 2 transaction
clusters shown in Figure 1. The first cluster is defined
by 5 items while the second cluster is defined by 4
items. These items are shown at the top of each of
the two clusters. Note that items 1 and 2 are common
to both clusters. Each cluster contains transactions
of size 3, one for every subset (of size 3) of the set
of items that define the cluster. The Jaccard coeffi-
cient between an arbitrary pair of transactions belong-
ing to the first cluster ranges from 0.2 (e.g., {1,2,3}
and {3,4,5}) to 0.5 (e.g., {1,2,3} and {1, 2,4}). Note
that even though {1,2,3} and {1,2,7} share common
items and have a high Jaccard coefficient of 0.5, they
belong to different clusters. In contrast, {1,2,3} and
{3,4,5} have a lower Jaccard coefficient of 0.2, but
belong to the same cluster.

The MST algorithm may first merge transactions

514

{1,2,3} and {1,2,7} since the Jaccard coefficient for
them has the maximum value of 0.5. Once this hap-
pens, the cluster may subsequently merge with trans-
actions from both clusters like {1,3,4} and {1,6,7}
since these are very similar to transactions in the
merged cluster. This is not surprising since the MST
algorithm is known to be fragile when clusters are not
well-separated.

The use of group average for merging clusters ame-
liorates some of the problems with the MST algorithm.
However, it may still fail to discover the correct clus-
ters. For example, group average may merge all trans-
actions with 1 and 2 into the same cluster as illustrated
in [GRS97]. 1

1.2 Our Contributions

In this paper, we present a novel concept of cluster-
ing that is based on links between data points, instead
of distances based on the L,® metric or the Jaccard
coefficient. For domains with discrete non-numeric at-
tributes, the unsuitability of the L, distance metrics
and the Jaccard coefficient as an estimate of the sim-
ilarity between clusters is evident from Examples 1.1
and 1.2. The situation with these distance metrics fur-
ther worsens as the number of attributes/dimensions
increase.

The notion of links between data points helps us
overcome the problems with L, distances and the Jac-
card coefficient. Let a pair of points be neighbors if
their similarity exceeds a certain threshold. The sim-
ilarity value for pairs of points can be based on L,
distances, the Jaccard coefficient or any other non-
metric similarity function obtained from a domain ex-
pert/similarity table. The number of links between a
pair of points is then the number of common neighbors
for the points. Points belonging to a single cluster will
in general have a large number of common neighbors,
and consequently more links. Thus, during clustering,
merging clusters/points with the most number of links
first will result in better and more meaningful clusters.

Specifically, in Example 1.1, suppose we defined a
pair of transactions to be neighbors if they contained
at least one item in common. In that case, transactions
{1, 4} and {6} would have no links between them and
thus would not be merged. Similarly, in Example 1.2,
we can show that links are more appropriate than dis-
tances for clustering categorical data sets (See Section
3.2).

From the above examples, it follows that unlike dis-
tances or similarities between a pair of points which are

3Ly = (z‘; |zi = :/P)/P, 1 < p < oo and d is the dimen-
sionality of the data points.

local properties involving only the two points in ques-
tion, the link concept incorporates global information
about the other points in the neighborhood of the two
points. The larger the number of links between a pair
of points, the greater is the likelihood that they belong
to the same cluster. Thus, clustering using links in-
jects global knowledge into the clustering process and
is thus more robust. To the best of our knowledge,
we are not aware of any work that so elegantly and
succinctly captures, in a relationship involving a pair
of data points, information about their neighbors.

In this paper, we present an agglomerative hierar-
chical clustering algorithm ROCK (RObust Clustering
using linKs) that is based on our notion of links. With
real-life data sets, we show that the quality of clusters
generated by ROCK are far superior to the clusters
produced by the traditional centroid-based hierarchi-
cal clustering algorithm.

2 Related Work

Clustering has been extensively studied by re-
searchers in psychology, statistics, biology and so
on. Surveys of clustering algorithms can be found
in [DH73, JD88]. More recently, clustering algo-
rithms for mining large databases have been pro-
posed in [NH94, ZRL96, EKSX96, GRS98]. Most of
these, however, are variants of either partitional (e.g.,
[NH94]) or centroid-based hierarchical clustering (e.g.,
[ZRL96, GRS98]). As a result, as pointed out in Sec-
tion 1.1, these algorithms are more suitable for cluster-
ing numeric data rather than data sets with categorical
attributes.

Recently, in [HKKM97], the authors address the
problem of clustering related customer transactions
in a market basket database. Frequent itemsets used
to generate association rules are used to construct a
weighted hypergraph. Each frequent itemset is a hy-
peredge in the weighted hypergraph and the weight of
the hyperedge is computed as the average of the con-
fidences for all possible association rules that can be
generated from the itemset. Then, a hypergraph par-
titioning algorithm from is used to partition the items
such that the sum of the weights of hyperedges that are
cut due to the partitioning is minimized. The result
is a clustering of items (not transactions) that occur
together in the transactions. Finally, the item clusters
are used as the description of the cluster and a scoring
metric is used to assign customer transactions to the
best item cluster.

The rationale for using item clusters to cluster
transactions is questionable. For example, the ap-
proach in [HKKM97] makes the assumption that item-
sets that define clusters are disjoint and have no over-

515

lap among them. This may not be true in practice
since transactions in different clusters may have a few
common items. For instance, consider the market bas-
ket database in Example 1.2. With minimum support
set to 2 transactions, the hypergraph partitioning al-
gorithm generates two item clusters of which one is
{7} and the other contains the remaining items (since
7 has the least hyperedges to other items). However,
this results in transactions {1,2,6} and {3,4,5} be-
ing assigned to the same cluster since both have the
highest score with respect to the big item cluster.

3 Clustering Paradigm

In this section, we present our new clustering model
that is based on the notions of neighbors and links. We
also discuss the criterion function that we would like
to optimize under our new clustering paradigm.
3.1 Neighbors

Simply put, a point’s neighbors are those points that
are considerably similar to it. Let sim(p;,p;) be a sim-
ilarity function that is normalized and captures the
closeness between the pair of points p; and p;. The
function sim could be one of the well-known distance
metrics (e.g., L1, L2) or it could even be non-metric
(e.g., a distance/similarity function provided by a do-
main expert). We assume that sim assumes values
between 0 and 1, with larger values indicating that
the points are more similar. Given a threshold 8 be-
tween 0 and 1, a pair of points p;, p; are defined to be
neighbors if the following holds:

sim(pi,p;) > 6

In the above equation, 6 is a user-defined parameter
that can be used to control how close a pair of points
must be in order to be considered neighbors. Assum-
ing that sim is 1 for identical points and 0 for totally
dissimilar points, a value of 1 for 6 constrains a point
to be a neighbor to only other identical points. On the
other hand, a value of 0 for 8 permits any arbitrary pair
of points to be neighbors. Depending on the desired
closeness, an appropriate value of 8 may be chosen by
the user.

In the following, we present possible definitions for

sim for market basket databases and for data sets with
categorical attributes.
Market Basket Data: The database consists of
a set of transactions, each of which is a set of items.
A possible definition based on the Jaccard coefficient
[DH73], for sim(Ty, T), the similarity between the two
transactions T7 and T>, is the following:

|Ty NTs|

sim(Ty, Ty) = T 0T

where |T;| is the number of items in 7;. The more items
that the two transactions 77 and T have in common,
that is, the larger |Th7 N T3| is, the more similar they
are. Dividing by |71 U T3] is the scaling factor which
ensures that @ is between 0 and 1. Thus, the above
equation computes the relative closeness based on the
items appearing in both transactions T; and T5.

Categorical Data: Data sets with categorical at-
tributes can be handled in a manner similar to how we
handled market basket data previously. Categorical
data typically is of fixed dimension and is more struc-
tured than market basket data. However, it is still
possible that in certain records, values may be missing
for certain attributes, as is the case for some of the
real-life data sets we consider in Section 5.

We propose to handle categorical attributes with
missing values by modeling each record with categori-
cal attributes as a transaction. Corresponding to every
attribute A and value v in its domain, we introduce an
item A.v. A transaction T; for a record contains A.v
if and only if the value of attribute A in the record
is v. Note that if the value for an attribute is miss-
ing in the record, then the corresponding transaction
does not contain items for the attribute. Thus, in the
proposal, we simply ignore missing values. The simi-
larity function proposed in the previous subsection can
then be used to compute similarities between records
by determining the similarity between the correspond-
ing transactions.

3.2 Links

Let us define link(p;, p;) to be the number of com-
mon neighbors between p; and p;. From the definition
of links, it follows that if link(p;, p;) is large, then it
is more probable that p; and p; belong to the same
cluster. In our framework, we exploit this property
of links when making decisions about points to merge
into a single cluster. Most existing work only uses
the similarity measure between points when clustering
them — at each step, points that are the most similar
are merged into a single cluster. Since the similar-
ity measure between a pair of points only takes into
account characteristics of the points themselves, it is
a more local approach to clustering. This approach is
susceptible to errors since as we mentioned earlier, two
distinct clusters may have a few points or outliers that
could be very close ~ relying simply on the similari-
ties between points to make clustering decisions could
cause the two clusters to be merged.

The link-based approach adopts a global approach to
the clustering problem. It captures the global knowl-
edge of neighboring data points into the relationship
between individual pairs of points. Thus, since the

516

ROCK clustering algorithm utilizes the information
about links between points when making decisions on
the points to be merged into a single cluster, it is very
robust.

Our link-based approach can correctly identify the
overlapping clusters in Figure 1. This is because for
each transaction, the transaction that it has the most
links with is a transaction in its own cluster. For in-
stance, let = 0.5 and sim(Ty,T3) = %% Trans-
action {1,2,6} has 5 links with transaction {1,2,7}
in its own cluster (due to {1,2,3}, {1,2,4}, {1,2,5},
{1,6,7} and {2,6,7}) and only 3 links with trans-
action {1,2,3} in the other cluster (due to {1,2,4},
{1,2,5} and {1,2,7}). Similarly, transaction {1,6,7}
has 2 links with every transaction in the smaller cluster
(e.g., {1,2,6}) and 0 links with every other transaction
in the bigger cluster. Thus, even though the clusters
contain common items, with 8 = 0.5, our link-based
approach would generate the correct clusters shown in
Figure 1.

3.3 Criterion Function

Since we are interested in each cluster to have a high
degree of connectivity, we would like to maximize the
sum of link(p,,p,) for data point pairs pg,p, belong-
ing to a single cluster and at the same time, minimize
the sum of link(p,, ps) for p,,ps in different clusters.
This leads us to the following criterion function that
we would like to maximize for the k clusters.

link(pqvpr)

k
E = ;"i * Z 1+2/(0)

Pq,pr€CI i

where C; denotes cluster ¢ of size n;. The rationale
for the above criterion function E; is as follows. It
may seem that since one of our goals was to maxi-
mize link(p,,pr) for all pairs of points pg,p,, a sim-
ple criterion function like ZLI 2 p, pecc; Link(pg, pr)
that simply sums up the links between pairs of points
in the same cluster, ought to work fine. However, even
though this criterion function will ensure that points
with a large number of links between them are assigned
to the same cluster, it does not prevent a clustering in
which all points are assigned to a single cluster. Thus,
it does not force points with few links between them
to be split between different clusters.

In order to remedy the above problem, in the crite-
rion function E;, we divide the total number of links
involving pairs of points in cluster C; by the expected
total number of links in C;, and then weigh this quan-
tity by n;, the number of points in C;. Assuming C;
has approximately n{) neighbors in C;, we can show

that n: +2/0) is the expected number of links between

pairs of points in C;. The details of this derivation of
the expected number can be found in [GRS97]. Di-
viding by the expected number of links in E; prevents
points with very few links between them from being
put in the same cluster since assigning them to the
same cluster would cause the expected number of links
for the cluster to increase more than the actual num-
ber of links and the result would be a smaller value for
the criterion function.

In the following section, we adapt standard hierar-
chical clustering so that it attempts to maximize our
link-based criterion function.

4 The ROCK Clustering Algorithm

In this section, we describe the ROCK (RObust
Clustering using linKs) clustering algorithm which be-
longs to the class of agglomerative hierarchical cluster-
ing algorithms.
4.1 Overview of ROCK

The steps involved in clustering using ROCK are
described in Figure 2. After drawing a random sample
from the database, a hierarchical clustering algorithm
that employs links is applied to the sampled points.
Finally, the clusters involving only the sampled points
are used to assign the remaining data points on disk
to the appropriate clusters. In the following subsec-
tions, we first describe the steps performed by ROCK
in greater detail.
4.2 Goodness Measure

In Section 3.3, we presented the criterion function
which can be used to estimate the “goodness” of clus-
ters. The best clustering of points were those that
resulted in the highest values for the criterion func-
tion. For a pair of clusters C;, C;, let link[C;, C;]
store the number of cross links between clusters C; and
Cj, that is, queci,precj link(pg, pr). Then, we define
the goodness measure g(C;,C;) for merging clusters
C;,C; as follows.

link[Ci, C]]
(ni + nj)l+2f(0) _ n1}+2f(0) _

9(C;, Cj) = 127(0)
n

The pair of clusters for which the above goodness mea-
sure is maximum is the best pair of clusters to be
merged at any given step. It seems intuitive that pairs
of clusters with a large number of cross links are, in
general, good candidates for merging. However, using
only the number of cross links between pairs of clusters
as an indicator of the goodness of merging them may
not be appropriate. This naive approach may work
well for well-separated clusters, but in case of outliers
or clusters with points that are neighbors, a large clus-
ter may swallow other clusters and thus, points from

517

procedure cluster(S, k)
begin
1. link := computeJinks(S)

2. for each s € S do

3. g[s] := builddocal_heap(link, s)

4. @ := build_global heap(S, q)

5. while size(Q) > k do {

6. u := extract_max(Q)

7. v := max(g[u])

8. delete(Q, v)

9. w := merge(u, v)

10. for each z € g[u] U g[v] do {

11. link[z, w] := link[z, u] + link[z, v]
12. delete(g[z], u); delete(g[z], v)

13. insert(g[z], w, g(z, w)); insert(qw], z, g(z, w))
14. update(Q, z, g[z])

15.

16. insert(Q,w, g[w])

17. deallocate(q[u]); deallocate(q[v])

18. }

end

Figure 3: Clustering Algorithm

different clusters may be merged into a single cluster.
This is because a large cluster typically would have a
larger number of cross links with other clusters.

In order to remedy the problem, as we did in sec-
tion 3.3, we divide the number of cross links between
clusters by the expected number of cross links between
them. The expected number of cross links or links be-
tween pairs of points each from a different cluster can
be shown to be (n; + n;) 2/ () — p1*2/() _ 1+2f(0)
(See [GRS97) for detalls) We use thls normahzatlon
factor in the above goodness measure as a heuristic to
steer us in the direction of clusters with large values
for the criterion function.

4.3 Clustering Algorithm

ROCK’s hierarchical clustering algorithm is pre-
sented in Figure 3. It accepts as input the set S of
n sampled points to be clustered (that are drawn ran-
domly from the original data set), and the number of
desired clusters k. The procedure begins by computing
the number of links between pairs of points in Step 1
(schemes for this are described in the next subsection).
Initially, each point is a separate cluster. For each clus-
ter ¢, we build a local heap ¢[¢] and maintain the heap
during the execution of the algorithm. ¢[i] contains
every cluster j such that link[i,j] is non-zero. The
clusters j in g[¢] are ordered in the decreasing order of
the goodness measure with respect to ¢, g(, 7).

In addition to the local heaps g[i] for each cluster 4,

Data E> ((Draw random sample) E>[Cluster with links) K:\J> (__Label datain disk)

Figure 2: Overview of ROCK

the algorithm also maintains an additional global heap
QQ that contains all the clusters. Furthermore, the clus-
ters in @ are orderad in the decreasing order of their
best goodness measures. Thus, g(j, max(gq[j])) is used
to order the various clusters j in @, where max(q[j]),
the max element in ¢7], is the best cluster to merge
with cluster j. At each step, the max cluster j in Q
and the max cluster in ¢[j] are the best pair of clusters
to be merged.

The while-loop in Step 5 iterates until only k clus-
ters remain in the global heap Q. In addition, it also
stops clustering if the number of links between every
pair of the remaining clusters becomes zero. In each
step of the while-loop, the max cluster u is extracted
from @ by extract_.max and g[u] is used to determine
the best cluster v for it. Since clusters u and v will
be merged, entries for v and v are no longer required
and can be deleted from Q. Clusters v and v are
then merged in Step 9 to create a cluster w contain-
ing |u| + |v| points. There are two tasks that need
to be carried out once clusters » and v are merged:
(1) for every cluster that contains u or v in its local
heap, the elements u and v need to be replaced with
the new merged cluster w and the local heap needs to
be updated, and (2) a new local heap for w needs to
be created. Both these tasks are carried out in the
for-loop of Step 10-15. A detailed description of how
this for-loop works appears in [GRS97].

4.4 Computation of Links

One way of viewing the problem of computing links
between every pair of points is to consider an n x n
adjacency matrix A in which entry A[i,] is 1 or 0 de-
pending on whether or not points ¢ and j, respectively,
are neighbors. The number of links between a pair of
points ¢ and j can be obtained by multiplying row ¢
with column j (that is, >°;. , A[s,1] = A[l,5]). Thus,
the problem of computing the number of links for all
pairs of points is simply that of multiplying the adja-
cency matrix A with itself, in other words, A x A. The
time complexity of the naive algorithm to compute the
square of a matrix is O(n®). However the problem of
calculating the square of a matrix is a well studied
problem and well-known algorithms such as Strassen’s
algorithm [CLR90] runs in time O(N2%'). The best
complexity possible currently is O(N237) due to the
algorithm by Coppersfield and Winograd [CW87].

We expect that, on an average, the number of neigh-

518

procedure computelinks(S)

begin

1. Compute nbrlist[i) for every point ¢ in S
2. Set link[i, j] to be zero for all 4, j

3. fori:=1tondo{

4. N := nbrlistli]

5. for j :=1to |[N|~1do

6. for |:=j+1to|N|do

7. Link[N[j], N{I]] := link[N[5], N[{]} + 1
8.

end

Figure 4: Algorithm for computing links

bors for each point will be small compared to the num-
ber of input points n, causing the adjacency matrix A
to be sparse. For such sparse matrices, the algorithm
in Figure 4 provides a more efficient way of computing
links.

For every point, after computing a list of its neigh-
bors, the algorithm considers all pairs of its neighbors.
For each pair, the point contributes one link. If the
process is repeated for every point and the link count
is incremented for each pair of neighbors, then at the
end, the link counts for all pairs of points will be ob-
tained. If m; is the size of the neighbor list for point
i, then for point i, we have to increase the link count
by one in m# entries. Thus, the complexity of the al-
gorithm is 3~ m? which is O(nm,,m,), where m, and
my, are the average and maximum number of neigh-
bors for a point, respectively. In the worst case, the
value of m,, can be n in which case the complexity
of the algorithm becomes O(m,n?). In practice, we
expect m,, to be reasonably close to m, and thus, for
these cases, the complexity of the algorithm reduces to
O(mZ2n) on average.

4.5 Time and Space Complexity

ROCK’s clustering algorithm, along with the com-
putation of neighbor lists and links, has a worst-case
time complexity of O(n? + nm,m, + n?logn) where
m,, is the maximum number of neighbors, m, is
the average number of neighbors and n is the num-
ber of input data points. The space complexity of
ROCK’s clustering algorithm can also be shown to be
O(min{n?,nm,,m,}). Due to the lack of space, a de-
tailed complexity analysis of ROCK is presented in

[GRS97).

4.6 Miscellaneous Issues

Due to the lack of space, we only cover the issue
of labeling data on disk here. Other issues such as
random sampling and handling outliers are discussed
in [GRS97].

Labeling Data on Disk: In the final labeling phase,
ROCK assigns the remaining data points residing on
disk to the clusters generated using the sampled points.
This is performed as follows. First, a fraction of points
from each cluster 7 is obtained; let L; denote this set of
points from cluster 7 and used for labeling. Then, the
original data set is read from disk, and each point p is
assigned to the cluster ¢ such that p has the maximum
neighbors in L; (after normalization). In other words,
if point p has N; neighbors in set L;, then p is assigned
to the cluster ¢ for which zl_ﬁflT"—’_ is maximum. Note

that (|L;| 4+ 1)7(? is the expected number of neighbors
for p in set L;. Thus, labeling each point p requires at
most Zle |L;| operations to determine the points in
L; that are neighbors of p.

5 Experimental Results

To get a better feel for how ROCK performs in prac-
tice, we ran ROCK on real-life as well as synthetic data
sets. However, due to the lack of space, we present only
a part of results with real-life data sets in this section.
The results of other experiments related to scalability
with synthetic data sets appear in [GRS97]. We use
real-life data sets to compare the quality of clustering
due to ROCK with the clusters generated by a tradi-
tional centroid-based hierarchical clustering algorithm
[DH73, JD88]. For ROCK, in all the experiments,
we used the similarity function for categorical data (as
described in Section 3.1), and f(8) = 'H-—Z‘

In the traditional algorithm, we handle categorical
attributes by converting them to boolean attributes
with 0/1 values. For every categorical attribute, we
define a new attribute for every value in its domain.
The new attribute is 1 if and only if the value for the
original categorical attribute is equal to the value cor-
responding to the boolean attribute. Otherwise, it is
0. We use euclidean distance as the distance measure
between the centroids of clusters. Also, outlier han-
dling is performed even in the traditional hierarchical
algorithm by eliminating clusters with only one point
when the number of clusters reduces to 3 of the origi-
nal number.

Our experimental results with both real-life as well
as synthetic data sets demonstrate the effectiveness of
our link-based approach for clustering categorical as

519

Traditional Hierarchical Clustering Algorithm
Cluster No | No of Republicans | No of Democrats
1 157 52
2 11 215

ROCK
Cluster No | No of Republicans | No of Democrats
1 144 22
2 5 201

Table 2: Clustering result for congressional voting data

well as time-series data. All experiments were per-
formed on a Sun Ultra-2/200 machine with 512 MB of
RAM and running Solaris 2.5.
5.1 Real-life Data Sets

We experimented with three real-life datasets whose
characteristics are illustrated in Table 1. However, due
to the lack of space, we do not present the descrip-
tion of the US mutual fund data set and experimen-

tal results for it in this paper. They can be found in
[GRS97].

Congressional votes: The Congressional voting
data set was obtained from the UCI Machine Learn-
ing Repository®. It is the United States Congressional
Voting Records in 1984. Each record corresponds to
one Congress man’s votes on 16 issues (e.g., educa-
tion spending, crime). All attributes are boolean with
Yes (that is, 1) and No (that is, 0) values, and very few
contain missing values. A classification label of Repub-
lican or Democrat is provided with each data record.
The data set contains records for 168 Republicans and
267 Democrats.

Mushroom: The mushroom data set was also ob-
tained from the UCI Machine Learning Repository.
Each data record contains information that describes
the physical characteristics (e.g., color, odor, size,
shape) of a single mushroom. A record also contains a
poisonous or edible label for the mushroom. All at-
tributes are categorical attributes; for instance, the
values that the size attribute takes are narrow and
broad, while the values of shape can be bell, flat, conical
or convex, and odor is one of spicy, almond, foul, fishy,
pungent etc. The mushroom database has the largest
number of records (that is, 8124) among the real-life
data sets we used in our experiments. The number of
edible and poisonous mushrooms in the data set are
4208 and 3916, respectively.

5.2 Results with Real-life Data Sets
Congressional Votes: Table 2 contains the results
of running on congressional voting data, the centroid-

41t is
http://www.ics.uci.edu/ mlearn/MLRepository.html.

at

Data Set No of Records | No of Attributes | Missing Values Note

Congressional Votes 435 16 Yes (very few) | 168 Republicans and 267 Democrats
Mushroom 8124 22 Yes (very few) 4208 edible and 3916 poisonous
U.S. Mutual Fund 795 548 Yes Jan 4, 1993 - Mar 3, 1995

Table 1: Data sets

based hierarchical algorithm and ROCK with 8 set to
0.73. As the table illustrates, ROCK and the tradi-
tional algorithm, both identify two clusters one con-
taining a large number of republicans and the other
containing a majority of democrats. However, in the
cluster for republicans found by the traditional algo-
rithm, around 25% of the members are democrats,
while with ROCK, only 12% are democrats. The
improvement in the quality of clustering can be at-
tributed to both our outlier removal scheme as well as
the usage of links by ROCK. Note that due to the elim-
ination of outliers, the sum of the sizes of our clusters
does not equal to the size of the input data set.

The frequent values of categorical attributes for the
two clusters can be found in [GRS97]. We found that
only on 3 issues did a majority of Republicans and
Democrats cast the same vote. However, on 12 of the
remaining 13 issues, the majority of the Democrats
voted differently from the majority of the Republicans.
Furthermore, on each of the 12 issues, the Yes/No vote
had sizable support in their respective clusters. Since
on majority of the attributes the records in each cluster
have similar values that are different from the values
for the attributes in the other cluster, we can consider
the two clusters to be well-separated. Furthermore,
there isn’t a significant difference in the sizes of the
two clusters. These two characteristics of the voting
data set allow the traditional algorithm to discover the
clusters easily.

Mushroom: Table 3 describes the result of clus-
tering the mushroom database using the traditional
algorithm and ROCK. We set the number of desired
clusters for both algorithms to be 20. We set 8 for
ROCK to be 0.8. ROCK found 21 clusters instead
of 20 - no pair of clusters among the 21 clusters had
links between them and so ROCK could not proceed
further. As the results in the table indicate, all except
one (Cluster 15) of the clusters discovered by ROCK
are pure clusters in the sense that mushrooms in every
cluster were either all poisonous or all edible. Further-
more, there is a wide variance among the sizes of the
clusters — 3 clusters have sizes above 1000 while 9 of
the 21 clusters have a size less than 100. Furthermore,
the sizes of the largest and smallest cluster are 1728
and 8, respectively. We also generated the characteris-
tics of the clusters shown in Table 3, but due to lack of

520

space, we do not show them here. They can be found
in [GRS97]. We found that, in general, records in dif-
ferent clusters could be identical with respect to some
attribute values. Thus, every pair of clusters gener-
ally have some common values for the attributes and
thus clusters are not well-separated. An interesting ex-
ception was the odor attribute which had values none,
anise or almond for edible mushrooms, while for poi-
sonous mushrooms, the values for the odor attribute
were either foul, fishy or spicy.

As expected, the quality of the clusters generated
by the traditional algorithm were very poor. This is
because clusters are not well-separated and there is
a wide variance in the sizes of clusters. As a result,
with the traditional algorithm, we observed that clus-
ter centers tend to spread out in all the attribute values
and lose information about points in the cluster that
they represent. Thus, as discussed earlier in Section 1,
distances between centroids of clusters become a poor
estimate of the similarity between them.

As shown in Table 3, points belonging to different
clusters are merged into a single cluster and large clus-
ters are split into smaller ones. None of the clusters
generated by the traditional algorithm are pure. Also,
every cluster contains a sizable number of both poi-
sonous and edible mushrooms. Furthermore, the sizes
of clusters detected by traditional hierarchical cluster-
ing are fairly uniform. More than 90% of the clusters
have sizes between 200 and 400, and only 1 cluster
has more than 1000 mushrooms. This confirms that
our notion of links finds more meaningful clusters for
mushroom data.

6 Concluding Remarks

In this paper, we proposed a new concept of links
to measure the similarity /proximity between a pair of
data points with categorical attributes. We also devel-
oped a robust hierarchical clustering algorithm ROCK
that employs links and not distances for merging clus-
ters. Our methods naturally extend to non-metric sim-
ilarity measures that are relevant in situations where
a domain expert/similarity table is the only source of
knowledge.

The results of our experimental study with real-life
data sets are very encouraging. For example, with
the mushroom data set, ROCK discovered almost pure

Traditional Hierarchical Algorithm
Cluster No | No of Edible | No of Poisonous | Cluster No [No of Edible] No of Poisonous
1 666 478 11 120 144
2 283 318 12 128 140
3 201 188 13 144 163
4 164 227 14 198 163
5 194 125 15 131 211
6 207 150 16 201 156
7 233 238 17 151 140
8 181 139 18 190 122
9 135 78 19 175 150
10 172 217 20 168 206

ROCK

Cluster No | No of Edible | No of Poisonous | Cluster No | No of Edible | No of Poisonous
1 96 0 12 48 0
2 0 256 13 0 288
3 704 0 14 192 0
4 96 0 15 32 72
5 768 0 16 0 1728
6 0 192 17 288 0
7 1728 0 18 0 8
8 0 32 19 192 0
9 0 1296 20 16 0
10 0 8 21 0 36
11 48 0

Table 3: Clustering result for mushroom data

clusters containing either only edible or only poisonous
mushrooms. Furthermore, there were significant differ-
ences in the sizes of the clusters found. In contrast, the
quality of clusters. found by the traditional centroid-
based hierarchical algorithm was very poor. Not only
did it generate uniform sized clusters, but also most
clusters contained a sizable number of both edible and
poisonous mushrooms.

Acknowledgments: We would like to thank Narain
Gehani, Hank Korth and Avi Silberschatz for their en-
couragement. Without the support of Yesook Shim, it
would have been impossible to complete this work.

References

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms.

The MIT Press, Massachusetts, 1990.

[cwaT) Donald Coppersmith and Shmuel Winograd.
Matrix multiplication via arithmetic progres-
sions. In Proc. of the 19th Annual ACM Sym-

posium on Theory of Computing, 1987.

Richard O. Duda and Peter E. Hard. Pattern
Classification and Scene Analysis. A Wiley-
Interscience Publication, New York, 1973.

[DHT73|

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg
Sander, and Xiaowei Xu. A density-based al-
gorithm for discovering clusters in large spatial
database with noise. In Int’l Conference on

Knowledge Discovery in Databases and Data

[GRS97]

[GRS98]

[HKKM97]

[ID88]

[NH94]

[ZRL96)

521

Mining (KDD-96), Portland, Oregon, August
1996.

Sudipto Guha, R. Rastogi, and K. Shim.
Clustering algorithm for categorical attributes.
Technical report, Bell Laboratories, Murray
Hill, 1997.

Sudipto Guha, Rajeev Rastogi, and Kyuseok
Shim. CURE: A clustering algorithm for
large databases. In Proc. of the ACM SIG-
MOD Conference on Management of Data,
May 1998.

Eui-Hong Han, George Karypis, Vipin Kumar,
and Bamshad Mobasher. Clustering based on
association rule hypergraphs. In 1997 SIG-
MOD Workshop on Research Issues on Data
Mining and Knowledge Discovery, June 1997.

Anil K. Jain and Richard C. Dubes. Algo-
rithms for Clustering Data. Prentice Hall, En-
glewood Cliffs, New Jersey, 1988.

Raymond T. Ng and Jiawei Han. Efficient and
effective clustering methods for spatial data
mining. In Proc. of the VLDB Conference,
Santiago, Chile, September 1994.

Tian Zhang, Raghu Ramakrishnan, and Miron
Livny. Birch: An efficient data clustering
method for very large databases. In Pro-
ceedings of the ACM SIGMOD Conference on
Management of Data, Montreal, Canada, June
1996.

